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Abstract

The successful classi�cation of single-trial Electroencephalography (EEG ) signals enables

paralyzed p eople to communicate and can b e employed as analysis to ol. This thesis in-

vestigates the p ossibility to increase the accuracy of EEG classi�cation systems by com-

bining classi�ers that are based on di�erent feature extraction and classi�cation metho ds

that are employed for the classi�cation of EEG signals. This is achieved by comparing

multiple classi�ers that are based on a combination of classi�ers against the b est single

classi�er on data sets originating from four di�erent EEG studies. The results show that

a combination of classi�ers is able to increase the accuracy by more than 7%. This implies

that the general direction in EEG classi�cation research should b e changed from ��nding

the b est single classi�cation metho d� to ��nding the b est combination of classi�cation

metho ds�.
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1. Intro duction

Recently, the automatic classi�cation of Electroencephalography (EEG ) signals via Pat-

tern Recognition System s (PRSs) has gained attention. One main motivation b ehind this

is that the automatic classi�cation of EEG signals enables communication for paralyzed

p eople. Given that there are di�erences b etween classes, a PRS hyp othesizes a model ,

based on a labeled data set that captures these di�erences and can reliably classify a

novel sample based on that mo del. PRSs can b e used as an EEG data analysis to ol

by interpreting the separating mo del a PRS infers from a data set. In contrast to the

conventional analysis techniques, which are mostly univariate approaches, the employ-

ment of a PRS as analysis to ol enables the detection of di�erences that are based on

interactions b etween multiple variables (van Gerven et al., 2009).

In the last 10 years, researchers prop osed a variety of di�erent feature extraction

and classi�cation metho ds for the classi�cation of EEG signals (see Sections 2.2.3 and

2.2.4 ). Most EEG -PRS are based on one particular combination of feature extraction

and classi�cation metho d (Lotte et al., 2007 ). It is promising to combine the di�erent

feature extraction and classi�cation metho ds to p otentially create a PRS that is, for any

given Pattern Recognition (PR) task, more accurate than the b est PRS that is based

on one particular combination of feature extraction and classi�cation metho d. Because

the b est out of all p ossible classi�ers can not b e obtained, I use the so called ORACLE

classi�er as base-line comparison. If the ORACLE is asked, it returns the classi�er, out

of a candidate set of classi�ers, that achieves the highest mean accuracy over all data sets

for one particular PR task. Due to the employment of various di�erent feature extraction

and classi�cation metho ds, this PRS might b e able to p erform well on a large variety of

EEG data sets. Hence, it pro duces a separating mo del, which can b e interpreted, on a

large set of di�erent data sets. Thus, the �rst hyp othesis of this thesis is: A combination

of the di�erent feature extraction and classi�cation metho ds that are employed for the

classi�cation of EEG signals improves the accuracy of the resulting classi�er compared

to ORACLE and results in a PRS that p erforms well on a variety of EEG data sets.

The most p opular approach to combine feature extraction and classi�cation metho ds is

the employment of so called Multiple Classi�er System (MCS). A MCS consists of a set

of base-level classi�ers and a combiner . All base-level classi�er are trained for the same

PR task, but each base-level classi�er di�ers from the other base-level classi�ers. The

combiner combines the decisions from all base-level classi�ers to one overall ensemble

decision. The resulting classi�er is called ensemble classi�er .

One of the most famous combiners is the simple selection of the b est classi�er, as esti-

mated on a part of the training set. This combiner is called Select the Best (SelectBest )

in the remainder. The second hyp othesis of this thesis is that a combination of the de-

cisions of the base-level classi�ers leads to a more accurate ensemble classi�er than the

1



1. Intro duction

selection of the b est classi�er by SelectBest .

An even simpler approach is to only combine the di�erent feature extraction metho ds,

and to employ a single classi�cation metho d on the concatenation of the outputs of all

feature extraction metho ds. This approach is called Concatenation (CONCAT ) through-

out this thesis. The last hyp othesis of this thesis is that the employment of a MCS leads

to a more accurate classi�er than the CONCAT approach.

When ORACLE is compared against a MCS, the set of candidate classi�ers is identical

to the set of base-level classi�ers. MCS s have b een applied successfully for many diverse

EEG -PR tasks. Furthermore, it was shown that the combination of multiple feature

extraction metho ds is able to b o ost the accuracy compared to ORACLE. In all previous

studies, MCSs outp erformed the simple CONCAT approach. The previous comparisons

were all made on one particular typ e of EEG data sets. However, a systematic comparison

on a large set of many di�erent data sets is missing. In this thesis, I compare several

di�erent MCSs against CONCAT , ORACLE, SelectBest , and each other on a large set

of di�erent EEG data sets. The di�erent MCS s only di�er in the combiner they employ.

They are all based on the same diverse and broad base-level classi�ers (see section 3.4).

A ma jority of the combiners that I compare have not yet b een applied to the classi-

�cation of EEG signals. Furthermore, I prop ose several new combiners, which are not

limited to the application to EEG -PRSs. While all previous studies used the classi�ca-

tion of EEG signals to build a PRS that works well on one particular typ e of EEG data

sets, my goal is to build a PRS that works well on a variety of di�erent EEG data sets.

I apply a subset of the MCS that I prop ose to an EEG classi�cation problem for that

successful classi�cation has not yet b een achieved. The motivation b ehind this is to

examine if one MCS is p owerful enough to infer a separating mo del for that problem.

1.1. Outline

The remainder of this thesis is laid out as follows.

In Chapter 2, the mathematical and psychophysiological foundations will b e intro-

duced. It will start with a short intro duction to PR. After that, the applications of

the classi�cation of EEG signals will b e intro duced in detail. Then, various feature

extraction and classi�cation metho ds that have b een employed in previous studies will

b e intro duced. The chapter ends with an intro duction to MCS , with an emphasis on

di�erent combiners.

Chapter 3 will start with a detailed review of previous work. After that, the learning

algorithm that is used to train the ensemble classi�ers will b e intro duced. Also, the

newly prop osed combiners and the settings for the existing combiners will b e presented.

Chapter 3 also contains the description of the employed set of base-level classi�ers. It

will conclude with the details of the implementation.

In Chapter 4, the results of the comparison of the di�erent metho ds will b e presented.

The metho ds will b e compared on four di�erent EEG classi�cation tasks and on simulated

data sets. After the metho ds and the implementation details will have b een presented,

the results on the simulated data sets will b e intro duced. After that, the results on the

2



1. Intro duction

EEG data sets will b e shown. Chapter 4 concludes with a summary of the results.

In Chapter 5 a summary of this thesis will b e presented and conclusions based on the

results will b e drawn. It will also contain an Outlo ok that identi�es further p ossible

improvements.

3



2. Foundations

This section intro duces the foundations that are necessary for the understanding of this

thesis. It will start with a brief intro duction to Pattern Recognition (PR), including a

treatment of the prop er comparison of classi�ers. Thereafter, the foundations of, the

application of, and the metho ds for the classi�cation of Electroencephalography (EEG )

signals will b e intro duced. The last section will intro duce the combination of classi�ers.

2.1. Pattern Recognition

This section contains a short intro duction to the �eld of Pattern Recognition (PR). A

more extensive intro duction can, e.g., b e found in Duda et al. (2000 ). PR is a sub-�eld

of machine learning, which in turn is a sub-�eld of arti�cial intelligence.

Assume that someone asked you to build a system that separates hipp os and gira�es

based on their height and weight. To ful�ll this task you collect a data set that contains

the weight and height for each memb er of a set of hipp os and gira�es. One approach to

ful�ll this task would b e to lo ok at the data set and de�ne a separating mo del based on

what you have learned ab out the di�erences b etween the two classes, hipp os and gira�es.

Sup ervised learning aims at transferring this learning pro cess, which is necessary to

hyp othesize a mo del of the di�erences, to a computer. Given that there are di�erences

b etween classes, a sup ervised learning algorithm is an algorithm that hyp othesizes a

model , based on a labeled data set, re�ecting these di�erences and classi�es a novel

sample based on that mo del. The lab eled data set contains a numb er of samples for

which the class memb ership is given by an external source. In our example, the classes

are hipp os and gira�es. The mo del could, for example, suggest that if an animal has a

height of less than 4 meters it is an hipp o, otherwise it is a gira�e. An animal that was

not included in the data set can now b e automatically classi�ed using this mo del.

A Pattern Recognition System (PRS) is a system that employs a sup ervised or un-

sup ervised learning algorithm to infer a separating mo del, which is then employed to

classify novel samples. In the remainder of this section I will explain the functionality of

a PRS by describing the comp onents of that a PRS typically consists. These comp onents

represent the solutions of the di�erent problems one has to solve when designing a PRS.

For this thesis, I am concerned only with those PRS s that employ a sup ervised learning

approach.

2.1.1. Comp onents

The comp onents of a PRS are usually sequentially pro cessed. I will intro duce the com-

p onents in their pro cessing order.

4



2. Foundations

Input

Sensing Comp onent

Segmentation Comp onent

Feature Extraction Comp onent

Classi�cation Comp onent

Post Pro cessing Comp onent

Decision

Data Stream

Sample

Features Extracted from the Sample

Lab el

Figure 2.1.1.: Illustration of the data �ow b etween the typical comp onents of a PRS .

Sensing Comp onent

Because a PRS works on a computer, it is only able to pro cess digital data. The task

of the �rst comp onent, named sensing component , is to transform chosen asp ects of the

reality into a format that is readable by a computer.

The sensing comp onent should sense those asp ects of the reality that re�ect the dif-

ferences b etween the classes. Hence, the choice of an appropriate sensing comp onent is

crucial for the success of a PRS .

For our hipp o and gira�e example, the sensing device might b e a camera. For other

domains, a microphone or Electroencephalography (EEG ) electro des might b e used.

Segmentation Comp onent

When using a microphone as sensor for a sp eech recognition PRS, the computer gets

a constant data stream as input. However, most sup ervised learning algorithms are

only able to handle discrete samples as input. Therefore, the constant data stream has

to b e segmented into samples . The decision how to segment the data results in the

segmentation component.

Dep ending on the domain of the classi�cation problem the segmentation comp onent

may b e crucial to the success of the PRS, or may b e completely unnecessary. For a

sp eech PRS the design of a go o d segmentation comp onent is crucial, as opp osed to an

e-mail spam �lter, where the data is naturally segmented into e-mails. A set of multiple

5



2. Foundations

Figure 2.1.2.: Illustration of the outputs of each comp onent. The sensing comp onents

returns a picture from which the segmentation comp onent extracts ani-

mals. In this case the gira�e. The feature extraction comp onent extracts

the height from the picture of an animal and the classi�cation comp onent

classi�es animals based on their height.

6



2. Foundations

Segmentation A I like this

Segmentation B Il ik eth is

Table 2.1.: Illustration of the imp ortance of prop er segmentation

samples is called raw data set.

De�nition 1. Let X � K r
b e the set of unlab eled samples from multiple classes, called

measurement space , where K is a �eld. Let Y = f y1; : : : ; yL g b e the �nite set of p ossible

lab els representing the classes. Furthermore, let M � X � Y b e the set of samples that

are lab eled correctly. Then a �nite subset D � M is called data set and (x; y) 2 D is

called labeled sample . N = jD j denotes the numb er of samples in the data set D and yl

the l th lab el out of the L p ossible lab els.

Feature Extraction Comp onent

In the intro duction of this section it was assumed that the data set contains height and

weight as measure. This is true if one wants to build a PRS that works on data sets that

are made by zo ologists. In this case neither a sensing nor a segmentation comp onent is

needed as sensing and segmentation is p erformed by humans.

However, if one wants to build a PRS that enables a rob ot in the wilderness to distin-

guish gira�es from hipp os, the data set will more likely b e a collection of images. If the

camera resolution is 640� 480, each image is represented by a 3 � 640� 480 = 921; 600
dimensional vector x: While it is p ossible to build a successful PRS on a raw data set,

with high feature dimensions like this, the approach to transform the samples into a b et-

ter discriminating and meaningful space is more common. This pro cess is called feature

extraction . The goal of the feature extraction comp onent is to extract features that di�er

largely for samples from di�erent classes and are very similar for samples from the same

class.

De�nition 2. A feature extraction function � is a function that maps samples from

the measurement space X to a new measurement space X
feat

. � �;� : X ! X
feat

. � are

parameters that are learned from the data set D , and � are parameters that have to b e

chosen by the designer, often called hyp er-parameters. I call

D
feat

= f (x
feat

; y) : (x; y) 2 D ^ x
feat

= � �;� (x)g

the feature data set.

The feature extraction comp onent can consist of the comp osite of arbitrary many

feature extraction functions � n � � n� 1 � : : : � 1: Each feature extraction function � i has

parameters � i and , where � i is learned using the data set transformed by � i � 1 . With

that in mind I will just sp eak of the feature extraction function in the remainder

� �;� = � n � � n� 1 � : : : � 1 (2.1.1)

7



2. Foundations

There are two approaches to obtain a feature extraction function. The �rst approach is

the incorp oration of prior knowledge ab out the underlying problem. It is, for example,

known that on average gira�es are taller than hipp os. Therefore, the height of an animal

should b e a feature that enables a go o d distinction b etween gira�es and hipp os. The

extraction of the height as feature also reduces the numb er of feature dimensions from the

921600 pixels of the picture to 1 height value. Therefore, it drastically reduces demands

on memory and computation time. This approach simpli�es the learning task for the PRS

by delegating part of the learning to the designer. The designer sp eci�es and implements

the, in this case at least very complex, feature extraction function. If this approach is

chosen, no parameters have to b e learned from the data set; � = ; .

The second approach relies less on prior knowledge. It uses a so-called learning algo-

rithm to induce the feature extraction function from the data set or in other words to

p opulate � .

De�nition 3. An algorithm I � ?;� (D ) = � �;� that takes as input an untrained feature

extraction function � ?;� (x) and a data set D and returns the trained feature extraction

function � �;� (x) is called a learning algorithm

Example algorithms that fall into this category are: Principal Comp onent Analysis

(Duda et al., 2000 , pp. 568), Indep endent Comp onent Analysis (Duda et al. , 2000, pp.

570), and Common Spatial Patterns (CSP ) (see Section 2.2.3 ). These algorithms consist

of an untrained feature extraction function � ?;� and the corresp onding learning algo-

rithm I � ?;� . I will call such algorithms feature extraction methods in the remainder.

When a learning algorithm is used to p opulate � , the designer of the PRS still heavily

in�uences the hyp othesized mo del by cho osing the feature extraction metho d and its

hyp er-parameters.

Classi�cation Comp onent

The heart of each PRS is the classi�cation component . The choice of the classi�cation

comp onent is crucial.

De�nition 4. A trained classi�er 	 �;� is a function that maps samples from the feature

space X
feat

to lab els 	 �;� : X
feat

! Y .

Analogous to the feature extraction comp onent, there are two ways to build a classi�er,

one can de�ne a static classi�er based on prior knowledge or use a learning algorithm

to induce a classi�er from a data set. In contrast to the feature extraction metho d,

no state-of-the-art general purp ose PRS exists, to my knowledge, that do es not employ

a learning algorithm for training its classi�er. The classi�cation comp onent takes the

feature data set as input.

Note that a classi�er could also b e de�ned as the feature extraction function for that

the new measurement space is the lab el set Y . This implies that � is also p opulated

by the corresp onding learning algorithm and � are hyp er-parameters, which must b e

chosen by the designer. The p opulation of � by a learning algorithm, which leads to a

classi�er, is also referred to as the learning algorithm I 	 induces a classi�er 	 . I will

8



2. Foundations

call the combination of an untrained classi�er and its corresp onding learning algorithm

classi�cation method .

An example classi�cation metho d is the mean classi�er. The learning algorithm of the

mean classi�er calculates the mean for each class

myl =
1

jDyl j

X

(x;y )2 D y l

x

where Dyl = f (x; y) 2 D
feat

: y = ylg. The trained mean classi�er assigns a new sample

x to the class to whose mean it has the smallest distance, with resp ect to some distance

measure d. Therefore, the discriminating mo del consists of the mean of every class and

the distance function d that is employed . The set of parameters learned from the data

consists of the class-wise means � = f my1 ; : : : ; myL g and the hyp er-parameter re�ects

the choice of the distance function � = d. A new sample x 2 X
feat

is classi�ed according

to the following formula

	 �;r (x) = arg min
yl 2 Y

(d(myl ; x))

Note that the concatenation of the classi�er and the feature extraction function

	 � � : X ! Y (2.1.2)

also results in a classi�er. Therefore, I will sp eak of a classi�er 	 �;� for the concatenation

of the feature extraction and the classi�cation function in the remainder of this thesis.

Furthermore, I will summarize the learning algorithm of the feature extraction metho d

and the learning algorithm of the classi�cation metho d as I 	 ?;� (D ): Rememb er that it is

a short for

I 	 ?;� (D ) := I 	 ?;� (� �;� (D )) = I 	 ?;� (I � ?;� (D )(D )) = 	 �;�

where I � ?;� is the learning algorithm of the feature extraction function, I 	 ?;� the learning

algorithm of the classi�er, and � �;� (D ) denotes that the raw data set is mapp ed to the

feature data set by applying � �;� to each sample in D .

Post Pro cessing Comp onent

The post processing comp onent is de�ned as everything that is done with the classi�cation

of a sample.

Most PRS p erform some action that is dep endent on the classi�cation decision. For

example, an iris scanner could op en a do or if the classi�er decided that the iris put in

front of the sensors b elongs to a p erson who has access rights to the ro om.

The p ost pro cessing comp onent might also b e able to add context to a classi�cation.

If, for example, a letter recognition system is unsure if a picture of a letter represents a

c or an o, but the same system classi�ed the context of the letter with high certainty

as �f ?r�, the p ost pro cessing comp onent may decide that, based on the context, o has a

much higher a-priori likeliho o d and, hence, assign the sample to the class o .

Another function of the post processing comp onent can b e the integration of multiple

classi�ers working on multiple asp ects of the input to one decision. This will b e presented

9
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in more detail in Section 2.3 . But �rst, I explain how to get a valid measure of the

p erformance of a classi�er.

2.1.2. Notation

Throughout this work I will use the following notation, originating from the previous

section. D will b e the raw data set, containing samples (x i ; yi ) , with cardinality N . D
is assumed to b e a representative subset of the whole p opulation M . Y = f y1; : : : ; yL g
describ es the set of lab els with cardinality L , X denotes the measurement space, and 	
a classi�er induced by the learning algorithm I 	 . yi refers to the lab el of the i th sample

in the data set D , while yl refers to the l th out of the p ossible lab els Y .

2.1.3. Estimation of the Performance of a Classi�er

Loss and Risk

After creating a classi�er, its p erformance is usually of interest. Questions related to the

p erformance are typically: Is the p erformance of a classi�er su�cient for a given task?

Is it p erforming b etter than another classi�er? The p erformance of a classi�er is usually

quanti�ed with the help of a loss function .

De�nition 5. A loss function L is a function that maps a lab eled sample (x; y) 2 M

and a classi�er 	 to a cost term. L(x; y; 	) 2 R� 0

The most basic and most often employed loss function is the zero-one loss function.

De�nition 6. Let x; y , 	 b e as in De�nition 5. The zero-one loss function is then de�ned

as

L 01(x; y; 	) =

(
0 if, 	( x) = y

1 otherwise

The zero-one loss function assigns, indep endently from the true lab el y , every mis-

classi�cation the cost 1. Correct classi�cations are assigned zero cost. Other loss func-

tions are, for example, used if the cost of a misclassi�cation dep ends on the true class.

A typical example for unequal misclassi�cation costs are medical tests. In most cases

the consequences are less severe if a medical test classi�es a patient as sick who is not

sick compared to the situation when the test classi�es a patient as healthy who is sick.

Therefore, for a medical test mostly asymmetric loss functions are used, which assign the

misclassi�cation of a sick patient a high cost.

The risk of a classi�er is the exp ected loss. It is the most common p erformance measure

for classi�ers.

De�nition 7. The risk of a classi�er is de�ned as

R(	 ; p) =
�

x2 X;y 2 Y

L(x; y; 	) p(x; y)dxdy

where L is a loss function and p(x; y) the joint probability mass function of X and Y .

10



2. Foundations

When using the zero-one loss function, an equivalent measure for the risk is the accu-

racy.

De�nition 8. Let R01(	 ; p) b e the risk calculated with L 01 as loss function. Then

acc (	 ; p) = 1 � R01(	 ; p)

is called accuracy of classi�er 	 .

Note that the accuracy represents the probability that a classi�er 	 predicts the true

class, acc (	 ; p) = P(	 = correct ) . If p(x; y) were known, the accuracy could b e calcu-

lated directly .

Also, if p(x; y) were known, the classi�cation task would b ecome trivial. It can b e

shown that the Bayes classi�er

Bayes (x) = arg max
yl 2 Y

p(xjY = yl )P(Y = yl )
p(x)

is the classi�er with the highest accuracy (Duda et al. , 2000 , pp. 24). No classi�er is

able to achieve a higher accuracy than Bayes.

But when building a classi�er, the joint probability mass function p(x; y) is rarely

known. Only a �nite subset D of the whole p opulation M is available. Hence, the design

of other classi�ers than Bayes is reasonable, and the accuracy can only b e estimated on

the �nite data set D .

Estimation Metho ds

There are several metho ds for estimating the accuracy, which I will intro duce in the

remainder of this section. Indep endently of the metho d one cho oses to estimate the

accuracy, it is de�ned as follows.

De�nition 9. Let D b e a data set, the estimated accuracy of the classi�er 	 on that

data set is

acc

es

(	 ; D ) = 1 �
1
N

X

(x;y )2 D

L 01(x; y; 	)

Recall that N = jD j .

Note that one usually is not interested in the p erformance of a static classi�er 	 but

in the p erformance of the classi�er that is induced by a learning algorithm I 	 from the

data set D . The most naive metho d to estimate the accuracy is to use the same data set

for estimating the accuracy as for inducing the classi�er.

De�nition 10. When estimating the accuracy on the same data set that was used for

inducing the classi�er, the estimated accuracy is called training accuracy and calculated

as follows

acc

train

(I 	 ; D ) = acc

es

(I 	 (D ); D )) = 1 �
1
N

X

(x;y )2 D

L 01(x; y; I 	 (D ))

11
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The training accuracy is not a go o d estimate of the accuracy. It is a biased estimate.

The training accuracy is usually signi�cantly higher than the true accuracy b ecause the

data on that the accuracy is estimated is not indep endent from the data that was used

to induce the classi�er.

The general solution to that problem is to divide the data set D into two disjoint data

sets, Dh and D t . The inducer I 	 employes D t to induce the classi�er 	 . The accuracy

of 	 is then estimated on Dh . Since one part of the data set is held out from training,

this metho d is called holdout method .

De�nition 11. The accuracy estimated by the holdout metho d is de�ned as

acc

es

(I 	 ; D ) = acc

es

(I (D t ); Dh) = 1 �
1
N

X

(x;y )2 D h

L 01(x; y; I 	 (D t ))

where Dh = D=D t .

It is common to use

2
3 of the data set for the training set D t and

1
3 for the holdout

set Dh . Assuming that the learning algorithm I 	 gets b etter with a bigger data set,

the accuracy estimated by the holdout metho d, in opp osition to the training accuracy,

yields an underestimation of the accuracy (Kohavi , 1995 ). This problem is severe when

the data set is small.

To utilize the complete data set for the estimation of the accuracy, a metho d called

n -fold cross-validation is often employed. This metho d basically rep eats the holdout

metho d with di�erent holdout sets. The data set is separated into n disjunctive sub

sets, each containing N=n samples. For each subset D i the learning algorithm is trained

with the remainder of the data set D=D i , and the accuracy of the resulting classi�er is

estimated on D i . The accuracy estimated by n -fold cross-validation is the summed loss

over the n folds divided by the numb er of samples N .

De�nition 12. The accuracy estimated by the n -fold cross-validation metho d is de�ned

as

acc

cv

(I 	 ; D ) = 1 �
1
N

nX

i =1

X

(x;y )2 D i

L 01(x; y; I 	 (D=D i ))

where D = [ i 2f 1;::;n gD i and D i \ D j = ; if i 6= j .

When estimating the accuracy using n -fold cross-validation, one has to decide how

many disjunctive data sets to create and how to create them. Kohavi (1995 ) showed

that 10 data sets (folds) are a go o d trade-o� b etween bias and variance of the resulting

estimator and that strati�cation leads to a decrease of b oth variance and bias of the

estimated accuracy. Strati�cation means that the folds D i contain roughly the same

prop ortions of the classes as the original data set D .

When the data set D is imbalanced, i.e., D do es not contain equal prop ortions of

all classes, a b etter measure of the p erformance of a classi�er than the accuracy is the

Balanced Accuracy (BAC ) (Bro dersen et al. , 2010 ) .
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De�nition 13. The BAC is de�ned as the average p er class accuracy

bac (	 ; p) =
1
L

LX

l=1

acc (	 ; pjM y l
(x; y))

where M yl := f (x; y) 2 M : y = yl g

Analogous to the accuracy, the BAC can also b e estimated using one of the intro duced

metho ds.

2.1.4. Comparison of Classi�ers

Indep endent of the metho d used for the estimation of the p erformance of a classi�er,

the p erformance measure dep ends on the data set. As long as D 6= M , it is a random

variable that p otentially changes if a di�erent data set is drawn from M . Thus, metho ds

from the �eld of statistical inferences need to b e applied to answer questions like, �do es

a classi�er p erform b etter than chance� or �do es a classi�er p erform b etter than another

one�.

The general pro cedure used in statistical inference is to formulate a hyp othesis. Hy-

p otheses are expressed in so called test statistics. Test statistics are certain characteristics

of the data. E.g., a test statistic is the estimated BAC of a classi�er.

To substantiate that the hyp othesis is true, the contrary of the hyp othesis, called null

hyp othesis, is assumed, and the probability under the null hyp othesis of obtaining test

statistics that are at least as extreme as those observed is calculated. This probability is

often called p-value . If the p -value falls b elow a certain threshold, which is often called

� , the null hyp othesis is rejected, and the original hyp othesis is b elieved to b e true.

When the hyp othesis is a di�erence hyp othesis, e.g., classi�er A has a higher accuracy

than classi�er B, the di�erence is called statistical ly signi�cant at the 5% level, which is

often simply referred to as signi�cant if the corresp onding p-value falls b elow 5%.

2.1.4.1. Comparing Against Random Guessing

When comparing a classi�er 	 against random guessing using the BAC as test statis-

tic, the null hyp othesis is bac (	 ,p ) = 0 :5. Under the null hyp othesis and indep endent

samples, the estimated accuracy acc

es

for each class is distributed as

1
Nyl

B (Nyl ; 0:5)

where Nyl is the numb er of samples in the data set D with lab el yl , and B (n; p) is the

binomial distribution with n trials and success probability p p er trial. Note that p is

di�erent from the probability mass function. The estimated BAC is distributed as

1
L

LX

l=1

1
Nyl

B (Nyl ; 0:5)
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The Binomial distribution converges to the normal distribution for large n; approximately

in the range of n > 30. The data sets that are used for estimating the BAC usually contain

more than 30 samples p er class. Therefore, the sum converges to a normal distribution

with mean 0.5 and variance

var (
1
L

X 1
Nyl

B (Nyi ; 0:5)) =
1

L 2

X
var (

1
Nyl

B (Nyl ; 0:5)) =
1

L 2

X 1
N 2

yl

var (B (Nyl ; 0:5))

=
1

L 2

X 1
N 2

yl

1
4

Nyl =
1

L 2

X 1
4Nyl

Let b b e the BAC achieved on D . The probability that the estimated BAC b or a higher

BAC is achieved by a classi�er that indep endently guesses is therefore:

P( bac es (	 ,D ) > bj bac (	 ; p) = 0 :5) =

1�

b

N (x; 0:5;
1

L 2

X 1
4Nyl

)dx (2.1.3)

where N (x; �; � 2) is the likeliho o d of x under the univariate normal distribution with

mean � and variance � 2
. If this probability is smaller than 5%, we say that 	 p erforms

signi�cantly b etter than random guessing.

Comparing two Classi�ers on a Single Data Set

For comparing two classi�ers, 	 1 and 	 2 , Salzb erg (1997 ) suggests a di�erent pro cedure.

He prop oses to use the following test statistics. The numb er of samples in the data set

where 	 1 predicts the correct class and 	 2 predicts the wrong class.

s = jf (x; y) 2 D : 	 1(x) = y ^ 	 2(x) 6= ygj

Analogous to that, the numb er of samples in the data set where 	 2 predicts the correct

class and 	 1 predicts the wrong class.

f = jf (x; y) 2 D : 	 2(x) = y ^ 	 1(x) 6= ygj

The null hyp othesis says that no classi�er p erforms b etter and guesses are indep endent.

Thus, E(s) = 0 :5(s + f ) = E(f ) , where E(s) denotes the exp ected value of the random

variable s. Let s
emp

and f
emp

b e the values observed for a certain data set. Furthermore

let s
emp

b e greater than f
emp

. Then, under the null hyp othesis, the probability that a

value for s that is at least as high as s
emp

is observed is

P(s > s
emp

j	 1 = 	 2) =
s

emp

+ f
empX

k= s
emp

B (k; s
emp

+ f
emp

; 0:5)

where B (k; n; p) denotes the probability of k successes under the binomial distribution

with n trials and success probability p. Thus, if this value falls b elow 5%, it is b elieved

that 	 1 p erforms b etter than 	 2 . If the original hyp othesis was � 	 1 > 	 2 or 	 1 < 	 2 �,

the p -value has to b e multiplied by two to correct for the two comparisons.
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2.1.4.2. Comparing Multiple Classi�ers on Multiple Data Sets

For comparing multiple classi�ers 	 1; : : : ; 	 K on multiple data sets D1; : : : ; Dn Dem²ar

(2006 ) prop oses to use the Friedman test.

The Friedman test computes for every classi�er 	 k and data set D i the rank, based on

an arbitrary p erformance measure, compared to the other classi�ers. It is not imp ortant

if the b est or the worst p erforming learning algorithms gets assigned rank 1 or rank K .

I will assume that the b est classi�er gets assigned rank K in the remainder. Let r i
k b e

the rank of the classi�er 	 k on the data set D i : The Friedman test employs the mean

rank over all data sets

Rk =
1
n

nX

i =1

r i
k

p er classi�er as test statistics. The test statistics and distribution for the null hyp othesis

that all averaged ranks Rk are equal can b e found in Dem²ar (2006 ).

After the hyp othesis that there are no di�erences b etween the classi�ers was falsi�ed, a

p ost-ho c pro cedure can b e applied to test which pairs of classi�ers di�er. Under the null

hyp othesis, no di�erence b etween the two learning algorithms 	 o and 	 m , the di�erence

of the two ranks is mapp ed to a z-value by the following formula

z =
Ro � Rmq

K (K +1)
6n

The z-value can b e transformed to a p -value as follows

p =

z�

� z

N (x; 0; 1) dx

When comparing a set of classi�ers over a set of data sets, usually two typical question

are of interest. Which classi�er out of a set of classi�ers T := f 	 1; : : : ; 	 K g p erforms

b etter than a base-line classi�er 	 , and which classi�er out of a set of classi�ers p erforms

b est.

For comparing a set of classi�ers against a base-line classi�er a p -value for each classi�er

from the set can b e obtained by comparing the classi�er against the base-line metho d,

using the aforementioned metho d. But the threshold � has to b e decreased.

Let H b e the null hyp othesis that there are no di�erences b etween any classi�er from

the set T and the base-line classi�er, and let H k b e the null hyp othesis that the classi�er

	 k is identical to the base-line classi�er. Note that the null hyp othesis H1; : : : ; HK are

indep endent. Thus, under the null hyp othesis H , the exp ected numb er of rejected null

hyp othesis H k is K� . To correct for this in�ated � error, the � threshold for each

hyp othesis H i 2 f H1; : : : ; Hkg is divided by K . This pro cedure is called Bonferroni

correction .
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Static Sha�er Pro cedure

If comparing all pairs of classi�ers, it is also p ossible to use the Bonferroni correction.

However, the Bonferroni correction assumes that each comparison made is completely

indep endent of the others. Because this assumption is not met, the Bonferroni correction

is overly conservative.

García and Herrera (2008 ) compared correction schemes that exploit dep endencies b e-

tween the hyp othesis with regard to their suitability for the comparison of multiple

classi�ers. They concluded that the Bergmann-Hommel pro cedure p erforms b est but is

also computational complex and hard to understand. Sha�er's Static Procedure (SSP )

has almost equivalent p ower but is much simpler.

When comparing all pairs out of K classi�ers, there exists a total of

K (K � 1)
2 := G

di�erence hyp otheses. Each di�erences hyp othesis corresp onds to a hyp othesis 	 m 6= 	 o .

For each hyp othesis the p -value for the corresp onding null hyp othesis can b e obtained by

employing the p ost-ho c Friedman test, intro duced in the previous section. The �rst step

of the SSP is to sort the null hyp othesis by their p -values. Let H1; : : : ; HG b e the null

hyp otheses sorted by their corresp onding p -value. In general, the � value corresp onding

to the i th hyp othesis is corrected by the numb er of hyp otheses that can b e true given

that (i � 1) hyp otheses are false.

Hence, H1 is rejected if p � �=G . Note that each null hyp othesis corresp onds to

the prop osition that one pair of classi�ers, 	 m and 	 o , p erforms the same 	 o = 	 m :
If H1 is rejected, 9m; o 2 f 1; : : : ; K g : 	 o 6= 	 m . Therefore, for all other classi�er

8k 2 f 1; : : : ; K g=f m; og	 k 6= 	 m _ 	 k 6= 	 o . Hence, if H1 is wrong, at least K � 1
additional null hyp othesis have to b e wrong. Thus, the correction term t2 for the second

hyp othesis is t2 = G � (K � 1). The algorithm to calculate the correction term for every

stage and a more extensive description of SSP can b e found in Sha�er (1986 ).

A �nal remark

In this section, for simplicity, I always assumed to compare classi�ers. In this thesis I will

rather compare learning algorithms. I will do so by estimating the BAC of the learning

algorithms on each data set, using 10-fold strati�ed cross-validation. The intro duces test

can then b e applied on these estimates in the same way.

2.2. Classi�cation of Electro encephalographic Signals

The classi�cation of Electroencephalography (EEG ) signals is an application area, out of

many, of Pattern Recognition (PR). In the remainder of this section I will �rst intro duce

the basics of EEG . After that, I will give an overview ab out why the classi�cation of

EEG is useful and what its applications are. The last subsections will fo cus on the feature

extraction and classi�cation metho ds that are usually employed to build EEG - Pattern

Recognition System s (PRS s).
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2.2.1. Electro encephalography

EEG is a neuroimaging metho d based on electrical �elds generated by neural activity.

The �eld p otentials are measured by electro des at di�erent lo cations on the scalp, at a

certain sampling rate. Each electro de provides a time series of electrical p otentials.

Classi�cation of EEG signals aims at separating di�erent brain states. While resting

state classi�cation is also of interest, most EEG -PRSs try to separate signals that are

induced by certain events. This signals are called Event Related Potentials (ERP ). For

example, one of the data sets used in this thesis comes from an exp eriment where the

participants heard a high- or a low-pitched tone. The p otentials that were generated by

the pro cessing of the tone are the ERP. The remaining brain activity is considered noise.

The main task of a EEG -PRS is to separate the ERP from the noise.

To generate the data sets that are needed for sup ervised learning, typically for every to-

b e-separated class multiple rep etitions are recorded. For example, multiple rep etitions of

the presentation of a high- and a low-pitched tone. In the EEG context these rep etitions

are called trials . The samples for the data sets are usually generated by cutting a �xed

sized time interval out of each trial. Thus, each element of the raw data set typically is

of the form

x 2 RC�T

where C is the numb er of channels (electro des) and T the numb er of time p oints that

are extracted. Because there usually is a one to one relationship b etween exp erimental

trials and samples in the data set, I will also call samples trials in the remainder of this

thesis.

The ERP are typically weaker than the ongoing brain activity. Even worse, the EEG

signal is additionally disturb ed by external noise sources (Lotte et al., 2007). The most

prominent noise sources are electrical �elds induced by eye movements, muscle activity,

and electrical devices / p ower jams. Typically, the magnitude of those noise signals is

of orders higher than the magnitude of the brain signal. Additionally, b ecause recording

EEG signals is comparatively time consuming and the to-b e-p erformed tasks are often

monotonous and, hence, exhausting, the data sets typically contain less than thousand

trials; often substantially less. One trial is usually around one seconds long and sampled

at 1000Hz. Thus, for one trial the dimensionality of the raw amplitude data is C �
T = 60 � 1000 = 60; 000. Most EEG -PRS s reduce the numb er of data dimensions by

extracting features from the raw data. But still, it is often the case that the numb er

of features is higher than the numb er of trials. This problem is often referred to as

curse-of-dimensionality.

To summarize this: The three ma jor challenges when building an EEG -PRS are small

training data sets, high dimensionality, and a low signal to noise ratio. As we will see

in Section 2.2.3 , researchers came up with various metho ds to deal with these problems.

I will �rst intro duce the ma jor applications of the classi�cation of EEG signals in the

following section.
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(a)

(b) (c)

Figure 2.2.1.: (a) Picture of a participant during an EEG Exp eriment. (b) EEG signal

from 8 channels during 1 second. (c) Example of a 64 channel electro de

cap montage (Brain Pro ducts , 2012 ).
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2.2.2. Applications

There are two typ es of ma jor applications of EEG classi�cation: Enabling direct brain

computer communication and the utilization of EEG classi�cation as an analysis metho d

in neuroscience.

Brain Computer Interfaces

A Brain Computer Interface (BCI) is a PRS that enables the communication b etween

a p erson and a computer via brain signals. Most current BCI systems use EEG as

sensor b ecause, compared to other neuroimaging metho ds, such as functional magnetic

resonance imaging (fMRI) and Magnetoencephalography (MEG), EEG is cheap, has a

go o d time resolution and is p ortable.

The most prominent application of BCIs is the enabling of communication for par-

alyzed patients (Sellers et al. , 2007 , Hinterb erger et al. , 2007, Pfurtscheller et al. , 2007,

Blankertz et al. , 2007 ). Another p opular application of BCIs is the control of arti�cial

limbs (Pfurtscheller et al., 2007 ). Both applications are realized by distinguishing brain

patterns that can willfully b e generated by the patients.

Most current BCIs are only able to distinguish two classes and work in a synchronous

mo de. Synchronous mo de hereby refers to the fact that the classi�cation has to b e trig-

gered by external cues. A patient can not send commands to the computer sp ontaneously.

These are the two main reasons why the information transfer rate of current BCI systems

is less than 0.5bit/s. However, for p eople who are not able to communicate at all even

this small information transfer rate means a tremendous improvement of their situation.

One ma jor outstanding issue of BCI research is that, while it was proven that most

healthy sub jects and also patients with only little residual muscular control are able

to control a BCI, no research lab has yet rep orted the successful control of BCI by

a completely lo cked-in patient (Kübler et al., 2007 ). In the completely lo cked-in state

no muscular control and, thus, no communication is p ossible. The tragedy of that cir-

cumstance is that the completely lo cked-in patients would b ene�t most of a BCI. It is

simply the only chance for them to communicate. All other patients are also able to

communicate with the help of their muscles.

This tragic situation might b e one cause why recently the use of BCIs for healthy

sub jects has gained attention. It was, e.g., used as controlling device for computer games

(Blankertz et al. , 2010b ), an autonomous car (Autonomos Labs, 2011 ), and a pinball

machine (Tangermann et al., 2009 ).

BCIs can b e sub divided into active and passive BCIs (Zander and Kothe , 2011 ). Active

BCIs are characterized by the fact that the brain activity that is classi�ed is willfully

generated by the user. The application examples ab ove all b elong to the group of active

BCIs. In contrast to that, passive BCIs aim at classifying di�erent brain patterns that

are not willfully generated by the user. For example, a passive BCI was used as a to ol

in a neuroscience study (Jensen et al., 2011 ) to intro duce brain-state dep endent stimuli.
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Single-trial Analysis

The classi�cation of EEG signals can b e employed as so called single-trial analysis

metho d. A classi�er is trained on a particular EEG data set, and the mo del that is

hyp othesized by the classi�er is interpreted. This di�ers from the conventional analysis

of EEG signals, which reduces the noise by averaging over trials and sub jects. In contrast

to the conventional analysis technique, single-trial analysis is able to detect di�erences

that are based on interactions b etween multiple variables (features) (van Gerven et al.,

2009 ). Additionally, it accounts for the p er-sub ject and the p er-trial variance. In spite

of these advantages, there are relatively few publications that apply single-trial analy-

sis to EEG data (Parra et al., 2002, Blankertz et al., 2011, van Gerven et al. , 2009 ). In

contrast to that, the employment of PR metho ds for data analysis is widely spread in

the fMRI community.

2.2.3. Feature Extraction Metho ds

Notation

In the remainder of this chapter I will use the following notation. A data set consists

of N trials. A trial from the raw data set consists of an element E i 2 RC� T
from the

raw input space and the corresp onding lab el yi 2 Y: Each trial from the feature data set

consists of a feature vector x i 2 X and the corresp onding lab el yi : When the index is

not needed, it is omitted. X is called the feature space. The numb er of di�erent classes

is denoted by L . r denotes the dimensionality of the feature space X .

Raw Electro encephalography Signals

The most straightforward feature extraction metho d for the classi�cation of EEG data is

to employ the raw �eld p otentials. The feature vector x consists of the concatenation of

the time series of all channels x 2 RC�T
. Indeed, as Lotte et al. (2007 ) describ e, several

successful BCIs used the raw �eld p otentials as input for their classi�cation comp onent.

Spatio-temp oral features

To reduce the dimensionality of the feature vector, in comparison to the feature extraction

metho d that simply employs the raw amplitude data, Blankertz et al. (2011 ) suggest to

average the time series from each channel in certain intervals. Let I = f I 1; : : : ; I K g b e

sets of time p oints of interest. I k 2 I is typically an interval. For every channel c the

metho d generates K features

xc(I ) = [ mean (f E (c; t)gt2 I 1 ); : : : ; mean (f E (c; t)gt2 I K )]

where E(c; t) refers to the data p oint in the cth channel at time p oint t in trial E . The

�nal feature vector x is the concatenation of the feature vectors xc from all channels. In

general, this metho ds leads to so called Spatio Temporal Features (STF ).
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2. Foundations

This approach is, of course, not limited to the usage of the mean as aggregation metho d.

Indeed, all feature extraction metho ds presented in the following can also by applied to

a set of intervals.

Bandpass Filter

For EEG signals several frequency bands were established in which characteristic dom-

inant brain rhythms can b e found. The bands are referred to as � (8-12 Hz), � (12-30

Hz), 
 (30-80 Hz), � (0-4 Hz) and � (4-8 Hz) (Herrmann et al. , 2004 ).

A bandpass �lter can b e used to extract the signal of these bands. It transforms a

signal such that it only contains frequency comp onents of the sp eci�ed band. All other

oscillatory comp onents are removed. For an extensive intro duction to bandpass �lters

refer to Shenoi (2005 ).

Bandpass �lters are often used as prep ossessing step for successive feature extraction

metho ds. But they are also used as the only feature extraction metho d. There exist

several BCIs that employ a bandpass �lter as feature extraction metho d (Lotte et al.,

2007 ).

Log Band-p ower

Another feature extraction metho d that is, for example, employed by Pfurtscheller and Neup er

(2001 ) is the logarithm of the band p ower.

Band-p ower hereby refers to the p ower of the signal in a given frequency band. The

p ower of a time varying signal f (t) is de�ned as

lim
R!1

R
2�

� R
2

f (t)2dt

Hence, it is the average squared mean deviation from zero.

One metho d to estimate the band p ower is to �rst bandpass-�lter the data and then

to calculate the p ower using the variance (Pfurtscheller and Neup er, 2001). This results

in the following feature p er channel

xc = log( var( E(c)))

where E(c) refers to all time p oints from channel c.

Common Spatial Patterns

The original Common Spatial Patterns (CSP ) algorithm was intro duced for binary clas-

si�cation tasks. The goal of CSP is to �nd a transformation matrix that transforms each

trial such that the variances of the resulting time series are optimal for discriminating

the two classes (Ramoser et al. , 2000 ). Recall that the variance of a bandpass-�ltered

signal is a go o d estimator of its p ower. Hence, CSP can b e seen as a more advanced

metho d then the log band-p ower to extract p ower di�erences.
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2. Foundations

More formally, CSP seeks W 2 RC� C
such that Z = W E has high variance in the �rst

rows for trials from class y1 and low variance for trials from class y2 . Analogous to that,

the last rows of Z should contain high variance for trials from class y2 and low variance

for trials from class y1: This goal is archived by the simultaneous diagonalization of two

covariance matrices (Fukunaga , 1990 ).

The CSP algorithm assumes that each channel in each trial has zero mean, mean (E (c)) =
0, 8c 2 f 1; ::; Cg. The normalized spatial covariance matrix of each trial is then

� =
EE T

trace(EE T )
(2.2.1)

For b oth classes the mean of their p er trial covariance matrices is calculated, resulting

in covariance matrices � y1 and � y2 .

The comp osite covariance matrix is obtained by

�
co

= � y1 + � y2

Because �
co

is non-singular and symmetric, �
co

can b e decomp osed, by an eigenvalue

decomp osition, into

�
co

= Q�Q T
(2.2.2)

where � is a diagonal matrix and contains the eigenvalues and Q contains the eigenvectors.

Based on that equation, the whitening transformation matrix for �
co

can b e calculated

P =
p

� � 1QT

The whitening transformation matrix ful�lls the following prop erty

P�
co

PT = I

Fukunaga (1990 ) showed that if � y1 and � y2 are transformed by P

Sy1 = P� y1 PT

Sy2 = P� y2 PT

Sy1 and Sy2 share the same eigenvectors, and the sum of their corresp onding eigenvalues

is one. More formally, if Sy1 is decomp osed to

Sy1 = B� y1 B T

Sy2 is diagonalized by

Sy2 = B� y2 B T

and � y1 + � y2 = I . What follows is that the eigenvector corresp onding to the biggest

eigenvalue in � y1 is the eigenvector that explains the most variance of the EEG trials
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from class y1 and the least variance of the trials from class y2 . If B is sorted by its

eigenvalues � y1 in descending order, a transformed trial of class y1

Z = ( B T P)T E

has high variance for the �rst rows and low variance for the last rows. The opp osite

applies for trials from class y2 . Hence, the transformation ful�lls the desired prop erties.

The last step of the CSP learning algorithm is to select rows from b oth ends of (B T P)T
.

Usually an equal numb er of rows is selected from b oth sides of the matrix. So the �nal

transformation matrix is

W =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

11 0 : : : : : : : : : : : : : : : : : : 0
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. 11
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.
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.

.

.

.

.

.

.

. 0
0 : : : : : : : : : : : : : : : : : : 0 1k

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

(B T P)T

where the numb er of ones on each sides of the diagonal is even and must b e selected

as the hyp er-parameter k . Note that (B T P)T
are the mo del parameters � , which are

learned from the data.

The logarithm of the variance of the resulting k time series is usually employed as fea-

ture. CSP is currently one of the most used feature extraction metho ds for the extraction

of p ower di�erences.

Permutation Entropy

The Permutation Entropy (PE ) was intro duced by Bandt and Pomp e (2002 ) as a com-

plexity measure for time series. The overall idea is to reduce a time series to an order

pattern b etween m neighb ors. m is called emb edding dimension in the remainder.

De�nition 14. Let f f (t)gt=1 ::T b e a time series. The p ermutation distribution of em-

b edding dimension m is then de�ned as

pm (� ) =
jf t : 0 � t � T � m; (x(t + 1) ; : : : ; x(t + m)) has typ e � gj

T � m + 1
(2.2.3)

where � represents one p ermutation of the m! p ossible p ermutations.

The value pm (� ) represents the probability of the o ccurrence of the ordering that is

represented by the p ermutation �: I clarify the de�nition of the p ermutation distribution

with a simple example.
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2. Foundations

Example 15. Assume that the emb edding dimension m is 2, and the time series for

that we want to calculate the p ermutation distribution is

(1; 2; 20; 30; 2; 1)

There are two p ossible orderings of two unequal elements x(t) and x(t +1) . Either x(t) is

greater than x(t +1) or x(t +1) is greater than x(t) . The �rst ordering can b e represented

by the p ermutation 10 and the second ordering by 01. In the example time series there

are three o ccurrences of x(t) < x (t +1) and two o ccurrences of x(t) > x (t +1) . Therefore,

the p ermutation distribution with emb edding size 2 for that time series is

p2(10) = 3=5

p2(01) = 2=5

The p ermutation distribution itself could b e used as feature. However, Bandt and Pomp e

(2002 ) suggest to aggregate it to the Permutation Entropy (PE ).

De�nition 16. The PE of emb edding dimension m � 2 is de�ned as the Shannon

entropy of the p ermutation distribution of emb edding dimension m ,

H (m) = �
X

pm (� ) log p(� )

Example 17. The p ermutation entropy of the p ermutation distribution from Example

15 is

� (
3
5

log(
3
5

) +
2
5

log(
2
5

)) = 0 :971

When using the PE as feature extraction metho d for EEG classi�cation, the PE is

calculated separately for each channel. This results in a feature vector of the form x 2 RC

for each trial. There is one hyp er-parameter that has to b e chosen by the designer, the

emb edding dimension m . Recently, Brandmaier (2012 ) describ ed a heuristic for cho osing

the emb edding dimension automatically.

The Permutation Entropy was intro duced as a feature extraction metho d for BCIs

(Nicolaou and Georgiou , 2010 ). Furthermore, Brandmaier (2012 ) demonstrated that di-

vergence measures based on the p ermutation distribution p erform well in clustering EEG

trials.

2.2.4. Classi�cation Metho ds

Ledoit's Regularized Linear Discriminant Analysis

Ledoit's Regularized Linear Discriminant Analysis (LRLDA ) is based on Linear Discrim-

inant Analysis (LDA). The idea b ehind LDA is to adjust a normal distribution for each

class. A new trial is assigned to the class for that the a-p osteriori likeliho o d is the highest

(von Oertzen , 2011).

Assume that for every class the class conditional probability distribution Pl (X ) =
P(X jY = yl ) is known and normal, i.e., Pl � N (� l ; � l ): Additionally, the a-priori like-

liho o ds for every class P(Y = yl ) are the same P(Y = y) = 1 =L . Furthermore, the
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2. Foundations

variances and covariances are the same for each class � l = � ; 8l 2 f 1; : : : ; Lg. Under

these assumptions, the classi�er that classi�es a new sample to the class for that the

a-p osteriori likeliho o d is the highest is called LDA.

LDA (x) = yl

where

l = arg
L

max
l=1

(N (x; � l ; �)) (2.2.4)

where N (x; �; �) is the likeliho o d of x under the multivariate normal distribution with

mean � and variance � . Equation 2.2.4 can b e simpli�ed to

arg
L

max
l=1

(N (x; � l ; �)) = arg
L

max
l=1

(log(N (x; � l ; �)))

= arg
L

max
l=1

(log((2� )� r
2 j� j�

1
2 e� 1

2 (x � � l )T � � 1 (x � � l ) ))

= arg
L

max
l=1

(�
1
2

(x � � l )T � � 1(x � � l ))

Furthermore,

�
1
2

(x � � l )
T � � 1(x � � l ) = xT � � 1� l �

1
2

� T
l � � 1� l �

1
2

xT � � 1x

For simplicity I will continue the treatment for the binary classi�cation task, with y1 = 1
and y2 = 2 .

LDA (x) = 1

, xT � � 1� 1 �
1
2

� T
1 � � 1� 1 �

1
2

xT � � 1x � xT � � 1� 2 �
1
2

� T
2 � � 1� 2 �

1
2

xT � � 1x

, xT � � 1� 1 �
1
2

� T
1 � � 1� 1 � xT � � 1� 2 �

1
2

� T
2 � � 1� 2

, (� � 1(� 1 � � 2))T x �
1
2

(� 1 + � 2)� � 1(� 1 � � 2)T � 0 (2.2.5)

Equation 2.2.5 is of the form

wT x + c � 0 (2.2.6)

with w = � � 1(� 1 � � 2) and c = � 1
2(� 1+ � 2)� � 1(� 1 � � 2)T

. That means that the decision

surface learned by LDA b etween two classes is a hyp erplane. If a classi�er ful�lls this

prop erty, it is called linear classi�er .

In practice the means � 1; : : : ; � L and the covariance matrix � � 1
are usually not known.

These values have to b e estimated from the data set by the learning algorithm I
LDA

. The

estimation of the means is straightforward

�̂ l =
1

jD l j

X

(x;y )2 D i

x
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Figure 2.2.2.: Illustration of the separating mo del that is learned by LDA . For each

class a multivariate normal distributions is estimated. A novel sample is

assigned to the class with the highest a-p osteriori likeliho o d. The �gure

displays the a-p osteriori likeliho o d for a sample to b e in class y1 or y2

for di�erent values. The di�erent colors illustrate the regions in which a

p oint is classi�ed as class y1 (red) or class y2 (blue). The decision surface

b etween the two classes is a hyp erplane.
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where D l := f (x; y) 2 D : y = yl g: LDA is known to b e relatively robust to the violation of

the assumption that the p er-class covariances matrices are the same. Thus, the standard

LDA learning algorithm estimates the common covariance matrix by

�̂ =
1
2

^(� 1 + �̂ 2) (2.2.7)

where �̂ l is the empirical covariance matrix of class yl

�̂ l =
1

jD l j

X

(x;y )2 D l

(x � �̂ l )(x � �̂ l )
T

(2.2.8)

When the covariance matrix is estimated separately for each class, the decision sur-

face b ecomes quadratic. Consequently, the corresp onding classi�cation metho d is called

Quadratic Discriminant Analysis.

Under the usual conditions in statistical analysis, the numb er of samples p er class jD l j
is large compared to the dimensionality r of the feature space, the empirical covariance

matrix is an unbiased estimate of the true covariance matrix. But if jD l j is not signi�-

cantly larger than the dimensionality of the feature space r , it is known that the empirical

covariance is systematically biased. Large Eigenvalues of � are estimated to o large and

small eigenvalues are estimated to o small (Friedman , 1989). An approach to correct for

this systematic bias is to replace �̂ l by

�̂ �
l = (1 � 
 )�̂ l + 


tr (�̂ l )
r

I (2.2.9)

where tr (A) refers to the trace of matrix A , I is the identity matrix and 
 2 [0; 1] is

a hyp er-parameter. Equation 2.2.9 regularizes �̂ l towards the multiple of the identity

matrix. Therefore, larger eigenvalues are decreased and smaller eigenvalues are increased

(Friedman , 1989 ); correcting for the systematic bias.

When estimating the covariance matrix according to Equation 2.2.9 , the resulting clas-

si�cation metho d is called Regularized Linear Discriminant Analysis (RLDA ). An op en

question was how to cho ose the hyp er-parameter 
 . Ledoit and Wolf (2004 ) presented

an analytic solution for cho osing the optimal 
 . Their metho d estimates 
 such that

jj ^� l
�

� � l jj2
r is minimized, where jjAjj r is de�ned as jjAjj r =

p
tr (AA T )=r . jjAjj r is

equivalent to the Frobenius norm divided by r . Rememb er that r denotes the dimen-

sionality of the feature space X . According to their results, the optimal 
 is


 � =
b2

d2 (2.2.10)

where

d2 = jj �̂ l �
tr (�̂ l )

r
I jj2

r

and

b2 = min

0

@ 1
jD l j2

X

(x;y )2 D l

jj (x � �̂ l )(x � �̂ l )
T � �̂ l jj

2
r ; d2

1

A
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d2
describ es the deviation of the sample covariance from the scaled identity matrix. b2

describ es the deviation of the p er-trial covariance matrices (x � �̂ l )T (x � �̂ l ) from their

mean � l . The minimum op erator ensures that the shrinking parameter 
 �
stays b elow

1.

In the literature the resulting classi�cation metho d is also called RLDA when estimat-

ing 
 according to 2.2.10 . To distinguish this metho d from the classical RLDA metho d,

for which 
 has to b e chosen by the designer, I will call this metho d Ledoit's Regularized

Linear Discriminant Analysis (LRLDA ).

LRLDA is the classi�cation metho d that leading BCI groups use and advo cate (Blankertz et al. ,

2011 ).

Supp ort Vector Machines

Support Vector Machine s (SVMs) were invented by Cortes and Vapnik (1995 ). My de-

scription of SVMs is inspired by Ng (2011 ).

Without loss of generality, Y = f� 1; 1g: In analogy to Equation 2.2.6 , I de�ne a linear

classi�er

	
lin

(x; w; b) =

(
1 if, wt x + b � 0

� 1 otherwise

(2.2.11)

The basic form of SVMs assumes that the training data set D is linearly separable, i.e.,

there exists a linear classi�er that p erfectly separates the two classes

9w; b : 8(x i ; yi ) 2 D

(
wt x i + b > 0 if yi = 1

wt x i + b < 0 if yi = � 1

Notice that this condition is equivalent to

9w; b : 8(x i ; yi ) 2 D y i (wt x i + b) > 0 (2.2.12)

In general, for a linearly separable data set there are many choices for w and b that

satisfy Equation 2.2.11 . The idea b ehind SVMs is to cho ose w and b such that the

geometric margin is maximized. The geometric margin is the smallest distance b etween

the hyp erplane describ ed by w and b and any p oint in the training set D . The motivation

b ehind that is that maximizing the margin should b e a go o d strategy to maximize the

accuracy as it decreases the risk of a new p oint to b e at the wrong side of the decision

plane.

What follows is a formalization of this idea. The geometric margin is de�ned as


 g(D ; w; b) =
N

min
i =1

yi (wT x i + b)
jjwjj

Hence, the optimization problem of the SVM is: Find w; b;
̂ f such that the geometric

margin is maximized

arg max

̂ f ;w;b


̂ f

jjwjj
(2.2.13)

sub ject to constraints yi (wT x i + b) � 
̂ f , 8i 2 f 1; : : : ; N g
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Figure 2.2.3.: (a) Multiple decision planes that p erfectly separate the data set. (b) The

decision plane that maximizes the geometric margin 
 g . The marked p oints

are the supp ort vectors. Adapted with p ermission from Schilling (2012 ).

Unfortunately, this optimization problem is hard to solve as


̂ f
jj wjj is non-convex. Thus,

the problem has to b e transformed into an easier, equivalent optimization problem.

The value 
̂ f is often called functional margin. For given w and b it can b e expressed

as a function, which additionally dep ends on the training data set D .


 f (D ; w; b) =
N

min
i =1

yi (wT x i + b)

where 
 g = 
 f =jjwjj . Notice that

� (wT x + b) = �w T x + �b , 8� 2 R+

Therefore,

8" 2 R+ =19 � 2 R+ =1 : 
 f (D ; �w; �b ) > "

is true for every w; b for that Equation 2.2.12 holds. Furthermore, scaling w; b like that

do es not change the classi�cation function 2.2.11 as it only dep ends on the sign. Thus,

for every linear separating classi�er an arbitrary functional margin can b e achieved by

simply scaling w and b without changing the geometric margin or the actual classi�cation

function. Therefore, by setting 
̂ f to 1 the space in which the classi�ers are searched is

not decreased. Moreover,

arg min
w

1
jjwjj

= arg max
w

jjwjj = arg max
w

1
2

jjwjj2

Thus, the optimization problem 2.2.13 can b e rephrased as

arg max
w;b

1
2

jjwjj2
(2.2.14)

sub ject to constraints yi (wt x i + b) � 1, 8i 2 f 1; : : : ; N g (2.2.15)

This optimization problem can b e solved using quadratic programming. Let w� ; b� the

optimal values for w and b. Each sample (x i ; yi ) for that

yi (wT
� x i + b� ) = 1
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is then called supp ort vector. The values of w� ; b� only dep end on these samples. They

supp ort the decision plane.

The assumption that the training data set is linearly separable makes this classi�cation

metho d applicable to only a small subset of all existing data sets. Cortes and Vapnik

(1995 ) enhanced their metho d to make it applicable to arbitrary data sets. For each

violation of the original constraints 2.2.15 a cost term is added to the ob jective function

2.2.14 .

arg min
w;b

1
2

jjwjj2 + C
NX

i =1

� i

sub ject to constraints yi (wt x i + b) � 1 � � i , 8i 2 f 1; : : : ; N g

� i � 0, 8i 2 f 1; : : : ; N g

where C � 0 is a hyp er-parameter. Each trial x i that lies inside the margin gets assigned

cost � i . Notice that if � i > 1, x i is on the wrong side of the decision plane.

In this section I intro duced linear SVMs, which induce linear classi�ers. Linear SVMs

can b e extended to nonlinear classi�ers using the so called kernel trick (Cortes and Vapnik ,

1995 ). SVMs have b een successfully employed as classi�cation metho d in various BCIs

(Lotte et al., 2007 ).

k-Nearest Neighb ors

The k-Nearest Neighbor (k-NN) classi�cation metho d is one of the most simple classi�-

cation metho ds. It assigns a new trial x to the class to that the simple ma jority of the

k -nearest training trials b elong to.

Let d(x; y) b e a distance function de�ned over the feature space X . For a novel trial

x let Qk(x) � D b e the k -nearest neighb ors of x in the training data set D , that is

Qk(x) = S � D : jSj = k ^ 8 (x i ; yi ) 2 S@(x j ; yj ) 2 D=S : d(x j ; x) < d (x i ; x)

The k -nearest neighb or classi�er assigns then x to the class that gets the most votes

kNN (x; D; k ) = arg
L

max
l=1

X

(x i ;yi )2 Qk (x)

� (yi ; yl )

where

� (a; b) =

(
1 if, a = b

0 otherwise

(2.2.16)

k-NN has b een used as a classi�cation metho d in multiple EEG classi�cation setups

(Lotte et al., 2007 ).

2.3. Combination of Classi�ers

The term combination of classi�ers refers to the pro cess of combining multiple classi�ers

for the same problem to a new classi�er, an ensemble classi�er .
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De�nition 18. Let 	 1; : : : ; 	 J b e classi�ers for one particular pattern recognition task.

Let r �;� (	 1(x); : : : ; 	 J (x); x) = 	
ens

b e a rule that combines the outputs of the classi�ers

to a new classi�er 	
ens

. The classi�ers 	 1; : : : ; 	 J are then called base-level classi�ers ,

the rule r �;� combination rule , and the classi�er 	
ens

ensemble classi�er . Analogous

to the feature extraction function, the combination rule has parameters � that have

to b e learned by the corresp onding learning algorithm and parameters � that have to

b e sp eci�ed by the designer. The combination of learning algorithm and combination

rule is called combiner . A Pattern Recognition System (PRS) that employes an ensemble

classi�er is called Multiple Classi�er System (MCS ). The learning algorithms that induce

the base-level classi�ers are called base-level learners .

I will start the following treatment of the combination of classi�ers with the intro duc-

tion of a taxonomy. It will include a categorization of the di�erent approaches to build

di�erent base-level classi�ers and a classi�cation of di�erent typ es of combiners. After

that, I will present a selection of combiners for the combination of lab els. I will conclude

this section with a treatment why and under what conditions an ensemble classi�er is

more accurate than the most accurate base-level classi�er.

2.3.1. Taxonomy

When creating an ensemble classi�er, one has to ful�ll two tasks: The creation of accu-

rate and diverse base-level classi�ers and the appropriate combination of the base-level

classi�er.

Kuncheva (2004 , chapter 3) identi�es three approaches that are used to generate diverse

base-level classi�ers:

1. The employment of di�erent classi�cation metho ds

2. The employment of di�erent feature extraction metho ds

3. The employment of di�erent subsets of the data set as input for the learning algo-

rithm

These three metho ds can b e arbitrarily combined.

Kuncheva (2004 , chapter 3) classi�es the di�erent combiners based on two prop erties:

The typ e of the input on that they op erate and if they are trainable or nontrainable.

She distinguishes b etween three typ es of base-level classi�er outputs and, hence, com-

biner inputs.

� Typ e 1 (The Abstract level): Each base-level classi�er returns a lab el for each

sample. There is no information ab out the certainty of the classi�cation.

� Typ e 2 (The Rank level): The output of each base-level classi�er is an ordered

subset of Y . It is ordered by a-p osteriori likeliho o d.

� Typ e 3 (The Measurement level). Every base-level classi�er pro duces a L -dimensional

vector [s1; : : : ; sL ], where sl represents the likeliho o d that the sample x b elongs to

class yl .
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Combiner

Combination level :

Use di�erent combiners

	 1 	 2 : : : 	 J

Classi�er level :

Use di�erent classi�ca-

tion metho ds

� 1 � 2 : : : � J

Feature level :

Use di�erent feature ex-

traction metho ds

x

Data set

Data level :

Use di�erent data sub-

sets

Figure 2.3.1.: Approaches to build ensemble classi�ers. Adapted from Kuncheva (2004 ,

p 105).
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Nontrainable combiners combine the output of the base-level classi�ers using �xed rules.

De�nition 19. A nontrainable combiner consist of a combination rule comb that com-

bines the outputs of the base-level classi�ers. 	
ens

= r �;� (	 1(x); : : : ; 	 J (x)) . The com-

bination rule is static and indep endent of the data set. Hence, � = ; .

Trainable combiners, in contrast, use learning algorithms to induce the combination

rule from the data. The trainable combiners are further distinguished in implicit and

explicit trainable combiners. The learning algorithm of implicit trainable combiners

induces one combination rule for all samples, i. e., the combination rule is indep endent

of the to-b e-classi�ed sample x . Explicit trainable combiners, in contrast, induce a

combination rule that can p otentially b e di�erent for every sample x:

De�nition 20. A trainable combiner consists of a learning algorithm that induces a

combination rule based on a data set I r ?;� (D ) = r �;� . If the combination rule has the

following signature r �;� (	 1(x); : : : ; 	 J (x)) , hence, it do es not dep endent on x itself, the

combiner is called implicit trainable . If the combination rule directly dep ends on x ,

r �;� (	 1(x); : : : ; 	 J (x); x) , it is called explicit trainable .

2.3.2. Abstract Level Combiners

In this section I will review nontrainable and implicit trainable combiners that combine

the outputs at the abstract level. This is called combination of lab els in the remainder

of this thesis.

The situation is as follows: A variety of base-level learners I 	 1 (D
train

); : : : ; I 	 J (D
train

)
have b een trained on the data set D

train

and pro duced base-level classi�ers f 	 1; : : : ; 	 J g =:
B . The task of the combiners is to build an ensemble classi�er based on the base-level

classi�ers. For that they may employ a separate data set D
comb

, sampled indep endently

from the same distribution as D
train

.

2.3.2.1. Majority Voting

Majority Voting (MV) is p erhaps the most simple combiner. It is a nontrainable com-

biner. Therefore, it do es not consume D
comb

to generate the combination rule. The

combination rule is �xed and de�ned as follows.

De�nition 21. The combination rule of ma jority voting is de�ned as

mv (	 1(x); : : : ; 	 J (x)) = arg max
yl 2 Y

JX

j =1

� (	 j (x); yl )

where � is de�ned as in Equation 2.2.16 .

MV assigns x to the class yl for that most of the base-level classi�ers 	 j voted. Ties

are resolved arbitrarily. Despite of its simplicity or mayb e b ecause of its simplicity, MV

is one of the most used combiners.

When certain assumptions are made ab out the base-level classi�ers, the accuracy of

the ensemble classi�er created by the MV rule can b e calculated.
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p J = 7 J = 15 J = 51 J = 101 J = 301 J = 500
0.45 0.3917 0.3465 0.2359 0.1562 0.0409 0.0124

0.55 0.6083 0.6535 0.7641 0.8438 0.9591 0.9876

Table 2.2.: Accuracy of the ensemble classi�er built by MV for di�erent numb ers of base-

level classi�ers, under the assumption of indep endence. p denotes the accu-

racy of the base-level classi�ers.

Theorem 22. Let the number of base-level classi�ers J be odd and the accuracy of

every base-level classi�er be p. Furthermore, let the outputs of the base-level classi�ers

be independent. That means that for each subset f 	 1; : : : ; 	 K g � B the joint probability

P(	 1 = y1; : : : ; 	 K = yK ) equals

Q K
k=1 P(	 k = yk) . Then the accuracy of the ensemble

classi�er built by employing MV as combiner is

p
mv

=
JX

o= J +1
2

�
J
o

�
po(1 � p)J � o

Proof. The ensemble classi�er built by MV classi�es a sample x correctly if at least

J +1
2

base-level classi�ers 	 j classify x correctly. Hence, if we assume that the accuracy of

each base-level classi�er is p, the accuracy of the ensemble classi�er built by MV is as

claimed.

The following results require the same assumptions as Theorem 22 . Table 2.2 shows

how the accuracy of the ensemble classi�er built by MV changes when the numb er of

base-level classi�er increases for p = 0 :45 and p = 0 :55. It can, furthermore, b e shown

that

lim
J !1

p
mv

=

(
1 if, p > 0:5

0 if, p < 0:5

Additionally, if p > 0:5 ( p < 0:5), p
mv

is monotonically increasing (decreasing) as J ex-

pands. This pro of can also b e extended to the case where the accuracy of the base-level

classi�ers are unequal. Indeed, the only necessary condition is that they are symmet-

rically distributed with a mean ab ove 0.5 (see Kuncheva , 2004 , p 114 and references

therein) Hence, the intuition that an ensemble classi�er b o osts the accuracy if the base-

level classi�ers are accurate and diverse is supp orted.

2.3.2.2. Weighted Majority Voting

Example 23. Assume that J = 3 ; L = 2 , p1 = 0 :4, p2 = 0 :4, p3 = 0 :65, and indep en-

dence as in Theorem 22, where pj refers to the accuracy of base-level classi�er 	 j . The

accuracy of the ensemble classi�er generated by MV is then

p
mv

= p1p2p3 + (1 � p1)p2p3 + p1(1 � p2)p3 + p1p2(1 � p3)

= 0 :4 � 0:4 � 0:65 + 0:6 � 0:4 � 0:65 + 0:4 � 0:6 � 0:65 + 0:4 � 0:4 � 0:35

= 0 :472
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As you may con�rm, this is smaller than the accuracy of the most accurate base-level

classi�er 	 3 .

In this section I will intro duce a combiner that in the situation of indep endent base-level

classi�ers maximizes the ensemble accuracy. This combiner is called Weighted Majority

Voting (WMV). I will show that, in contrast to MV, the ensemble classi�er built by

WMV leads to a more accurate classi�er than the most accurate base-level classi�er

when applied to the previous example

First, I will establish Weighted Voting (WV) in general, then, I will show how the

optimal weights are obtained by WMV.

De�nition 24. A WV rule is of the following form

wv (	 1(x); : : : ; 	 J (x)) = arg max
yl 2 Y

JX

j =1

wj � (	 j (x); yl )

where w1; : : : ; wJ 2 R are weights for the corresp onding base-level classi�ers and � is

de�ned as in Equation 2.2.16 .

Example 25. Let the base-level classi�ers b e as in Example 23. Let the weights for the

WV rule b e w1 = � 0:4055, w2 = � 0:4055 and w3 = 0 :6190. Then the accuracy of the

ensemble classi�er build by WV is

p
wv

= (1 � p1) � (1 � p2) � (1 � p3) + (1 � p1) � (1 � p2) � p3 + p1(1 � p2)p3 + (1 � p1)p2p3

= 0 :672

Proof. Notice that � (	 j (x); yl ) is 1 for exactly one l 2 f 1; : : : ; Lg as every classi�er pre-

dicts exactly one lab el b ecause in the example L = 2 , � (	 j (x); y1) = 0 , � (	 j (x); y2) =
1. Hence, if � (	 j (x); y1) is known, � (	 j (x); y2) is also known. Thus, if a base-level

classi�ers predicts the correct (wrong) class, its weight in�uences only the sum of the

correct (wrong) class. Let yc b e the correct class and yw b e the wrong class. An ensemble

classi�er built by a WV rule makes the correct decision if

JX

j =1

wj � (	 j (x); yc) >
JX

j =1

wj � (	 j (x); yw )

This is exactly the case if the voting b ehavior is: 000 or 001 or 101 or 011. Where a

1(0) at the j th place means that the j th base-level classi�er classi�es a sample correctly

(incorrectly).

Until now, we have seen that WV can drastically improve the ensemble accuracy

compared to MV. The interesting question is how to cho ose the weights.

Theorem 26. Consider a set of J independent classi�ers that are combined using the

weighted voting combination rule. Furthermore the a-priori probabilities for al l classes
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are the same. The accuracy of the resulting ensemble gets maximized by assigning each

classi�er 	 j the weight

wj = log
pj

1 � pj

Proof. See (Kuncheva , 2004 , pp. 124)

When the WV rule is employed and the weights are set as in the ab ove theorem, the

resulting combiner is called Weighted Majority Voting (WMV). Shapley and Grofman

(1984 ) even showed, for binary decisions, that if the a-priori probabilities for b oth classes

are the same, under the indep endence assumption, WMV is the combiner, out of all

p ossible combiners, that maximizes the accuracy of the ensemble classi�er. If the a-

priori likeliho o ds are not the same, they have to b e taken into account for the decision

function. This leads to the general form of WMV.

wmv (	 1(x); : : : ; 	 J (x)) = arg max
yl 2 Y

[P(Y = yl ) +
X

logJ
j =1

pj

1 � pj
� (	 j (x); yl ))] (2.3.1)

Note that pj for every classi�er 	 j and P(Y = yl ) have to b e estimated using D
comb

.

2.3.2.3. Adaptive Bo osting

Adaptive Boosting (AB) is a b o osting algorithm invented by Freund and Schapire (1997 ).

It is an application of their algorithm for the on-line allo cation problem. According to

Freund and Schapire (1997 , p 120), b o osting refers to the �general problem of pro ducing

a very accurate prediction rule by combining rough and mo derately inaccurate rules

of thumb�. The original algorithm generates arbitrarily many base-level classi�ers by

training a weak learner on di�erent subsamples from the data set D .

However, AB can also b e applied to the situation in which a prede�ned set of base-

level classi�ers has to b e combined, as describ ed at the b eginning of this section. The

AB algorithm for that situation, as describ ed by Ro jas (2009 ), is shown as Algorithm

2.1 and called �xed Adaptive Boosting (fAB) in the remainder.

fAB is also a WV combiner. WMV and fAB only di�er in the way they compute

the weights for the base-level classi�ers. While for WMV the weight of each base-level

classi�er 	 j only dep ends on the p erformance of itself, fAB also takes into account the

p erformance of other base-level classi�er in the set. This is done by iteratively adding

base-level classi�er to the ensemble and using an imp ortance for each sample. After

adding a base-level classi�er 	 to the ensemble, the imp ortance of each sample that

	 classi�es wrong is increased and the imp ortance of samples that 	 classi�es correct

is decreased. The next classi�er that gets added to the set is the one with the lowest

error, in resp ect to the imp ortance of the samples. Thus, while WMV is optimal if the

base-level classi�ers are dep endent, fAB p otentially pro duces a more accurate ensemble

classi�er if the indep endence assumption is violated.
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Algorithm 2.1 Pseudo co de for the learning algorithm of the fAB combiner

Input:

� data set D
comb

= f (x1; y1); :::; (xN ; yN )g

� base-level classi�ers f 	 1; : : : ; 	 J g

Pro cedure

Initialize 8i 2 f 1; : : : ; N gW 1
i = 1 , sel1 = ; ,

for m = 1 to J do

1. Select the base classi�er 	 j that was not already selected in the iterations 1; : : : ; m�
1 with the lowest weighted error

sm = arg min
j = f 1;:::;J g=selm

(
NX

i =1

L 01(x i ; yi ; 	 j )W m
i )

where L 01 is the zero-one loss function

sel

m+1 = sel

m [ sm

2. Calculate the relative error of the selected base-level classi�er

err m =
P N

i =1 L 01(x i ; yi ; 	 sm )W m
iP N

i =1 W m
i

2 [0; 1]

3. Set the weight wsm for the selected base-level classi�er 	 sm to

wsm =
1
2

log
�

1 � err m

err m

�
2 R

4. Up date the imp ortance of the samples for the next step

W m+1
i = W m

i �

(
ewsm

if 	 sm (x i ) 6= yi

e� wsm
if 	 sm (x i ) = yi

end

Output: the combination rule

ab (	 1(x); : : : ; 	 J (x)) = arg max
yl 2 Y

JX

j =1

wj � (	 j (x); yl )
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predicted class

Hipp o Gira�e

actual class

Hipp o 10 13

Gira�e 8 5

Table 2.3.: Example for a confusion matrix. In this case the corresp onding classi�er

classi�es 10 of the 23 hipp os correctly. From the 13 gira�es 5 are classi�ed

correctly.

2.3.2.4. Bayes Combination

Under the assumption of conditional indep endence b etween the base-level classi�ers, the

probability of having observed a sample of class yl after having seen x is:

P(yl jx) =
P(Y = yl )

Q J
j =1 P(	 j = 	 j (x)jY = yl )

P(	 1 = 	 1(x)^ ; : : : ; ^ 	 J = 	 J (x))
(2.3.2)

The denominator is indep endent of the candidate class yl , its purp ose is only to scale

P(yl jx) such that it ful�lls the conditions of a probability measure. Hence, for classi�ca-

tion only the nominator is needed. Therefore, the supp ort for class yl is

sup yl
(x) = P(Y = yl )

JY

j =1

P(	 j = 	 j (x)jY = yl ) (2.3.3)

It seems reasonable to assign a new sample to the class with the highest supp ort. This

leads to Bayes Combination (BC).

b c (	 1(x); : : : ; 	 J (x)) = arg max
yl 2 Y

( sup yl
) (2.3.4)

Note that not all of the needed probabilities are known, but they can easily b e estimated

employing D
comb

:
The probabilities needed for BC can b e estimated by the confusion matrix.

De�nition 27. Let D b e a data set and 	 a classi�er. Each entry cf l;k (	 ; D ) of the

confusion matrix CF (	 ; D ) is then de�ned as

cf l;k (	 ; D ) = jf (x; y) 2 D : y = yl ^ 	( x) = ykgj

The entry cf l;k corresp onds to the numb er of the samples (x; y) in D with lab el yl that

were lab eled with the lab el yk by the classi�er 	 . For a p erfect classi�er all o� diagonal

elements of the confusion matrix are zero. An example for a confusion matrix can b e

seen in Table 2.3.

The confusion matrix for all base-level classi�ers has to estimated. I will call CF

j

the confusion matrix of base-level classi�er 	 j , with entries cf

j
l;k . Let yk j b e the lab el

predicted by base-level classi�er 	 j , 	 j (x) = yk j ; 8j 2 f 1; : : : ; J gkj 2 f 1; : : : ; Lg. Let
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N l = jf (x; y) 2 D : y = yl gj denote the numb er of samples (x; y) 2 D with lab el yl .

N l =N can then b e used as an estimate for P(Y = yl ) and cf

j
l;k j

/ N l as an estimate for

P(	 j = 	 j (x)jY = yl ) . Thus, the supp ort for each class (see Equation 2.3.3 ) can b e

estimated as

^sup yl
(x) =

N l

N

JY

j =1

( cf

j
l;k j

=Nl ) =
1

N J � 1
l N

JY

j =1

cf

j
l;k j

Because N is indep endent of the candidate class, this can b e further simpli�ed to

1

N J � 1
l

JY

j =1

cf

j
l;k j

Note that if 9j; k j : cf

j
l;k j

= 0 , the supp ort of the whole class yl is zero. Because the

probabilities are estimated and, hence, a probability that is estimated as 0 may not b e

0, this is an undesired b ehavior. Therefore, (Kuncheva , 2004 , p 127) suggests a di�erent

metho d to calculate the supp ort, which she adapted from the work of Titterington et al.

(1981 ). The resulting estimator of the supp ort is

^
sup

�
yl

(x) =

0

@
JY

j =1

cf

j
l;k j

+ 1=J

N l + 1

1

A

B

(2.3.5)

where B is a hyp er-parameter.

2.3.2.5. Stacking

Stacking refers to the pro cedure of applying a classi�cation metho d to to the outputs

of the base-level classi�ers. The classi�er that works on the output of the base-level

classi�ers is often called meta-classi�er. The de�nition of stacking includes that the data

set that is used for the induction of the base-level classi�ers has to b e disjoint of that

used for the induction of the meta-classi�er.

In our case the features for the classi�cation metho ds are the lab els predicted by the

base-level classi�ers. Every classi�cation metho d may b e used for stacking.

2.3.2.6. Information Theoretic Combiner

Meynet and Thiran (2010 ) prop osed a combiner based on the mutual information. Their

combiner tries to exploit the fact that ensemble classi�ers tend to p erform well if the

base-level classi�ers are diverse and accurate. I will review this fact in more detail in

Section 2.3.3.

The main contribution of their work is a new score that measures the accuracy and

diversity of a set of base-level classi�ers on a data set simultaneously, called information

theoretic score . But they also show how to to select the b est subset of base-level classi�ers

out of a given set employing this score. I will start this section by intro ducing the
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information theoretic score. After that, I will present the combiner that is based on that

score.

The information theoretic score is based on the mutual information. The mutual

information is a central concept in information theory.

De�nition 28. The mutual information b etween two discrete random variables A; B is

de�ned as

I (A; B ) =
X

a2 A

X

b2 B

P(A = a ^ B = b) lb

�
P(A = a ^ B = b)
P(A = a)(B = b)

�

where lb refers to the binary logarithm.

The mutual information can also b e calculated using any other logarithm instead.

De�nition 29. The information theoretic accuracy of the base-level classi�er f 	 1; : : : ; 	 J g
on the data set D

comb

is de�ned as the mean mutual information b etween the lab els pre-

dicted by the base-level classi�ers and the correct lab els

ITA (	 1; : : : ; 	 J ; D
comb

) =
1
J

JX

j =1

I (L j ; Ŷ )

where L j is the random variable that represents the predictions of the base-level classi�er

	 j on the data set D
comb

and Ŷ = f y1; : : : ; yN g the random variable that represents the

true lab els of the samples in the data set D
comb

.

De�nition 30. The information theoretic diversity b etween the base-level classi�ers

f 	 1; : : : ; 	 J g is de�ned as

ITD (	 1; : : : ; 	 J ; D
comb

) =

�
J
2

�

P J � 1
i =1

P J
j = i +1 I (L i ; L j )

(2.3.6)

Note that

�
J
2

�
is the numb er of distinct pairs that can b e built out of J base entities.

The information theoretic diversity is the inverse of the mean mutual information b etween

all pairs of base-level classi�ers.

De�nition 31. The information theoretic score of an ensemble of K classi�ers is de�ned

as

ITS (	 1; : : : ; 	 J ; D
comb

) = (1 + ITA (	 1; : : : ; 	 J ; D
comb

))3
ITD (	 1; : : : ; 	 J ; D

comb

)
(2.3.7)

Employing this score, Meynet and Thiran (2010 ) prop ose to use the algorithm that is

displayed in Algorithm 2.2 to select a subset of base-level classi�ers from a given set of

base-level classi�ers. I will call the resulting combiner Information Theoretic Combina-

tion (ITC).
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Algorithm 2.2 The learning algorithm of ITC

Input:

� data set D
comb

= ( x1; y1); :::; (xN ; yN )

� set of base-level classi�ers f 	 1; : : : ; 	 J g := B

� o dd size of the to b e selected subset K

Pro cedure

Initialize k = 1 ; sel1 = ;
Select the b est individual classi�er

	 1� = arg max
L i ;i =1 ;:::;J

I (L i ; Ŷ )

sel

1 = 	 1�

for k = 2 to (K � 1)=2 do

1. Select the two base-level classi�ers 	 i , 	 k that maximize the information theoretic

score

(	 i ; 	 k) = arg max
(	 i ;	 k )2 B=sel k � 1 � B=sel k � 1

( ITS ( sel

k� 1 [ 	 i [ 	 k ; D
comb

))

2. and add them to the set of selected classi�ers

sel

k = sel

k� 1 [ 	 i [ 	 k

end

Output: the discrimination function

it (	 1(x); : : : ; 	 J (x)) = mv ( sel

K )

where mv (	 1; : : : ; 	 K ) refers to the ma jority voting rule as de�ned in De�nition 21.
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2.3.2.7. Select The Best

The Select the Best (SelectBest ) combiner refers to the pro cedure of mo del selection.

Instead of fusing the decision from all base-level classi�ers, the most accurate base-level

classi�er is selected to make the decisions.

The learning algorithm for SelectBest outputs the classi�er 	 j that has the highest

accuracy on the set D
comb

.

sb (	 1(x); : : : ; 	 J (x)) = 	 j (x)

where 8	 2 f 	 1; : : : ; 	 J gacc

es

(	 j ; D
comb

) � acc

es

(	 ; D
comb

)
SelectBest can also b e interpreted as the WV combiner for that all but the most accu-

rate base-level classi�er get assigned zero weight. Unlike the other combiners intro duced

in this section, the selection of the b est classi�er do es not reduce the risk for one par-

ticular data set compared to the b est base-level classi�er. But if applied to more than

one data set, it can decrease the average risk tremendously by picking di�erent base-level

classi�ers for di�erent data sets.

2.3.3. Why and When do Multiple Classi�er Systems Perform Better?

Why?

In the last section I reviewed a variety of combiners for the creation of ensemble classi�ers.

I gave examples for which the accuracy of the ensemble classi�er was higher than the

accuracy of any base-level classi�er. These examples were theoretical in nature and did

not address the question why in practice it is often p ossible to construct an ensemble

classi�er that is more accurate than the most accurate base-level classi�er. Because

of that, I want to intro duce three reasons why in practice an ensemble classi�er often

outp erforms classi�cation metho ds that are based on a single classi�er. These reasons

were originally intro duced by Dietterich (2000 ).

1. Statistical: A learning algorithm can b e viewed as searching within a space of

classi�ers C for the b est classi�er 	 � . When the training data set D is to small,

the learning algorithm may �nd many di�erent classi�ers that all achieve the same

accuracy on the training data set. By averaging these classi�ers, the risk to cho ose

an inadequate classi�er is reduced.

2. Computational: Even when the statistical problem is absent, learning algorithms

that p erform some lo cal search may get stuck in lo cal optima. Furthermore, optimal

training for two very imp ortant classi�cation metho ds that employ a lo cal search,

namely neural networks (Ro jas, 1996 ) and decision trees (Quinlan , 1992 ), is shown

to b e NP-hard. An ensemble classi�er consisting of base-level classi�ers that are

generated by running the lo cal search using di�erent starting p oints may b e a b etter

classi�er than any of the base-level classi�ers.

3. Representational: Assume that an algorithm that �nds the b est classi�er in C is

available. In this case the use of multiple classi�er may still b e b ene�cial as the
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optimal classi�er 	
*

may lie outside of C . By combining classi�ers from within C
it may b e p ossible to expand the space of representable hyp otheses.

When?

Of course, the p erformance of an ensemble classi�er is not indep endent of the p erformance

of its base-level classi�ers. It is known that a necessary condition for an increase of the

accuracy of the ensemble classi�er compared to the most accurate base-level classi�er is

that the base-level classi�ers are accurate and diverse (Hansen and Salamon , 1990 ). An

accurate classi�er is a classi�er that has an accuracy b etter than random guessing. Two

classi�ers are diverse if they make errors on di�erent trials (Dietterich , 2000 ).

Thus, b efore using a combiner to fuse the decisions of the base-level classi�ers makes

sense, it has to b e veri�ed that the base-level classi�ers ful�ll this conditions. The

accuracy can b e estimated using one of the metho ds intro duced in Section 2.1.3 . If a

base-level classi�er p erforms b etter than random guessing, can b e tested using the test

intro duced in Section 2.1.4.1 .

Besides the information theoretic diversity, de�ned in De�nition 30 , various other

diversity measures exist. Kuncheva (2004 , chap. 10) compared many diversity measure

in terms of their relationship to the �nal ensemble accuracy. She found that for every

diversity measure the relationship b etween the measured diversity and the �nal ensemble

accuracy is relatively weak. However, if the measured diversity was zero no improvement

over the accuracy of most accurate base-level classi�er was p ossible. Because the results

are the same for every diversity measure, I will intro duce her results in detail for one

diversity measure.

One of the most intuitive diversity measures is the disagreement measure.

De�nition 32. The disagreement measure b etween two classi�ers 	 i ; 	 k is de�ned as

Di i;k = P(	 i (x) = y ^ 	 j (x) 6= y) + P(	 j (x) = y ^ 	 i (x) 6= y) (2.3.8)

where (x; y) 2 M

For a binary decision problem Di i;k is the probability that 	 i ; 	 k disagree. For ar-

bitrary decision problems Di i;k is the probability that one classi�er predicts the correct

class and the other classi�er predicts a wrong class . The extension to a set of classi�ers

is straightforward.

De�nition 33. The disagreement measure Di for a set of J base-level classi�ers is the

mean disagreement measure Di i;k b etween all

�
J
2

�
pairs, 	 i , 	 k , of base-level classi-

�ers.

The probabilities needed for the calculation of the disagreement measure have to b e

estimated from a data set.

Kuncheva (2004 , chap 10) showed for ensemble classi�ers built by MV that the rela-

tionship b etween the disagreement measure and the accuracy of the ensemble classi�er
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Classi�er Space C

Go o d Classi�ers

b

	 1 b

	 �
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	 3

(a) The ellipsoid represents the classi�ers that p er-

form well on the data set.

Classi�er Space C

b

	 1 b

	 �

b

	 2
b

	 3

(b) The dashed lines represent

the hyp othetical tra jecto-

ries of the classi�ers during

the lo cal search.

Classi�er Space C

b

	 1
b

	 �

b

	 2
b

	 3

(c) 	 � lies outside the space

in which the classi�ers are

searched.

Figure 2.3.2.: Illustration of the (a) statistical, (b) computational and (c) representa-

tional reason why a an ensemble classi�er often p erforms b etter than a

classi�cation metho d based on a single classi�er. The classi�ers 	 1; 	 2; 	 3

represent three classi�ers that are induced on the same data set for one

particular PR problem. 	 � is the optimal classi�er. For all three illustra-

tions, the circle represents the space C in which the classi�ers are searched.

Adapted from Dietterich (2000 ).
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Figure 2.3.3.: Relationship b etween the disagreement measure and the ensemble accuracy

p
mv

. Each dot represents one ensemble classi�er that was build out of the

three base-level classi�ers with accuracy 0.6. The x -axis describ es the

disagreement measure and the y -axis the accuracy improvement p
mv

� p.

Copied from Kuncheva (2004 , chap 10) and mo di�ed for b etter quality

with p ermission of the author.

is relatively weak. She compared the accuracy of the ensemble classi�er p
mv

against the

accuracy of the base-level classi�ers theoretically. She de�ned that the set of base-level

classi�ers consists of three classi�ers that are correct on 18 out of 30 trials, leading to

an accuracy of p = 0 :6. With this constraints a total of 563 di�erent distribution of the

correct votes to the trials is p ossible. Each distribution leads to a di�erent ensemble

classi�er, for which the accuracy p
mv

and the disagreement measure can b e calculated.

The scatterplot for the accuracy improvement p
mv

� p can b e seen in Figure 2.3.3 . From

two ensemble classi�ers that are based on equally accurate but variably diverse base-level

classi�ers the classi�er that is based on base-level classi�ers with a higher disagreement

measure do es not have to b e the classi�er with the higher accuracy. Indeed, the accu-

racy improvement p
mv

� p of all ensemble classi�er based on base-level classi�ers with a

disagreement measure of Di = 0 :4 span b etween � 0:2 and 0:2, the reason b eing that the

accuracy largely dep ends on the distribution of the votes of the base-level classi�ers to

the trials (see Kuncheva , 2004 , chap 10). However, her data show that the higher the di-

versity, the higher is the exp ected improvement. Furthermore, if Di = 0 , no improvement

over the most accurate base-level classi�er is p ossible.

45



3. Combination of Classi�ers to Increase

Accuracy

The following list rep eats the hyp otheses from Chapter 1. Recall that ORACLE returns

the classi�er from the set of base-level classi�ers that achieves the highest mean accuracy

over all data sets for one particular Pattern Recognition (PR) task.

1. The combination of the di�erent feature extraction and classi�cation metho ds that

are employed for the classi�cation of Electroencephalography (EEG ) signals im-

proves the accuracy of the resulting classi�er compared to the b est single classi�er

as estimated by ORACLE and results in a Pattern Recognition System (PRS) that

p erforms well on a variety of EEG data sets.

2. A combination of the decisions of the base-level classi�ers leads to a more ac-

curate ensemble classi�er than the selection of the b est classi�er by Select the

Best (SelectBest )

3. The employment of a Multiple Classi�er System (MCS) leads to a more accurate

classi�er than the Concatenation (CONCAT ) approach.

Using the background knowledge presented in Chapter 2, I want to present additional

reasons for these hyp otheses.

1+2: In Section 2.3.3 , we have seen that a MCS is more accurate than the b est single

classi�er if the base-level classi�ers are diverse and accurate. Thus, the �rst hyp othesis

can only b e true if the prop osed set of base-level learners pro duce accurate and diverse

base-level classi�ers. However, as we saw in the Sections 2.2.3 and 2.2.4 there exists

a large variety of feature extraction and classi�cation metho ds that lead to accurate

classi�ers. Because they all rely on di�erent characteristics of the EEG signals, there is

high a chance that they are diverse.

3: The employment of CONCAT has the advantage that interactions b etween the

di�erent feature extraction metho ds can b e taken into account. However, through the

combination of multiple feature extraction metho ds, the numb er of features p er trial is

very high. Thus, I hyp othesize that CONCAT will over�t the training data and not lead

to a mo del that generalizes well. Contrary to that, for each base-level learner in the MCS

the numb er of features p er trial is comparatively small. The same is true for the combiner.

Thus, analogous to Ledoit's Regularized Linear Discriminant Analysis (LRLDA ), a MCS

can b e seen as regularization metho d (Dornhege et al. , 2004 ). Furthermore, a MCS

enables the employment of the b est �tting classi�cation metho d p er feature extraction

metho d.
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The rest of this chapter is organized as follows. First, I will review related work. After

that, I will present the metho dological details for the comparison. It will include an

intro duction of new combiners, which I sp eci�cally invented for the comparison. The

chapter will end with a description of the implementation details.

3.1. Review

3.1.1. Combination of Feature Extraction Metho ds

Dornhege et al. (2004 ) already found that a combination of base-level classi�ers based on

di�erent features p erformed b etter than CONCAT and ORACLE. CONCAT p erformed

even worse than ORACLE.

Three feature extraction metho ds were employed, which resulted in three base-level

classi�ers. The three di�erent metho ds were a feature extraction metho d similar to

the metho d intro duced in Section 2.2.3 , Autoregressive mo dels, and Common Spatial

Patterns (CSP ). As classi�cation metho d for the base-level classi�ers, as well as for

CONCAT , Regularized Linear Discriminant Analysis (RLDA) was used. The base-level

classi�ers were combined at the measurement level (see Section 2.3.1 ). The outputs of

the base-level classi�ers were of the form

gj (x) = wt
j x j + cj

where wj and cj are the parameters learned by one of the three RLDA learning algo-

rithms, each trained on the output of one of the three feature extraction metho ds x j ,

j 2 f 1; 2; 3g. The two combination metho ds employed were stacking with Linear Dis-

criminant Analysis (LDA ) as meta classi�er (see Section 2.3.2.5 ), which Dornhege et al.

(2004 ) called META and probabilistic voting, in this article called PROB. The ensemble

decision for PROB was the average of the three RLDA instances

	
PROB

(x) = 1 ,
JX

j =1

gj (x) > 0

for META it was

	
META

(x) = 1 , wT
meta

g(x) + c
meta

> 0 (3.1.1)

where g(x) = [ g1(x); : : : gJ (x)]T
represent the outputs of the base-level classi�ers and

w
meta

, c
meta

are the parameters that were learned by the meta classi�er.

Although META is the sp ecial case of PROB in which all weights w
meta

and the bias

c
meta

are learned to b e zero, PROB led to a b etter mean accuracy than META. Their

comparison was based on ten sub jects.

Bo ostani et al. (2007 ) found similar results. By using a combination of features ex-

traction metho ds, they were able to increase the accuracy compared to ORACLE. They

did not employ an ensemble classi�er for the feature combination but used a genetic

algorithm. They also investigated CONCAT as feature combination metho d and as

well found it p erformed worse than ORACLE. As classi�cation metho ds they employed
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Adaptive Boosting (AB),LDA , and Support Vector Machine (SVM) separately. Their

comparison was based on 5 sub jects.

Fatourechi et al. (2008 ) used a two-stage combination of classi�ers to build an asyn-

chronous Brain Computer Interface (BCI) (see Section 2.2.2 ). They extracted features

for three di�erent typ es of neurological phenomena. For each channel and phenomenon a

SVM was trained. The decision from all SVMs for one phenomenon was combined using

Majority Voting (MV). In the second stage the outputs of the three ensemble classi�ers,

one for each phenomenon, was combined by one out of �ve �xed combination rules. The

rule, as well as the features to use, and the parameters for the SVMs were simultaneously

optimized using a hybrid genetic algorithm. Their resulting BCI achieved a higher infor-

mation transfer rate than any existing asynchronous BCI. Their comparison was based

on four sub jects.

3.1.2. Combination of Prede�ned Base-Level Classi�ers

Ensemble classi�ers are not limited to the combination of di�erent feature typ es. They

might b e b ene�cial in all cases were a large set of heterogeneous features is combined.

Fazli et al. (2009 ) were able to build a sub ject indep endent BCI system employing an

ensemble classi�er. The base classi�cation metho d was LDA . For each session a LDA

was trained on CSP p ower features. A session hereby refers to one recording session

for one sub ject. A varying numb er of sessions p er sub ject was recorded. Before the

training of LDA, the data was bandpass-�ltered in 9 di�erent frequency bands. This led

to a total of 9 � # sessions base-level classi�ers. The �nal classi�cation was done by a

weighted sum of the continuous outputs of the LDA base-level classi�ers, similar to META

describ ed ab ove. But instead of LDA , Fazli et al. (2009 ) used quadratic regression with

l1 regularization to obtain w
meta

and c
meta

. Their ensemble classi�er p erformed b etter

than various baseline metho ds, including ORACLE, and other ensemble classi�ers. Their

comparison was based on four sub jects.

Rakotomamonjy and Guigue (2008 ) used a combination of SVMs to build a BCI. It

won one discipline of the BCI Comp etition I I I (Blankertz et al. , 2006 ). For feature

extraction they bandpass-�ltered the data with cut-o� frequencies 0.1 and 10Hz and

decimated the signal to 14 samples p er channel. Each of the 17 SVMs was trained on

a partition of the data. They tried to cho ose the partitions such that they were as

homogenous as p ossible. The �nal classi�cation was done by averaging the continuous

outputs of all SVMs, analogously to PROB. Their comparison was based on two sub jects.

3.1.3. Metho ds That Generate Base-Level Classi�ers

Ensemble classi�ers are not limited to the combination of base-level classi�ers that are

de�ned by the designer. There are multiple metho ds that, b esides a combiner, also

include a technique to create multiple base-level classi�ers from a data set.

Sun et al. (2007 ) showed that AB, Bagging (Breiman , 1996 ), and random subspace

(Bryll et al., 2003) are able to b o ost the accuracy compared to a single classi�er. They

came to this conclusion after evaluating these metho ds on nine sub jects p erforming a
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motor imaginary task. The di�erent base-level classi�er were generated by using p ower

sp ectral densities as features and the base-level classi�er generating capabilities of the

compared metho ds. They evaluated the three metho ds for SVM, k-Nearest Neighbor

(k-NN), and C4.5 decision trees (Quinlan , 1992 ) as base classi�cation metho ds separately.

Bo ostani and Moradi (2004) compared AB with an one hidden layer neuron (Ro jas,

1996 ) as weak learner against LDA on three di�erent typ es of features, Hjorth parameters,

band p ower and fractal dimension. No combination of features was considered. They

based their comparison on �ve sub jects, p erforming a motor imaginary task. Their results

show that while the combination of band p ower and LDA yielded the b est mean accuracy

(over all sub jects) for two sub jects the combination of fractal dimension and AB led to

the b est accuracy. They concluded that �for each individual, we have to �nd the b est

combination of feature and classi�er or on some o ccasions, a combination of the features

by evolutionary algorithms or a tree combination of classi�ers which can lead to the b est

result.� (Bo ostani and Moradi , 2004 , p 217)

Sun (2007 ) employed an explicit trainable combiner, the so called improved random

subspace method , for the classi�cation of mental imagery data. The base-level classi�ers

were build by training a SVM with di�erent subspaces of the feature space. The �nal

classi�cation decision was

	
irsp

(x) = arg max
yl 2 Y

JX

j =1

wj (x)� (	 j (x); yl ) (3.1.2)

where wj (x) is the fraction of correctly classi�ed samples by 	 j of the k nearest neighb ors,

with resp ect to the Euclidean distance, of x: They showed that their metho d p erforms

b etter than another similar ensemble metho d.

Although it seems promising, to my knowledge nob o dy tried to use one of the multiple

classi�er metho ds that are able to generate base-level classi�ers on a combination of

features.

3.2. Learning Algorithm for Ensemble Classi�ers

In this section I will intro duce the learning algorithm that I use to induce the di�erent

ensemble classi�ers. Indep endently of the base-level classi�ers and the combiner, the

ensemble classi�ers are induced as follows: The designer sp eci�es a set of base-level

learners I 	 1 ; : : : ; I 	 J . The classi�cation b ehavior of each base-level learner is estimated

using 10-fold strati�ed cross validation. The estimated b ehavior is fed to the combiner

I r . To clarify this: Let D b e the available data set. The data set is split into 10 partitions

f D1; : : : ; D10g. For each partition and base-level learner a base-level classi�er is induced

	 j;n = I 	 j (D=D n ): For each base-level learner I 	 j the combiner gets the predicted class

of each trial (x; y) 2 D by the classi�er 	 j;n for that (x; y) =2 Dn as input. Based on

this information every combiner that I intro duced can estimate the necessary prop erties

of the base-level classi�ers. After the combination metho d learned the combination rule,

the base-level learners induce the base-level classi�ers based on the complete data set D .

The base-level classi�ers are combined using the combination rule that was inferred in
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Algorithm 3.1 The employed training algorithm for inducing the ensemble classi�ers.

Input

A set of base-level learners I 	 1 ; : : : ; I 	 J

An untrained combiner I r

A data set D
Pro cedure

1. Split D into 10 disjoint subsets Dn ; n 2 f 1; : : : ; 10g in resp ect to the strati�ed

10-fold cross-validation scheme

a) For each subset Dn

i. Train each base-level learner on the remaining data set D=D n . 	 j;n =
I 	 j (D=D n )

ii. Calculate the prediction of each base-level classi�er 	 j;n for each trial

(x; y) 2 Dn , l i;j =	 j;n (x) , where i is the index of (x; y) in D .

b) Train the combiner with the matrix L , with entries l i;j . I r (L ) . Rememb er the

inferred combination rule r .

2. Train all base-level learners with the complete data set D , 	 j = I 	 j (D )

3. Create the ensemble classi�er 	
ens

by combining the base-level classi�ers with the

rule r inferred in step 2 (b).

Output

The ensemble classi�er 	
ens

the previous step. This pro cedure is explained as pseudo co de in Algorithm 3.1. It can

b e interpreted as a classi�cation metho d with the hyp er-parameters I 	 1 ; : : : ; I 	 J and I r .

3.3. Combiners

Because the combination at the abstract level (see Section 2.3.1 ) is the only level of

combination that allows the usage of arbitrary classi�cation metho ds, I only include

combiners that combine the base-level classi�ers at the abstract level in the comparison.

In previous studies, only stacking with SVM as meta classi�er (Fazli et al. , 2009 ), MV

and AB (Sun et al. , 2007 ) have b een used if the base-level classi�er were combined at the

abstract level. I compare all combiners that have b een intro duced in Section 2.3.2. In

addition to the existing combiners, I invented several new combiners, mostly extensions

of existing combiners, for the comparison.

This section will continue with the intro duction of the combiners that I invented.

Furthermore, it will contain the detailed settings for the existing combiners. Assume

that the situation is as describ ed at the b eginning of Section 2.3.2 .
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3.3.1. Signi�cance Majority Voting

Supp ose that the base-level classi�ers consist of 100 classi�ers with accuracy 50% and

one classi�er with accuracy 100%. The accuracy of the ensemble classi�er built by MV

would hardly b e over 50%. To make MV applicable to situations in which a ma jority

of the base-level classi�ers do not p erform b etter than random guessing, I extend it

such that only the votes of the base-level classi�ers that have an estimated Balanced

Accuracy (BAC ) that is signi�cantly higher than 0.5 are included in the decision.

For each base-level classi�er, signi�cance against random guessing is tested using the

test intro duced in Section 2.1.4.1 . I call this extension signi�cance extension and the

resulting combiner Signi�gance Majority Voting (SMV). Note that contrary to MV,

SMV is a trainable combiner. This extension can also b e applied to Weighted Majority

Voting (WMV). I call the resulting combiner Signi�gance Weighted Majority Voting

(SWMV).

3.3.2. Dep endent Weighted Majority Voting

While it was shown that WMV is the optimal combiner when the base-level classi�ers are

indep endent (see Section 2.3.2.1 ), WMV is not the optimal combiner if the indep endence

assumption is violated .

Theorem 34. Let 	 1; : : : ; 	 7 be base-level classi�ers. Let 	 1; 	 6; 	 7 be independent. Let

	 1 = 	 2 : : : = 	 5 , i.e., 8i; j 2 f 1; : : : ; 5g8x 2 X 8yl 2 Y P(	 i (x) = yl j	 j (x) = yl ) = 1 .

In addition, acc (	 1; p) = 0 :7 and acc (	 6; p) = acc (	 7; p) = 0 :8. Then the accuracy

acc (	
wmv

; p) of the ensemble classi�er created by WMV is 0:7:

Proof. The weights as learned by WMV are w1 = w2 = : : : = w5 = 0 :8473 and w6 = w7 =
1:3863. Because of the equality of 	 1 : : : 	 5 , the class for which 	 1 votes gets assigned

weight 4� 0:8473 = 4:2365. The remaining two classi�ers 	 6 and 	 7 share a total weight

of 2:27726. Hence, b ecause 4:2365> 2:27726, acc (	
wmv

; p) = acc (	 1; p) = 0 :7

Theorem 35. Let 	 1; : : : ; 	 7 be as in Theorem 34 but w1 = 0 :8473, w2 = : : : = w5 = 0
and w6 = w7 = 1 :3863. Then acc (	

wv

; p) = 0 :8320

Proof. The ensemble classi�er 	
wv

makes the correct decision if 	 1 , or 	 6 and 	 7 make

the correct decision.

pwmv = 0 :7 � 0:8 � 0:8 + 0:3 � 0:8 � 0:8 + 0:7 � 0:2 � 0:8 + 0:7 � 0:8 � 0:2 = 0:864

The ensemble accuracy is increased by giving only one classi�er out of the dep endent

classi�ers a non zero weight. This strategy is used by �xed Adaptive Boosting (fAB) to

correct for dep endencies b etween base-level classi�ers. A di�erent strategy is to decrease

the weight of each dep endent base-level classi�er. The same accuracy as in Theorem 35

can b e obtained by dividing the weights w1 = : : : = w5 by 5. If the classi�ers are really

identical, the two di�erent strategies lead to the same ensemble accuracy. However, we
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can only estimate the b ehavior of the base-level classi�ers and, thus, reducing the weight

for every dep endent base-level classi�er may b e a more robust strategy than assigning

one base-level classi�er a large weight and the rest a small weight.

Of course, the question is how to generally correct the weights for dep endencies and

how to treat the most common case when classi�ers are neither completely dep endent

nor indep endent. I prop ose the following strategy: To estimate the dep endence of a

base-level classi�er to all other base-level classi�ers the mutual information b etween the

classi�er and the remaining base-level classi�ers is estimated. The corrected weight for

each base level classi�er is then

w
j

= wmj (
JX

i =1 ;i 6= j

I (	 j ; 	 i ) + 1) � 1
(3.3.1)

where wmj is the weight obtained by the original WMV combiner, I (	 j ; 	 i ) the mutual

information b etween two classi�ers as in Section 2.3.2.6 . This correction pro cedure is

motivated by the fact that the mutual information is zero for two indep endent classi�ers

and min( H (	 j ); H (	 i ) ) for two identical classi�ers, where H (	 j ) denotes the entropy

of the classi�er 	 j . I call this correction of the weights dep endency correction and

the resulting combiner Dependent Weighted Majority Voting (DWMV). It can, of course,

also b e combined with the signi�cance extension. I call the resulting combiner Dependent

Signi�cant Weighted Majority Voting (DSWMV).

Another p ossibility would b e to use the normalized mutual information as estimate of

the dep endencies, which leads the correction scheme

w
j

= wmj (
JX

i =1 ;i 6= j

I (	 j ; 	 i )
min( H (	 j ); H (	 i ) )

+ 1) � 1

and ensures that for two completely dep endent classi�er

I (	 j ;	 i )
min( H (	 j ); H (	 i ) )

is one. This

correction scheme is not examined in this thesis.

3.3.3. Harmonic Series Weighted Voting

Another combiner that I invented for the comparison is the Harmonic Series Weighted

Voting (HSWV) combiner. It is also a Weighted Voting (WV) combiner. The weight for

each classi�er is

wj =
1
r j

where r j denotes the rank of the corresp onding base-level classi�er in comparison to the

remaining base-level classi�ers. The rank is calculated by sorting the base-level classi�ers

with resp ect to their BACs. Hence, the base-level classi�er that gets assigned weight

1
2

is the base-level classi�er that pro duces the second highest BAC on D
comb

.

As the HSWV combiner do es not take into account dep endencies b etween base-level

classi�ers, the dep endency extension is also applied to HSWV, leading to the Dependent

Harmonic Series Weighted Voting (DHSWV) combiner.
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3.3.4. Random Weighted Voting

As base-line metho d for the comparison I de�ne Random Weighted Voting (RWV), also

a WV combiner. The weight wj for each base-level classi�er 	 j is randomly picked

according to the uniform distribution over the interval (0; 1).

3.3.5. Details for the Existing Combiners

The details for the existing combiners are as follows. For Bayes Combination (BC)

Equation 2.3.5 is used to estimate the supp ort. I cho ose B = 1 for the hyp er-parameter

B . As meta classi�ers for stacking, I employ two di�erent classi�cation metho ds, LDA

and LRLDA , resulting in the two combiners, Stacking with Linear Discriminant Analysis

(STLDA ) and Stacking with Ledoit's Regularized Linear Discriminant Analysis (STLRLDA ).

For all combiners that need an estimate of the accuracy, I use the BAC as estimate as

some data sets are imbalanced. As classi�cation metho d for CONCAT I employ LRLDA.

LRLDA gets as input the concatenation of the feature vectors originating from all unique

feature extraction metho ds. For Information Theoretic Combination (ITC) I set the size

K of the to b e selected subset to seven.

3.4. Base-Level Learners

While the prop osed ensemble learning algorithm accepts arbitrary base-level learners as

input, I have to de�ne a set of base-level learners that is used for the comparison of the

di�erent combiners. Rememb er that one goal of this thesis is to build a classi�cation

metho d that works well on a variety of di�erent EEG data sets. I want to compare

the combiners on heterogeneous data sets. If no base-level learner pro duces an accurate

base-level classi�er, a comparison of the di�erent combiners is not p ossible. Because of

these reasons, the set of base-level learners has to b e broad and has to capture the most

prominent characteristics of EEG signals. This implies that for any particular EEG data

set it is very likely that some base-level learner lead to inaccurate base-level classi�ers.

As classi�cation metho ds only linear classi�ers are employed, following the reasoning

of Blankertz et al. (2010a , p 118) that in their exp erience �linear metho ds p erform well,

if an appropriate prep ossessing of the data is p erformed�.

Every metho d that I will intro duce in the remainder of this section is applied to data

from the following seven frequency bands separately: � (8-12 Hz), � (12-30 Hz), 
 (30-70

Hz), � (0-4 Hz), � (4-8 Hz), con (1-45Hz) and rem (70+ Hz). This leads to a total of

# metho ds � 7 base-level learners.

The CSP feature extraction metho d is used b ecause it is currently the standard metho d

in BCI research to quantify signal p ower changes. The hyp er-parameter k is set to three as

advised by Blankertz et al. (2008 ). The feature that is extracted of the signal transformed

by the CSP patterns is the logarithm of the variance. As classi�cation metho d for the

base-level learners based on CSP , LRLDA is used.

To quantify amplitude changes a set of base-level learners based on Spatio Temporal

Features (STF ) (see Section 2.2.3 ) is employed. Three di�erent approaches are used, Local
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Figure 3.4.1.: Illustration of the base-level learners.
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Algorithm 3.2 Learning algorithm of SVMOPTC ,

Input

Data set D
Set of candidates for C , C

can

Pro cedure

maxbac = 0
maxC = 0
for each c 2 C

can

1. Estimate the BAC of the SVM instance with C = c using strati�ed 10-fold cross-

validation; bac

cv

( SVM C= c; D ) , where SVM C= c denotes the learning algorithm of

SVM with the hyp er-parameter C set to c.

2. If bac

cv

( SVM C= c; D ) > maxbac, maxbac = bac

cv

( SVM C= c; D ) and maxC = c.

end

Output

SVM c= maxC

(D )

Means (LM), Regional Means (RM) and Global Mean (GM). The means are calculated

on non-overlapping intervals of length 50ms for the LM approach. For the RM approach,

the means are calculated on �ve non-overlapping equally sized intervals that span the

whole trial. For GM, the mean is calculated over the complete trial.

The Permutation Entropy (PE ) is used as measure of complexity. It is calculated for the

emb edding dimensions 3 (PE 3), 4 (PE 4) and 5 (PE 5). For smaller emb edding dimensions

the PE would hardly contain any information and for larger emb edding dimensions the

typical numb er of time p oints p er channel and trial would not b e su�cient to get a

reasonable estimate of the PE .

As classi�cation metho d for the base-level learners based on the PE and the STF a

linear SVM is used. The hyp er-parameter C is optimized using strati�ed 10-fold cross-

validation and the BAC as p erformance measure. Candidates for C are chosen from

f 10i : i 2 f� 5; � 3; � 1; 1; 3; 5; 7; 9; 11; 13; 15gg. The resulting classi�cation metho d will b e

called Support Vector Machine with Optimization of the C hyper-parameter (SVMOPTC )

in the remainder. The learning algorithm for SVMOPTC is shown in Algorithm 3.2 . A

di�erent p ossible approach is to include every SVM as a di�erent base-level learner.

However, pilot exp eriments suggested that base-level classi�ers that only di�er in the

C hyp er-parameter of their SVM are either completely dep endent, or one base-level

classi�er p erforms clearly sup erior. Hence, the selection of the b est C hyp er-parameter

seems more appropriate.

The overall numb er of base-level learners is

# frequencybands �(# CSPLDA + # STFSVM + # PESVM ) = 7 � (1 + 3 + 3) = 49

where # frequencybands is the numb er of frequency band on which all feature extraction

metho ds are applied, # CSPLDA the numb er of feature extraction metho ds that are
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based on CSP , # STFSVM the numb er of feature extraction metho ds that are based on

STF and, and # PESVM the numb er of feature extraction metho ds that are based on

PE .

3.5. Details for CONCAT and ORACLE

As input for for CONCAT the concatenation of the feature vectors obtained by the di�er-

ent feature extraction metho ds from the base-level learners is employed. As classi�cation

metho d for CONCAT I cho ose LRLDA b ecause it is a very p owerful and regularized

metho d. I compare the classi�cation metho ds on �ve di�erent simulation scenarios and

on data sets originating from four di�erent EEG studies. ORACLE returns, for each

data set, the classi�er that achieves the highest mean BAC over all data sets from the

resp ective study/scenario out of all base-level classi�ers. The BAC is estimated using

strati�ed 10-fold cross-validation.

3.6. Implementation

The generic learning algorithm for ensemble classi�ers, the combiners, as well as all the

metho ds needed for the base-level learners are integrated into the multivariate to olb ox

of Fieldtrip (Oostenveld et al. , 2011 ). Fieldtrip is an EEG analysis to olb ox for Matlab

(MathWorks , 2012 ). Fieldtrip's multivariate to olb ox contains algorithms from the �eld

of PR for the analysis of EEG data.

The integration of the co de into an existing analysis to olb ox serves multiple purp oses.

It makes it easier for others to verify and repro duce the results. Furthermore, the learning

algorithm for ensemble classi�ers can b e easily used to implement and test new combiners

or base-level learners. Another advantage is that many of the algorithms implemented

for this work, e.g., the classi�cation and the feature extraction metho ds, can b e easily

reused for completely di�erent pro jects.

Fieldtrip was chosen over other existing to olb oxes such as BioSig (Schlogl and Brunner ,

2008 ) and BCILAB, which is included in EEGLAB (Delorme and Makeig, 2004), b ecause

it fo cuses more on single-trial analysis than on building BCIs, it is ob ject oriented (at

least the multivariate to olb ox), and it is the ma jor EEG analysis to olb ox used at my

institute.

The design of the learning algorithm for ensemble classi�ers is oriented at and reuses

some of the co de from the ft_mv_gridsearch class of �eldtrip. Furthermore, for e�ciency

reasons it is implemented such that it accepts a set of combiners and returns a set of

ensemble classi�ers.

While the ensemble learning algorithm and the combiners are implemented by me,

some metho ds needed for the base-level learners do already exists in �eldtrip, namely

CSP and SVM. Also, the cross-validation pro cedure from �eldtrip is used.

The leading paradigm for the implementation is the extensive employment of auto-

mated testing to ensure the correctness of the implemented algorithms, leading to a total

of 68 test cases.
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In this section I will present the results of an empirical comparison of the prop osed

metho ds. Recall that the questions I want to answer are:

1. Do es a combination of base-level classi�ers based on di�erent feature extraction

and classi�cation metho ds improve the Balanced Accuracy (BAC ) in comparison

to the ORACLE?

2. Do es a combination of base-level classi�ers based on the di�erent feature extraction

and classi�cation metho ds lead to a more accurate classi�er than Select the Best

(SelectBest ) and Concatenation (CONCAT )

3. Which of the combiners pro duces the most accurate ensemble classi�er?

4. Is the set of base-level learners that I de�ned su�cient? Do es it pro duce accurate

and diverse classi�ers?

5. Do es the b est metho d result in a classi�cation metho d that works well not only on

a single but on a variety of Electroencephalography (EEG ) data sets?

This section will start with an intro duction of the metho ds that are used to compute the

results. It will continue with the presentation of the results of a simulation study. After

that, the results on the EEG data sets will b e presented. I will use many abbreviations

throughout this chapter. If you are reading this thesis on a computer, you may click on

the abbreviation to get to the list of abbreviations (see Chapter 6). If you are reading this

thesis in pap er form, the list of abbreviations is provided to you as separate spreadsheet.

4.1. Metho ds

The Balanced Accuracy (BAC) (see De�nition 13 ) for each metho d on each data set is

estimated using strati�ed 10-fold cross-validation (see De�nition 12 ). This results in a so

called nested cross-validation pro cedure for the Multiple Classi�er System (MCS ). The

outer cross-validation lo op is used to estimate the accuracy of the ensemble classi�ers

and the inner cross-validation lo op is part of the training of the ensemble classi�ers

(see Algorithm 3.1). Within the training of the ensemble classi�ers there is even another

cross-validation lo op as part of the training of Support Vector Machine with Optimization

of the C hyper-parameter (SVMOPTC ).

As aggregated p erformance measures, over the data sets, the mean of the BAC s and

the ranks computed by the Friedman test (see Section 2.1.4.2 ) are presented.
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For addressing the statistical signi�cance of the results, dep ending on the situation, two

di�erent tests are employed. The di�erences b etween the di�erent metho ds is translated

into a p -value using the p ost-ho c pro cedure on the test statistics calculated by the Fried-

man test (see Section 2.1.4.2 ). When comparing a set of combiners against a base-line

metho d, e.g., Select the Best (SelectBest ), Concatenation (CONCAT ) and ORACLE, the

probability threshold � is adjusted for multiple testing using the Bonferroni correction.

For the comparison of all pairs of combiners, the critical value is adjusted stepwise using

the Sha�er's Static Procedure (SSP ) (see Section 2.1.4.2 ). When a metho d is tested

against random guessing, the test intro duced in Section 2.1.4.1 is used. When multiple

metho ds are compared against random guessing on the same data set, the critical value

� is adjusted using the Bonferroni correction.

As characteristics of the set of base-level classi�ers I rep ort the average disagreement

measure and the average numb er of base-level classi�ers that achieve a BAC b etter than

random guessing. The BAC is estimated using 10-fold strati�ed cross-validation. If a

classi�er p erforms b etter than random guessing, is tested using the test intro duced in

Section 2.1.4.1 . I do not correct for multiple comparisons, b ecause I want to test for

each classi�er indep endently if it p erforms b etter than random guessing. Hence, if all

49 base-level classi�er guess randomly, this test will, on average, �nd 49 � 0:05 = 2:45
classi�ers to p erform b etter than random guessing.

4.2. Implementation

As with the algorithms intro duced in the last section, I integrate the algorithms that are

needed to generate the results, e.g., the statistical tests, into the multivariate to olb ox of

Fieldtrip.

Because of the large amount of data sets and the amount of metho ds that are compared,

the total computing time to generate the results for the real data set exceeds four years.

Hence, a regular computer would not b e su�cient to calculate the results in a reasonable

time. Therefore, I use a 180 core cluster computer to calculate the results on the real data

sets, and employ a 30 core cluster computer to estimate the Balanced Accuracy s (BAC s)

on the simulated data sets.

I mo dify the cross-validation pro cedure of �eldtrip such that it accepts learning al-

gorithms that return a set of classi�ers to b e compatible with the implementation of

the learning algorithm for ensemble classi�ers. Furthermore, b ecause parallelism on the

data set level is not su�cient to get the results in a reasonable time, I mo dify the cross-

validation pro cedure such that each of the 10 folds can b e pro cessed indep endently on a

separate machine.

4.3. Simulation

Before comparing the di�erent combiners on real Electroencephalography (EEG ) data sets,

I compare them on simulated data sets. Besides the comparison of di�erent combiners on

data sets with known prop erties, the main goal of the simulation study is to reduce the
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numb er of combiners that have to b e included in the comparison on the real data sets.

This is motivated by two facts: First, when testing the di�erences b etween the combiners

and the base-line metho ds for signi�cance, the more combiners are included in the test

the less likely is it to �nd a signi�cant e�ect. Every additional combiner increases the

rank di�erences required for a signi�cant e�ect. Second, the reduction of the numb er of

combiner reduces the computation time.

For the simulation study, di�erent base-level classi�ers are simulated for �ve di�erent

scenarios. The scenarios are inspired by situations that o ccurred on real data sets.

For every scenario, 1000 data sets are simulated. Each data set represents a binary

classi�cation problem and consists of 1000 trials p er class.

4.3.1. Scenarios

Base Scenario

For the base scenario, 15 base-level classi�ers are simulated. The Balanced Accuracy s

(BAC s) of the base-level classi�ers are equally distributed in the interval [0:55; 0:8]:
Hence, every base-level classi�er is accurate. After ensuring that the p er-class accuracies

are the same, which ensures that the BAC is equivalent to the accuracy, the classi�er

outputs are shu�ed within the class. This ensures high diversity b etween the classi�ers.

The base scenario represents the situation when the base-level classi�ers are indep en-

dent and accurate. It can b e seen as the optimal scenario. The remaining scenarios

are extensions of the base scenario. They all contain the base-level classi�ers that were

generated for the base scenario.

Noise Scenario

For the noise scenario, 45 classi�ers are added that arbitrarily predict class one or two,

with equal probability, indep endently of the true lab el. This scenario evaluates the

capacity of the combiners to deal with base-level classi�ers that do not provide any

information ab out the true lab el. Because I chose a broad set of base-level learners, it is

very likely that such classi�ers are part of the base-level classi�ers set.

Doubles Scenario

For the doubles scenario, randomly one of the 15 classi�ers from the base scenario is

picked and duplicated �ve times. Each classi�er has the same chance to get picked. This

pro cedure is rep eated 9 times, resulting in 45 classi�ers. These 45 classi�er are simply

rep etitions of existing classi�ers. This scenario represents the case when there are strong

dep endencies b etween the base-level classi�ers.

Constant Scenario

For the constant scenario, 45 classi�ers that constantly predict one class are added.

This scenario represents the worst case of dep endent noise. It is motivated by pilot
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metho d base + noise + constant + doubles + all

STLRLDA 93.77 93.68 93.67 93.67 93.41

STLDA 93.67 93.40 93.67 93.67 93.40

fAB 93.67 93.08 93.65 93.62 93.03

DSWMV 93.72 93.69 93.72 92.70 92.66

DWMV 93.72 93.58 93.72 92.70 92.49

SWMV 93.80 93.78 93.8 86.79 86.79

WMV 93.80 93.71 93.8 86.79 86.79

BC 93.79 93.70 93.79 86.78 86.78

HSWV 88.84 88.65 80.94 82.79 82.75

SMV 92.17 90.26 92.17 83.50 83.65

DHSWV 89.80 89.37 72.55 83.42 75.35

SelectBest 77.87 77.87 77.87 77.87 77.87

ORACLE 67.79 67.79 67.79 67.79 67.79

RWV 88.44 72.05 50 83.84 57.56

MV 92.17 75.25 50 83.50 55.84

ITC 76.92 58.68 50 76.92 50.00

Table 4.1.: Mean BAC , in p ercent, for each metho d and scenario, sorted by their BAC s

on the all scenario. The values printed in b old letters represent the b est

metho d on the resp ective scenario. If in one column there is more than one

value printed in b old, there was no signi�cant di�erence b etween those meth-

o ds. For the all scenario, missing column delimiters imply that no signi�cant

di�erence could b e observed b etween these metho ds. The gray rows mark the

combiners that are prop osed in this thesis.

exp eriments, in which base-level classi�ers that only di�ered in the C hyp er-parameter

of their Support Vector Machine (SVM) were part of the base-level classi�er set. It was

observed that for some C values these base-level classi�ers constantly predict one class.

All Scenario

The all scenario contains the base-level classi�ers from the base scenario and the base-

level classi�ers from all other scenarios, resulting in a total of 150 base-level classi�ers.

The main motivation for this scenario is to evaluate the p erformance of the di�erent

combiners in the case when all noise sources o ccur at the same time. This is b elieved to

b e the most realistic scenario.

4.3.2. Results

By construction, the diversity b etween the base-level classi�ers from the base scenario is

high. The average disagreement measure is 0.4390 with a standard deviation of 0.0132.

All other scenarios include the set of base-level classi�ers from the base scenario. Hence,

for each scenario, there exists a subset of accurate and diverse base-level classi�ers.
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The results for all combiners and scenarios are summarized in Table 4.1. The ensemble

classi�ers created by almost every combiner p erform b etter than ORACLE on all sce-

narios. On the base scenario the ensemble classi�ers built by the b est combiners achieve

a mean BAC of 93.80%, while ORACLE achieves a mean BAC of 67.79%. Hence, the

combination of the base-level classi�ers is able to b o ost the mean BAC by more than

26%.

Not surprising, the ensemble classi�er built by Select the Best (SelectBest ) results in

a mean BAC of 77.87% on all scenarios. Thus, the combination of base-level classi�ers

pro duces more accurate ensemble classi�ers than the selection of the most accurate base-

level classi�er.

The ensemble classi�ers build by Stacking with Ledoit's Regularized Linear Discrimi-

nant Analysis (STLRLDA ), Stacking with Linear Discriminant Analysis (STLDA ), �xed

Adaptive Boosting (fAB), Dependent Signi�cant Weighted Majority Voting (DSWMV),

Signi�gance Weighted Majority Voting (SWMV), Weighted Majority Voting (WMV),

Bayes Combination (BC ), and Signi�gance Majority Voting (SMV) p erform, with a

mean BAC span of 92.17% to 93.77%, relatively similar on the base scenario. I will call

this group of combiners promising combiners in the remainder of this work, b ecause the

remaining combiners pro duce tremendously less accurate ensemble classi�ers on the base

scenario.

On the all scenario there is one group that p erforms much b etter than the rest of

the combiners. STLRLDA , STLDA , fAB, DSWMV, and Dependent Weighted Majority

Voting (DWMV) pro duce mean BAC s that are higher than 94.48%, while the mean BAC s

achieved by the remaining combiners are b elow 86.8%. I will call this group of combiners

winning combiners in the remainder of this work. Note that the winning combiners are

a subset of the promising combiners.

Of course, the question is what is the reason for the big di�erences b etween the winning

combiners and the rest of the combiners. When comparing the learning algorithms of the

winning combiners against the learning algorithms of the promising combiners, one big

di�erence b ecomes apparent. The winning combiners create the combination rule such

that it takes into account dep endencies b etween the base-level classi�ers. Furthermore,

there is empirical evidence that the prop er handling of dep endent classi�ers leads to the

fact that the winning combiners p erform b est. On the noise and the constant scenario

the promising combiners p erform almost on the same level than on the base scenario.

Contrary to that, on the doubles scenario only the winning combiners yield a similar mean

BAC compared to the base scenario. The mean BACs for the rest of the combiners on

the doubles scenario is considerably smaller than their mean BACs on the base scenario.

After having identi�ed the combiners that pro duce the most accurate ensemble classi-

�ers on the all scenario, I will continue this section with a detailed p erformance analysis

for every combiner. Based on that analysis the combiners that will b e included in the

comparison on the real EEG data sets are selected.

The stacking combiners STLRLDA and STLDA share the �rst rank on the all scenario

with mean BACs of 93.41% and 93.4%. They p erform signi�cantly b etter than all other

combiners. Over all scenarios the p erformance of these two combiners is promising.

STLRLDA p erforms b etter than STLDA on each scenario. Because of that, from the
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stacking combiners, only STLRLDA will b e included in the comparison on the real data

sets, although p er scenario the di�erence is negligible.

With a mean BAC of 93.03%, fAB achieves the second rank for the �all scenario� and

also p erforms well over all scenarios. Therefore, fAB will b e included in the real data

comparison.

The combination metho ds from the Weighted Majority Voting (WMV) family also

pro duce promising results. For the base, the noise and the constant scenario at least one

combiner from that family ranks �rst. For the all scenario DSWMV (mean BAC 92.66%)

and DWMV (mean BAC 92.49%) share the fourth place. SWMV (mean BAC 86.79%)

and WMV (mean BAC 86.79%) follow on the shared �fth place. The application of the

signi�cance correction, which I intro duced in Section 3.3.1 , to WMV constantly b o osts

BAC s of the resulting ensemble classi�ers. SWMV always p erforms b etter or equally

well than WMV. The same is true when comparing DSWMV and DWMV. But the

di�erences are very small. However, b ecause the signi�cance correction led to a more

accurate ensemble classi�er on every scenario, WMV and DWMV will not b e included

in the �nal comparison.

What follows is the evaluation of the dep endency extension (see Section 3.3.2). On the

base, noise and constant scenario SWMV p erforms signi�cantly b etter than DSWMV.

So, it seems that in the case when there are no dep endencies b etween the base-level

classi�ers the dep endency extension actually worsens the p erformance of the resulting

ensemble classi�er. However, the BAC di�erences are relatively small. In contrast to

that, there is a relatively huge di�erence of 6% in favor of DSWMV on the doubles

and all scenario. This provides evidence that the dep endency extension pro duces, in

fact, a b etter combination rule than WMV if there are dep endencies b etween the base-

level classi�ers. Therefore, DSWMV and SWMV will b oth b e included in the real data

comparison. DSWMV p erforms signi�cantly worse than three other metho ds, that take

into account dep endencies b etween the base-level classi�ers, namely fAB and the two

stacking combiners

BC is part of the promising combiners. When there are no dep endencies b etween the

classi�ers, BC is one of the b est combiners. It achieves the shared �rst place on the base

and the constant scenario and the shared second place on the noise scenario. However, as

for all the other promising but not winning combiners, the BAC of the resulting ensemble

classi�er drops signi�cantly on the doubles scenario, leading to a mean BAC of 86.78%

on the all scenario. This is not surprising as BC do es not take into account dep endencies

b etween base-level classi�ers.

The two harmonic series combiners, Harmonic Series Weighted Voting (HSWV) and

Dependent Harmonic Series Weighted Voting (DHSWV), are not part of the promis-

ing combiners. The resulting ensemble classi�ers p erform signi�cantly worse than the

promising combiners, but still signi�cantly b etter than the base-line metho ds SelectBest

and ORACLE. HSWV achieves a mean BAC of 82.75% and DHSWV achieves a mean

BAC of 75.25% on the all scenario. DHSWV p erforms b etter than HSWV on the noise,

base, and doubles scenario. HSWV p erforms b etter than DHSWV on the constant and

all scenario. The reason for that seems to b e that DHSWV is disturb ed by the con-

stant classi�ers. Because of this unclear relationship b oth metho ds will nevertheless b e
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included in the comparison on the real data.

The simple Majority Voting (MV) combiner pro duces a promising mean BAC of 92.17%

on the base scenario. For all other scenarios, it is, not surprisingly, heavily disturb ed

by the noisy and dep ended base-level classi�ers; leading to a mean BAC of 55.84% on

the all scenario. The extension to the SMV combiner p erforms b etter than MV on all

scenarios. With the exception of the doubles and the all scenario, it p erformed similar to

the promising combiners. Hence, only SMV will b e included in the comparison on real

data sets.

Information Theoretic Combination (ITC) always p erforms worse or equally bad than

Random Weighted Voting (RWV). The mean BAC of the ensemble classi�er built by

ITC on the all scenario is 50%. Because of that, ITC will not b e included in the �nal

comparison. ITC cho oses bad base-level classi�er subsets. They consist of the base-level

classi�er with the highest BAC and 6 base-level classi�ers that p erform comparatively

bad. The reason for that seems to b e that the information theoretic score is dominated

by the information theoretic diversity.

4.4. Electro encephalography Data Sets

In this section, I will present the results on Electroencephalography (EEG ) data sets.

In addition to the main questions sp eci�ed at the b eginning of this chapter, I will ad-

dress what feature extraction and classi�cation metho ds are employed for classi�cation.

Furthermore, to access the p otential of my metho ds, I will compare the classi�cation

accuracies of my metho ds to the accuracies that were achieved by other researchers on

similar data sets.

I will start this section by intro ducing the di�erent studies from which the data sets

originate. After that, I will present the results separately for each study. The emphasis

during this part is to �nd out if the prop osed set of base-level learners is su�cient for a

fair comparison of the metho ds and if the employment of ensemble classi�ers pro duces

more accurate classi�ers than the base-line metho ds Select the Best (SelectBest ), ORA-

CLE, and Concatenation (CONCAT ). Following this part, I will compare the di�erent

combiners on data sets originating from various studies to �nd out if there is a sup erior

combiner. After that, I will apply the most promising metho ds on a data set on that no

successful classi�cation has b een achieved yet.

4.4.1. Description of the Studies

Attention

The classi�cation task for the data sets originating from the Attention study is to classify

if the participant attends to the left or the right half of a computer screen, while lo oking at

a �xation cross. The original results of this study, as well as a more extensive description

of the exp erimental design, can b e found in Sander et al. (2012 ).

The participants of the study originate from three groups, 22 children ( �
age

= 11:9,

�
age

= 0 :52, range 10 � 13 years), 12 young adults ( �
age

= 24:19, �
age

= 1 :57, range
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Figure 4.4.1.: Sequence of screens for one trial of the Attention study. Adapted with

p ermission from Sander et al. (2012 ).

20� 26 years), and 22 older adults ( �
age

= 73:3, �
age

= 1 :54, range 70� 75 years).

During the exp eriment, the participants were seated comfortably in an electromagneti-

cally and acoustically shielded ro om. They were shown a screen that displayed a �xation

cross and a set of colored squares for 100ms. A cue, which was p ermanently shown from

-500ms until 0ms relative to the presentation of the screen, indicated to which half of the

screen the participants should attend. The participants were instructed to only shift their

attention but to keep their visual fo cus on the �xation cross. After a retention interval

of 1000ms, they were shown a screen that p otentially di�ered in the half to which they

were asked to attend to.

Their task was to resp ond if the screen di�ered from the screen they had seen b efore.

The resp onse time was limited to a maximum of 5000ms. Each participant completed

360 trials. Between the trials there was a 1500ms break, in which a �xation cross was

shown.

For the comparison, the task of the classi�er is to predict if a participant attends to the

left or the right half of the screen, based on the EEG signals from 0 to 1000ms relative

to the onset of the presentation of the to b e memorized screen. Only those trials for that

the resp onse of the participants is correct are included in the analysis.

The EEG signals were recorded using 61 Ag/Ag-Cl electro des. Electro de imp edance

was b elow 5k 
 b efore the recording. The sampling rate was 1000hz. During the record-

ing, a 0:1� 250Hz band-pass �lter was applied and electro des were referenced to the right

mastoid electro de, but the left mastoid electro de was also recorded.

For prepro cessing the EEG signals were re-referenced to the mathematically linked

mastoids and high-pass �ltered with 0.5Hz. Trials that included eye movement or ex-

cessive muscle activity were removed. On the remaining data indep endent comp onent

analysis was used to pro ject the residual noise sources out of the data (Jung et al. , 2000 ).

This was done by visually insp ecting the comp onents and rejecting those comp onents that

represented noise sources.
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Motor Imaginary

The classi�cation task for data sets originating from the Motor Imaginary study is to

discriminate b etween a right and left index �nger button press. Data from 36 participants

are analyzed. The data sets were recorded by Zander et al. (2011 ). In their pap er a more

extensive description of the exp erimental paradigm can b e found.

During each trial, the participants were shown a �L� or an �R� for 700ms followed by

a pause of 300ms. The presentation of �L� or �R� indicated that they should press the

left (L) or right (R) CTRL-key as quickly and accurately as p ossible with their left (L)

or right index �nger (R). Between the trials there was a 1000ms break.

The EEG signals were recorded using 32 Ag/Ag-Cl electro des. The sampling rate

was 1000hz. During the recording, the EEG signals were �ltered using a 0.1-1000Hz

band-pass �lter.

As input for the base-level learners, I extract the EEG signals from -500ms up to 200ms

relative to the button press. A previous approach to only extract the EEG signals from

-500 to -200ms relative to the button press did not lead to accurate base-level classi�ers.

Auditory Oddball

The classi�cation task for data sets originating from the Auditory Oddball study is to

classify if a participant listens to a rare or a common tone.

The data sets originate from a pilot study employed at the Max Planck Institute

for Human Development. Data sets for six sub jects were recorded. The exp eriment

implemented the auditory o ddball paradigm (see Squires et al., 1975 ).

During the exp eriment, the participants were standing still. The ro om in that they were

standing was neither electromagnetically nor acoustically shielded. The participants were

presented high- and low-pitched tones with varying timely gaps. The high-pitched tone

was presented in 80% (common) of the cases and the low-pitched tone in the remaining

20% (rare) of the cases. The task of the participants was to count how many times the

rare tone o ccurred. The tones were played for 50ms. The frequency of the common tone

was 1000Hz and 800Hz for the rare tone. The gap b etween two consecutive tones was

varied b etween 1200 and 1500ms.

The EEG signals were recorded using 60 Ag/Ag-Cl electro des. The sampling rate was

1000hz. During the recording, electro des were referenced to the right mastoid electro de,

but the left mastoid electro de was also recorded. Furthermore, a 0:1 � 250Hz band-pass

�lter was applied.

As input for the base-level learners I extract, analogously to Beckmann (2010 ), the

EEG data from 0ms to 512ms relative to the onset of the auditory stimuli.

For prepro cessing the EEG signals were re-referenced to the mathematically linked

mastoids and high-pass �ltered with 0.5Hz.

Memory

The classi�cation task for the data sets originating from the memory study is to classify if

the participant is able to memorize an ob ject based on EEG data from the memorization
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phase. That is, the classi�er should predict if a p erson will b e able to rememb er something

at the time they is trying to memorize it.

For this task a data set for one sub ject was recorded by me and my colleagues.

The paradigm describ ed by Brehmer et al. (2004 ) was used. The participant was

seated comfortably in an acoustically as well as electromagnetically shielded ro om. The

participant was presented a set of lo cation-word pairs. The task of him was to rememb er

the pairs. The participant was trained to ful�ll this task by employing the metho d of

lo ci (see Bower , 1970 ).

The exp eriment consisted of 36 blo cks. Each blo ck was separated in an enco ding and

a recall phase. During the enco ding phase, lo cation cues were presented visually on a

monitor and the to-b e-recalled words were presented aurally over headphones. For each

lo cation-word pair, �rst the lo cation cue was shown for 500ms. This was followed by the

presentation of the word. After that, followed a break, in which the participant should

memorize the lo cation-word pair. Then, the next lo cation cue followed immediately. For

each blo ck 16 lo cation-word pairs had to b e rememb ered. In every blo ck each lo cation

was part of exactly one pair.

After all 16 lo cation-word pairs had b een shown, the participant could start the recall

phase at his own will. In the recall phase each lo cation cue was presented for 5000ms.

During the presentation of the lo cation, the participant had to typ e in the �rst three

letters of the memorized word. After successive 6 Blo cks, the sub jects was allowed to

pause for several minutes.

If a word o ccurred in one blo ck, it was guaranteed not to o ccur in the following blo ck.

A total of 16 lo cations and 413 highly imaginable words were used as stimuli. The time

b etween the presentation of two successive lo cations was 2300ms. In prior sessions it was

adjusted such that the participant could rememb er approximately 10 out of 16 pairs.

For the classi�cation one trial consists of the EEG signals from the b eginning of the

lo cation presentation until the b eginning of the next lo cation presentation. The to-

b e-separated classes are �the p erson will rememb er the pair� and �the p erson will not

rememb er the pair�.

The EEG signals were recorded using 60 Ag/Ag-Cl electro des. Electro de imp edance

was b elow 2k 
 b efore the recording. The sampling rate was 5000Hz. A 0:1 � 1000Hz

(a) (b)

Figure 4.4.2.: Sequence of screens for the (a) enco ding and the (b) recall.
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band-pass �lter was applied. During the recording, electro des were referenced to the

right mastoid electro de, but the left mastoid electro de was also recorded.

For prepro cessing the EEG data was re-referenced to the mathematically linked mas-

toids and down-sampled to 500Hz. Trials that included eye movement or excessive muscle

activity were removed.

4.4.2. Results

A short notational remark. Most measures employed are p er data set measures. I will

often rep ort means of that measures. The numb er b etween the brackets after the numb er

for the mean denotes the corresp onding standard deviation.

Attention

One sub ject had to b e excluded from the analysis. The training of the Ledoit's Regularized

Linear Discriminant Analysis (LRLDA ) classi�er that was used for CONCAT needed

more main memory than was request-able on the computing cluster (see Section 4.2).

From the 49 base-level classi�ers on average 16.64(6.24) achieve an accuracy b etter than

random guessing. The average disagreement measure b etween the base-level classi�ers

that p erformed b etter than random guessing is 0.436(0.0249). Hence, the prop osed set

of base-level learners pro duces a set of diverse and accurate base-level classi�ers on the

Attention data sets. Thus, an appropriate combination of the base-level classi�ers is

exp ected to result in an ensemble classi�er that is more accurate than ORACLE.

In fact, the ensemble classi�er built by the b est combiner achieves a mean BAC of

66% and a mean rank of 7.43, while ORACLE achieves a mean BAC of 61.83% and a

mean rank of 4.28. Furthermore, all combiners generate ensemble classi�ers that are

more accurate than ORACLE. With the exception of �xed Adaptive Boosting (fAB) and

Signi�gance Majority Voting (SMV), the rank di�erences b etween all combiners and

ORACLE are signi�cant.

On top of that, all combiners, with the exception of fAB and SMV, pro duce more ac-

curate ensemble classi�ers than SelectBest (mean BAC 64.28% rank 5.24) and CONCAT

(mean BAC 64.25% rank 5.68). The ranks of the top three p erforming combiners,

DSWMV, DHSWV and DHSWV, all prop osed in this thesis, are signi�cantly larger than

the ranks of SelectBest . Testing the di�erences b etween the combiners and CONCAT

for signi�cance reveals that only the rank di�erence b etween DSWMV and CONCAT is

signi�cant.

There were two previous studies that successfully classi�ed spatial attention based

an neuroimaging data. Kelly et al. (2005 ) achieved a mean accuracy of 73%. Because

b oth classes were of equal size this measure is equivalent to the BAC. While their mean

BAC is 7% higher than the BAC for my b est classi�cation metho d, a direct compar-

ison seems at least questionable as the sub jects that participated in their study could

concentrate on the attention task, while in the study from which the data sets I used

originate from, the participants also had to concentrate on the memory task. Hence,

it is reasonable to assume that the classi�cation task for my data sets is more di�cult.

68



4. Results

metho d Balanced Accuracy (BAC ) rank

DSWMV 66 7.43

HSWV 65.89 7.13

DHSWV 65.84 7.05

BC 65.33 6.51

SWMV 65.33 6.64

STLRLDA 65.21 6.41

CONCAT 64.25 5.68

SelectBest 64.28 5.25

SMV 64.06 4.97

fAB 63.91 4.66

ORACLE 61.83 4.28

Table 4.2.: Mean BAC s, in p ercent, and ranks, for all metho ds, over all data sets orig-

inating from the Attention study. The metho ds are ordered by their mean

ranks. The gray rows mark the combiners that are prop osed in this thesis.

van Gerven and Jensen (2009 ) even classi�ed four di�erent directions of covert spatial

attention at a reasonable classi�cation rate using Magneto encephalography (MEG) for

signal acquisition. Because they used, instead of EEG , MEG as signal acquisition metho d

a direct comparison seems inappropriate.

Another interesting question is: What base-level classi�ers are used for the classi�-

cation? To address this question I calculate the mean weights over all folds from all

sub jects as learned by the b est metho d Dependent Signi�cant Weighted Majority Vot-

ing (DSWMV). For each data set D i and each fold f a weight vector wi;f is learned,

which consists of a weight wi;f (j ) for each base-level classi�er. There are n = 55 data sets

and 10 folds p er data set. Each entry w� (j ) of the mean vector is calculated as follows

w� (j ) =
1

10n

nX

i =1

10X

f =1

wi;f (j )

Analogous to that, the entries of the standard deviation vector w� are calculated as

w(j )� =

vu
u
t 1

10n � 1

nX

i =1

10X

f =1

(w(j ) i;f � w(j )� )2

The mean vector w� and the standard deviation vector w� of all weights are displayed

in Figure 4.4.3 . The mo dels that corresp ond to the 10 largest entries in the mean vector

w� can b e seen in Table 4.3 . While one needs to b e careful when comparing the mean

weights of the di�erent base-level learners, esp ecially b ecause the standard deviation is

comparatively high, it is interesting that from the ten base-level learners corresp onding

to the largest weights, nine are based on Common Spatial Patterns (CSP ) or Local Means

(LM ) features. Esp ecially when taking into account that previous classi�cation of spatial

69



4. Results

Figure 4.4.3.: Means w� and standard deviations w� of the weights for each base-level

learner as learned by DSWMV over all folds from all data sets from the

Attention study. The table that translates #base-level learner to the cor-

resp onding base-level learner can b e found in App endix A.1.

base-level classi�er weight


 + CSP + LRLDA 0.2943

rem + CSP + LRLDA 0.2901

� + CSP + LRLDA 0.2532

� + LM + SVMOPTC 0.2523

� +LM SVMOPTC 0.2495

� + RM + SVMOPTC 0.2149

con + CSP + LRLDA 0.1814

con +LM + SVMOPTC 0.1791

� +CSP + LRLDA 0.1652

� +CSP + LRLDA 0.1529

Table 4.3.: Ten largest entries of the mean vector w� and the corresp onding base-level

learners.
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attention (Kelly et al., 2005 , van Gerven and Jensen , 2009 ) was solely based on � p ower

features, this an interesting �nding.
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Motor Imaginary

From the 49 base-level classi�ers on average 15.78(3.66) achieve an accuracy b etter than

random guessing. The average disagreement measure b etween the base-level classi�ers

that p erformed b etter than random guessing is 0.4294(0.0201). Hence, the prop osed

set of base-level learners pro duces a set of diverse and accurate base-level classi�ers on

the Motor Imaginary data sets. Thus, an appropriate combination of these base level

classi�ers should result in an ensemble classi�er that is more accurate than ORACLE.

Analogously to the Attention data sets, all combiner pro duce ensemble classi�ers that

have higher mean BAC s than ORACLE. The most accurate ensemble classi�er is created

by STLRLDA and achieve a mean BAC of 76.45%, while the classi�er selected by ORA-

CLE achieves a mean BAC of 68.88%. With the exception of SMV, the rank di�erences

b etween the ensemble classi�ers and ORACLE are signi�cant.

Also, with the exception of SMV, all combiners build ensemble classi�ers that p erform

b etter than the ensemble classi�er built by SelectBest (mean BAC 72.65%). Excluding

Harmonic Series Weighted Voting (HSWV) and Dependent Harmonic Series Weighted

Voting (DHSWV), the rank di�erences b etween all ensemble classi�ers and SelectBest are

signi�cant. However, the high di�erence b etween SelectBest and HSWV, and SelectBest

and DHSWV, b oth in mean BAC and rank, suggest that with a larger set of data sets

the di�erences could b e found to b e signi�cant.

In contrast to the Attention data sets, CONCAT clearly outp erforms all other metho ds

on the Motor Imaginary data sets. With 87.91% its mean BAC is 11.46% higher than the

mean BAC of the ensemble classi�er built by the b est combiner STLRLDA . Furthermore,

its mean rank is 11, that means that CONCAT is the metho d that pro duces the most

accurate classi�er on every single data set. This very pregnant di�erence b etween the

Attention and the Motor Imaginary data sets will b e further investigated in the following

sections.

It is known that motor imaginary can b e classi�ed robustly. Indeed, it is one of the

main paradigms in Brain Computer Interface (BCI) research. There exist classi�cation

results for exactly the same data sets as were used for this study. While Zander et al.

(2011 ) do not rep ort exact values, their �gure suggest that CONCAT p erforms b etter

than most of the classi�cation metho ds they tried, and at a similar level than their b est

classi�cation metho d.

Analogously to the Attention data sets, I also want to examine what features are

employed for the classi�cation. As CONCAT clearly is the most accurate metho d, I

interpret the classi�er built by CONCAT . To do that the weight vectors w learned by

LRLDA are examined. Note that CONCAT learns a weight for each feature, contrary to

DSWMV that learns a weight for each base-level classi�er. The larger the deviation of

a weight w(k) from 0, the higher is the contribution of the corresp onding feature to the

classi�cation score wT x + c (see Equation 2.2.6 ).

In contrast to the mean weights presented in Section 4.4.2 , for each data set D i out

of the n = 36 data set only one weight vector wi is obtained by applying the learning

algorithm of CONCAT to the complete data set. Hence, each entry of the mean vector

w� is calculated as
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metho d BAC rank

CONCAT 87.91 11

STLRLDA 76.45 8.25

fAB 76.18 8.01

DSWMV 75.87 7.33

BC 75.37 6.47

SWMV 75.42 6.42

HSWV 74.28 5.07

DHSWV 74.32 5.03

SelectBest 72.65 3.43

SMV 72.09 2.97

ORACLE 68.88 2.01

Table 4.4.: Mean BAC s, in p ercent, and ranks, for all metho ds, over all data sets orig-

inating from the Motor Imaginary study.The metho ds are ordered by their

mean ranks. The gray rows mark the combiners that are prop osed in this

thesis.

w� (k) =
1
n

nX

i =1

wi (k)

Analogous to that, each entry of the standard deviation vector w� is calculated as

w� (k) =

vu
u
t 1

n � 1

nX

i =1

(wi (k) � w� (k))2

In Figure 4.4.3 w� and w� are plotted for all features.

There are eight accumulations of highly deviating weights: S1 = f w� (k) : k 2
f 1; : : : ; 42gg, S2 = f w� (k) : k 2 f 139; : : : ; 778gg; S3 = f w� (k) : k 2 f 875; : : : ; 1514gg,

S4 = f w� (k) : k 2 f 1611; : : : ; 2250gg, S5 = f w� (k) : k 2 f 2347; : : : ; 2986gg, S6 =
f w� (k) : k 2 f 3083; : : : ; 3722gg, S7 = f w� (k) : k 2 f 3819; : : : ; 4458gg, and S8 = f w� (k) :
k 2 f 4555; : : : ; 5194gg. These accumulations are interrupted by accumulations of almost

zero weights. The �rst set of highly deviating weights, S1 , corresp onds to the CSP fea-

tures calculated on all frequency bands. The next group S2 corresp onds to the Spatio

Temporal Features (STF ), LM, Regional Means (RM), and Global Mean (GM), calcu-

lated on the con (1-45 Hz) frequency band. The following p eaks S3; : : : ; S8 corresp ond

to the STF calculated on the �; � , � , � , 
 and rem (70+ Hz) frequency bands in that

order. For all features based on the Permutation Entropy (PE ) the LRLDA algorithm

consistently learned very low weights. Thus, their in�uence on the classi�cation score is

negligible.

For weights with a large mean the variance is also relatively high. For weights with

a small mean the variance is also relatively small. This implies that, the same typ es of

features have b een employed for every sub ject.
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Figure 4.4.4.: Means w� and standard deviations w� of the weights for each feature as

learned by CONCAT over all data sets from the Motor Imaginary study.

Auditory Oddball

From the 49 base-level classi�ers on average 6.67(1.5055) achieve an accuracy b etter than

random guessing. The average disagreement measure b etween the base-level classi�ers

that p erform b etter than random guessing is 0.1831(0.0201). This means that only very

few base-level learners pro duce accurate classi�ers. Furthermore, these classi�ers are not

very diverse. Hence, a combination of base-level classi�ers may b e able to improve the

p erformance, but indep endently of the employed combiner drastic improvements are not

to b e exp ected. The reason for this lacking diversity seems to b e that for most sub jects

only the classi�ers based on STF were more accurate than random guessing.

Considering the previous examination it is not surprising that no combiner is able to

signi�cantly improve the p erformance. Indeed, from the combiners, only Bayes Com-

bination (BC ) (mean BAC 70.21) p erforms a little b etter than ORACLE (mean BAC

69.71). Also, no improvement over SelectBest (mean BAC 69.28) is observable.

What is very interesting is that the CONCAT combination is still able to b o ost the

accuracy signi�cantly. CONCAT pro duces a mean BAC of 74.86% and an average rank

of 9.83 in comparison to a mean BAC of 69.71% and a mean rank of 8.17 for ORACLE.

The classi�cation of the Event Related Potentials (ERP) elicited by a rare target stimuli

is one of the most p opular approaches for building BCIs. Thus, it is not surprising that

a successful classi�cation is p ossible. The same data sets are used for the analysis as

employed by Beckmann (2010 ). His b est metho d achieved a mean BAC of 83%. He

estimated the BAC using the holdout metho d. Hence, it is questionable if a direct

comparison of the results is appropriate. However, it seems like his sp ecialized metho d

p erforms even b etter than CONCAT .

Analogously to the previous studies, I also want to examine what features have b een
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metho d BAC rank

CONCAT 74.86 9.83

BC 70.21 9

ORACLE 69.71 8.17

STLRLDA 69.49 8.33

SelectBest 69.28 7.67

fAB 68.98 7.83

SMV 64.2 4.33

SWMV 63.35 4.33

HSWV 61.43 3.08

DSWMV 58.49 1.66

DHSWV 53.59 1.7

Table 4.5.: Mean BACs, in p ercent, and ranks for all metho ds over all data sets origi-

nating from the Auditory Oddball study. The metho ds are ordered by their

mean ranks. The gray rows mark the combiners that are prop osed in this

thesis.

used for the classi�cation. As CONCAT clearly was the b est classi�cation metho d,

I interpret it. I calculate the mean vector w� and the standard deviation vector w�

analogously to the approach that was used for the Motor Imaginary study. The entries

of the mean and the standard deviation vector are displayed in Figure 4.4.5 . As the

weights are basically the same as for the Motor Imaginary data sets, please refer to the

interpretation presented there.

Intermediate Summary and Op en Questions

For the Motor Imaginary and the Attention study, the prop osed set of base-level learners

was clearly su�cient and pro duced accurate and diverse base-level classi�ers. For the

Auditory Oddball data sets that was not the case. It is unclear whether this is an

elementary prop erty of the data sets or if the set of base-level learners was not su�cient.

It was shown that if the base-level classi�ers are diverse and accurate, the combination

of base-level classi�ers clearly outp erforms ORACLE. Furthermore, a fusion of the base-

level classi�er decisions led to more accurate ensemble classi�ers than the selection of the

b est base-level classi�er by SelectBest .

However, while the combination of base-level classi�ers p erformed b etter than CONCAT

on the Attention data sets, on the Motor Imaginary data sets CONCAT clearly outp er-

formed the ensemble classi�ers. When taking into account that the Attention data sets

consist of r = 5194 features and on average N = 608:17(19:95) trials, so the mean num-

b er of features p er trial is

r
N � 8:54, this is a surprising result. The original Linear

Discriminant Analysis (LDA ) algorithm fails if

r
N > 1 b ecause the estimated covariance

matrix is non-invertible. Of course, the estimator of the covariance matrix used for the

training of LRLDA was built such that it pro duces a reasonable estimate if

r
N > 1, but I
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Figure 4.4.5.: Means w� and standard deviations w� of the weights for each feature as

learned by CONCAT over all data sets from the Auditory Oddball study.

did not exp ect it to work that well if the relationship is as extreme. Also, this is incon-

sistent with the �ndings of Dornhege et al. (2004 ) and Bo ostani et al. (2007 ). They b oth

found that CONCAT p erforms worse than ORACLE. However, none of them employed

the very advanced LRLDA classi�cation metho d, sp eci�cally tailored for the situation

when the numb er of trials is small compared to the numb er of features.

As result of searching for di�erences b etween the Attention and the Motor Imaginary

data sets, I found that the two groups of data sets mainly di�er in the numb er of features

p er trial

r
N . While the mean numb er of features p er trial is 8.54 for the Motor Imaginary

data sets, it is 12222=260:89 = 46:85 for the Attention data sets. This may very well b e

the reason why the ensemble classi�ers p erform b etter than CONCAT on the Attention

data sets.

To con�rm this relationship, I rerun the analysis for the Motor Imaginary data sets

and mo dify the set base-level learners such that the total numb er of features increases to

72394, resulting in an average feature p er trial ratio of 72394=608:17 = 119:0358. This is

done by including three new base-level learners to the set. As features the raw amplitude

EEG signals from the con (1-45 Hz), � , and � band are extracted separately.

It is not p ossible to employ LRLDA as classi�cation metho d for CONCAT on the

mo di�ed set of base-level learners. Recall that the learning algorithm of LRLDA esti-

mates the p er-class covariance matrix of the features. Hence, if the numb er of features

is r = 72394, it will have to estimate

r (r +1)
2 � 2:6205� 109

values. Taking into account

that Matlab allo cates 8 Byte main memory for every entry, this results in a memory

consumption of 2:0964� 1010
Byte = 20:964GB : The maximum request-able amount of

main memory on the computing cluster is smaller than 17GB. Hence, it is imp ossible to

execute the learning algorithm of the LRLDA on the available hardware. Therefore, I

used Support Vector Machine with Optimization of the C hyper-parameter (SVMOPTC )
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as classi�cation metho d for CONCAT .

The second op en question is, which out of the combiners leads to the most accurate

ensemble classi�er. This question will b e answered in Section 4.4.2 .

Mo di�ed Motor Imaginary

Three sub jects had to b e excluded from the analysis b ecause the time needed for cal-

culation of the results for each fold exceeded the maximum available computing time of

two days. The reason for that was that the SVMOPTC learning algorithm to ok several

hours for the high dimensional feature vectors based on the raw EEG amplitude data.

To get a result for these sub jects, I employ Support Vector Machine (SVM) as classi�-

cation metho d instead. The C parameter is chosen according to the standard routine

of Fieldtrip if no C hyp er-parameter is sp eci�ed. By reading App endix A.2, it can b e

con�rmed that the results of these sub jects do not vary substantially from the results

presented here.

As exp ected, CONCAT completely fails on the very high dimensional features. With

a mean BAC of 60.32% and a mean rank of 1.03 it p erforms signi�cantly worse than

every combiner. Further analysis reveals that it p erforms worse than every combiner on

all data sets. The mean BAC achieved by the b est combiner STLRLDA is 77.05. This

is tremendously lower than the mean BAC achieved by CONCAT on the original set of

base-level learners (87.91%).

Furthermore, all combiners p erform b etter than ORACLE (mean BAC 68.83%). With

the exception of SMV, the di�erences b etween them and ORACLE are signi�cant.
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metho d BAC rank

STLRLDA 77.05 9.79

fAB 76.28 8.70

DSWMV 76.10 8.64

BC 75.26 7.30

SWMV 75.09 6.67

HSWV 74.83 6.45

DHSWV 74.71 6.42

SelectBest 73.04 4.47

SMV 71.87 3.64

ORACLE 68.83 2.89

CONCAT 60.32 1.03

Table 4.6.: Mean BACs, in p ercent, and ranks for all metho ds over all data sets originat-

ing from the Mo di�ed Motor Imaginary study. The metho ds are ordered by

their mean ranks. The gray rows mark the combiners that are prop osed in

this thesis.

Comparison of the Combiners

The comparison of the combination metho ds is based on the results of the Attention data

sets and on the results of the set of mo di�ed base-level learners on the Motor Imaginary

data sets, intro duced in the previous section. For the original set of base-level learners

on the Motor Imaginary data sets and the Auditory Oddball data sets, it is apparent

that CONCAT p erforms b est.

The b est combiner DSWMV yields a mean BAC of 69.78%. With the exception of

SMV, all combiners p erform b etter than SelectBest (mean BAC 67.56%). The rank

di�erences are signi�cant for all combiners but fAB.

Overall the combiners p erform very similar. With the exception of SMV, the mean

BAC varies only b etween 68.55% for fAB and 69.78% for DSWMV. The rank di�erences

are higher but also not very big. Comparing all combiners, excluding SelectBest , against

each other reveals the following picture: While DSWMV p erforms b est, the di�erences

b etween it and STLRLDA , HSWV and BC are not signi�cant. However, when lo oking

at the data, esp ecially at the ranks, it seems like DSWMV and STLRLDA are the b est

combiners.

The extension DSWMV of Signi�gance Weighted Majority Voting (SWMV) p erforms

signi�cantly b etter than SWMV (mean BAC 68.99%, p < 0:01). DSWMV, also, p erforms

signi�cantly b etter than fAB ( p < 0:01), indicating that the strategy that was chosen

to correct the weights for dep endencies (see Equation 3.3.1 ), which led to DSWMV, is

sup erior to the strategy fAB uses. The extension DHSWV p erforms worse than the

original HSWV algorithm ( p = 0 :8790).
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BAC rank

DSWMV 69.78 6.30

STLRLDA 69.65 6.13

HSWV 69.06 5.33

BC 69.20 5.29

DHSWV 69.21 5.27

SWMV 68.99 5.17

fAB 68.55 4.69

SelectBest 67.56 3.67

SMV 66.99 3.16

Table 4.7.: Mean BACs, in p ercent, and ranks for all combiners over all data sets originat-

ing from the Mo di�ed Motor Imaginary study and the Attention study. The

metho ds are ordered by their mean ranks. The gray rows mark the combiners

that are prop osed in this thesis.

Memory

Since the classi�cation of a successful memorization has not yet b een achieved, the pur-

p ose of this data set is not to compare the di�erent metho ds but rather to use the most

p owerful metho ds to try the successful classi�cation.

From the 49 base-level classi�ers 8 achieve a BAC b etter than random guessing. The

disagreement measure b etween those base-level classi�ers is 0.3.

The numb er of features is 15582 and the numb er of trials 557. Hence, the numb er of

features p er trial is 27:97. Because this value lies b etween 8.54 and 46.85, it is unclear if

CONCAT or one of the combiners should b e chosen. But b ecause of the large numb ers

of features, as classi�cation metho d for CONCAT SVMOPTC has to b e used. Because

of that, I prop ose that the ensemble classi�ers will b e the sup erior metho ds and cho ose

to include only them in the signi�cance test against random guessing.

In Table 4.8 you can see the mean accuracies for the �ve most promising combiners,

as identi�ed in the previous section. The combiner out of these combiners that yields to

the highest BAC is BC (58.04%). With the exception of STLRLDA and DHSWV, the

BAC s achieved by these combiners are signi�cantly b etter than the exp ected BAC by

combiner BAC

BC 58.04

HSWV 57.3

DSWMV 55.31

STLRLDA 53.52

DHSWV 53.34

Table 4.8.: BACs, in p ercent, for the most promising combiners on the memory data set.

The gray rows mark the combiners that are prop osed in this thesis.
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base-level learner BAC

rem + CSP + LRLDA 59.81

� + CSP + LRLDA 58.43

con + CSP + LRLDA 56.92

� + CSP + LRLDA 55.91


 + CSP + LRLDA 55.73

� + CSP + LRLDA 55.12

� + CSP + LRLDA 54.33

� + LM + SVMOPTC 54.25

Table 4.9.: The ten most accurate base-level learners for the memory data set ordered by

their corresp onding BAC .

random guessing. The BAC of CONCAT is also estimated. With 48.40 it is in the area

of random guessing.

Since the interpretation of an ensemble classi�er built by BC is not straightforward,

I rep ort the base-level classi�ers that p erformed b etter than chance instead. The BAC s

for the ten more accurate base-level learners can b e seen in Table 4.9. All nine base-level

learners that are based on CSP features are included in the set of the ten base-level

learners that pro duce the most accurate base-level classi�ers.

With 59.81% ORACLE p erforms b etter than any ensemble classi�er. It is imp ortant

to note that, in contrast to the other data sets, only one data set is available from the

memory study. Thus, when picking the b est single classi�er after having evaluated the

accuracies the statistical advantage of ensemble classi�ers vanishes (see Section 2.3.3 ).

Furthermore, comparing the b est base-level classi�er against the b est combiners is a

biased comparison. There are 49 base-level classi�ers and only �ve combiners. Hence,

there is a statistical advantage for the base-level classi�ers. A fair comparison is the

comparison against SelectBest . SelectBest pro duces an ensemble classi�er with a BAC

of 56.57%.

4.5. Summary

With the exception of the Auditory Oddball data sets, the prop osed set of base-level

learners pro duced accurate and diverse base-level classi�ers. It was, thus, suited for a

fair comparison of the several metho ds.

The combination of base-level classi�ers based on di�erent feature and classi�ca-

tion metho ds pro duced signi�cantly more accurate classi�ers than ORACLE. Also, the

true combination of base-level classi�ers pro duced ensemble classi�ers that had higher

Balanced Accuracy s (BAC s) than the ensemble classi�ers created by Select the Best

(SelectBest ).

The comparison against Concatenation (CONCAT ) revealed that CONCAT pro duces

more accurate classi�ers when the numb er of features p er trial is relatively low and that

the ensemble classi�ers generate more accurate classi�ers when the numb er of features

80



4. Results

p er trial is relatively high. When the numb er of features p er trials was smaller than

8.54, the classi�er built by CONCAT was more accurate than the classi�er induced by

any combiner. When the numb er of features p er trial was larger than 30, the ensemble

classi�ers were more accurate than CONCAT .

Out of the combiners DSWMV, which was prop osed in this thesis, pro duced the most

accurate ensemble classi�ers on the Electroencephalograph y (EEG ) data sets. The BAC

di�erences b etween it and the remaining combiners was, with the exception of Stacking

with Ledoit's Regularized Linear Discriminant Analysis (STLRLDA ), Harmonic Series

Weighted Voting (HSWV), and Bayes Combination (BC ) signi�cant .

On the simulation data sets STLRLDA induced the most accurate classi�er, while

Dependent Signi�cant Weighted Majority Voting (DSWMV) followed on the 3rd rank. It

is interesting that �xed Adaptive Boosting (fAB), which was the second b est combiner in

the simulation study, was the second worst combiner on the EEG data sets. In the other

direction HSWV p erformed relatively bad on the simulation data sets but achieved the

shared �rst rank on the real data sets.

For all presented data sets, one of the compared classi�cation metho ds was able to infer

a separating mo del. Furthermore, the b est combiners could b e employed to successfully

classify if a p erson memorizes something based on the EEG signals during the enco ding

phase. This is the �rst pro of of concept for this classi�cation task.
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5.1. Summary and Conclusion

The main hyp othesis of this thesis was (see Chapter 3) that the combination of the

di�erent feature extraction (see Section 2.2.3 ) and classi�cation metho ds (see Section

2.2.4 ) that are employed for the classi�cation of Electroencephalography (EEG ) signals

leads to a more accurate classi�er than the b est classi�er based on only one combination of

feature extraction and classi�er metho d, estimated by the ORACLE classi�er. ORACLE

returned the classi�er that achieved the b est mean accuracy after having evaluated a set of

classi�ers on all data sets from one Pattern Recognition (PR) task. A further prop osition

was that this results in a classi�cation metho d that achieves go o d classi�cation accuracies

on a variety of EEG data sets resulting in a very p owerful EEG single-trial analysis

to ol. Furthermore, it was prop osed that the combination of the classi�cation and feature

extraction metho ds through a Multiple Classi�er System (MCS ) (see Section 2.3 ) leads

to a more accurate classi�er than the employment of a single classi�cation metho d on

the concatenation of the outputs of all feature extraction metho ds. The latter approach

was called Concatenation (CONCAT ) throughout this thesis. The last hyp othesis was

that a combination of the classi�ers leads to a more accurate ensemble classi�er than the

selection of the b est classi�er, by Select the Best (SelectBest ) (see Section 2.3.2.7 ).

To examine this hyp otheses, the aforementioned metho ds were compared on a numb er

of data sets originating from four di�erent EEG studies. To examine if an ensemble

classi�er is sup erior, a set of base-level classi�ers was de�ned. The set was chosen to

consist of base-level classi�ers that extract di�erent characteristics of the EEG signals (see

Section 3.4 ). Multiple di�erent combiners were employed to generate multiple ensemble

classi�ers based on the de�ned set of base-level classi�ers. In addition to well known

combiners, new combiners were intro duced, implemented, and evaluated (see Section

3.3 ). Because the combiners used the same set of base-level classi�ers to build the

ensemble classi�er, no further analysis was required to determine which combiner results

in the most accurate ensemble classi�er.

The combination of base-level classi�ers, for example, by Stacking with Ledoit's Reg-

ularized Linear Discriminant Analysis (STLRLDA ) and Dependent Signi�cant Weighted

Majority Voting (DSWMV), b o osted the Balanced Accuracy (BAC ) compared to ORA-

CLE by up to 7.57% (see Chapter 4). Furthermore, the combination of the base-level

classi�ers by DSWMV led to an increase of the mean BAC of 2.22% compared to the

selection of the most accurate base-level classi�er by SelectBest . When comparing the

MCSs against CONCAT , the picture is not as clear. The MCSs had an clear advantage

when the numb er of features p er trial was larger than 30. Contrary to that, CONCAT

p erformed substantially b etter than any MCS if the numb er of features p er trial was
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smaller than 9.

The results suggest (see Section 4.4.2 ) that, out of the employed combiners (see Sec-

tion 3.3 ), Dependent Signi�cant Weighted Majority Voting (DSWMV) and Stacking with

Ledoit's Regularized Linear Discriminant Analysis (STLRLDA ), from which DSWMV

was prop osed in this thesis, are the b est combiners for heterogeneous classi�ers. It is

worth noting that, DSWMV pro duced signi�cantly more accurate ensemble classi�ers

than the two famous and p owerful combiners Adaptive Boosting (AB) and Weighted

Majority Voting (WMV).

In combination with the the prop osed set of base-level learners, the b est combiners and

CONCAT can b e used as a very p owerful single-trial analysis to ol. It was shown that

these metho ds are able to infer a separating mo del (classi�er) for a variety of di�erent

EEG data sets. Also, it was shown how to interpret these mo dels (see Chapter 4). The

Pattern Recognition System s (PRS s) presented in this thesis are the �rst PRSs that have

b een shown to b e able to infer separating mo dels on more than one typ e of EEG data

sets.

The classi�cation task for the memory data set was to classify if the participant will

rememb er a lo cation-word pair based on the EEG signals during the enco ding (see Section

4.4.1 ). The b est combiners were employed to create ensemble classi�ers that achieve

a BAC of 58.04% on the memory data set, which is signi�cantly b etter than the BAC

exp ected by random guessing (see Section 4.4.2 ). This represents the �rst pro of of concept

that it is p ossible to classify if someb o dy will rememb er something at the time they is

trying to memorize it.

Overall, the results imply that the general direction in EEG classi�cation research

should b e changed from ��nding the b est single classi�cation metho d� to ��nding the

b est combination of classi�cation metho ds�.

5.2. Outlo ok

Another very p opular approach to deal with high dimensional feature vectors is to p er-

form feature selection b efore the data set is fed to the classi�cation metho d. It would

b e interesting to compare the p erformance of a PRS that employs feature selection, e.g.,

Bo ostani et al. (2007 ), against the MCS built by the b est combiners on the data sets

with a numb er of features p er trial of greater than 30. The employment of a MCS may

also b e a b etter strategy when features are combined that originate from the same fea-

ture extraction metho d but are extracted on di�erent time intervals. This pro cedure is

very often employed as feature extraction metho d for Brain Computer Interface s (BCIs).

In this case, for each interval a separate base-level classi�er could b e induced. Indeed,

the employment of MCS could b e sup erior in any case where the feature space is large

compared to the numb ers of trials.

My results suggest that the regularization p erformed by MCSs is b ene�cial compared

to the regularization p erformed by Ledoit's Regularized Linear Discriminant Analysis

(LRLDA ) if the numb er of features p er trial is ab ove 30. A further investigation when

and under what circumstances which regularization is appropriate could b e informative.
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Another interesting question is if it is p ossible to further increase the accuracy by in-

cluding more base-level learners. There are various p opular feature extraction metho ds

that have not b een employed in this thesis, such as Autoregressive mo dels (Dornhege et al.,

2004 ), Power Sp ectral Densities, Adaptive Autoregressive Parameters (Lotte et al., 2007,

and references within), Common Sparse Sp ectral Spatial Pattern (Dornhege et al., 2006 ),

and Regularized Common Spatial Patterns (Lotte and Guan , 2011 ).

What might also have great p otential is the combination of the a-p osteriori likeliho o ds,

as used by Dornhege et al. (2004 ) (see Section 3.1.1 ), with the DSWMV combiner. In

that way not only the accuracies of the base-level classi�er are considered, but also the a-

p osteriori likeliho o d for each class. Another very interesting approach is the employment

of a trainable combiner, as intro duced by Sun (2007 ) (see Section 3.1.3 ). It should by

examined if the resulting ensemble classi�ers gets more accurate, when the normalized

mutual information is used as estimate for the dep endency b etween two base-level clas-

si�ers, instead of the mutual information. Motivated by the fact that DSWMV was the

b est combiner, it should de�nitely b e examined if p opular metho ds that automatically

generate the base-level classi�ers, such as AB, Bagging and Random Subspace, can b e

improved by employing DSWMV as combiner.

The �nding that it is p ossible to classify if a p erson will rememb er something at the

time the p erson is trying to memorize it has de�nitely to b e further investigated. If

the accuracy of such a classi�er could b e increased, a cheap and mobile EEG system

could b ecome a revolutionary to ol for the study and practice of learning. For example, a

device could b e worn by students to alert them when they have successfully memorized

an equation.

It is unclear if the prop osed PRSs can b e used as BCIs b ecause the real-time capabilities

were not tested. Thus, it is worthwhile to examine if the prop osed PRSs can b e used as

BCIs and provide a higher information transfer rate than the existing BCIs.
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6. List of Abbreviations

AB Adaptive Boosting , see Section 2.3.2.3

BAC Balanced Accuracy , see De�nition 13

BC Bayes Combination , see Section 2.3.2.4

BCI Brain Computer Interface , see Section 2.2.2

CONCAT Concatenation , see chapter 3

CSP Common Spatial Patterns , see Section 2.2.3

DHSWV Dependent Harmonic Series Weighted Voting , see Section 3.3.3

DSWMV Dependent Signi�cant Weighted Majority Voting , see Section 3.3.2

DWMV Dependent Weighted Majority Voting , see Section 3.3.2

EEG Electroencephalography , see Section 2.2.1

ERP Event Related Potentials , see Section 2.2.1

fAB �xed Adaptive Boosting , see Section 2.3.2.3

GM Global Mean , see Section 3.4

HSWV Harmonic Series Weighted Voting , see Section 3.3.3

ITC Information Theoretic Combination , see Section 2.3.2.6

k-NN k-Nearest Neighbor , see Section 2.2.4

LDA Linear Discriminant Analysis , see Section 2.2.4

LM Local Means , see Section 3.4

LRLDA Ledoit's Regularized Linear Discriminant Analysis , see Section 2.2.4

MCS Multiple Classi�er System , see Section 2.3

MV Majority Voting , see Section 2.3.2.1

PE Permutation Entropy , see Section 2.2.3

PR Pattern Recognition , see Section 2.1
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6. List of Abbreviations

PRS Pattern Recognition System , see Section 2.1

RLDA Regularized Linear Discriminant Analysis , see Section 2.2.4

RM Regional Means , see Section 3.4

RWV Random Weighted Voting , see Section 3.3.4

SelectBest Select the Best , see Section 2.3.2.7

SSP Sha�er's Static Procedure , see Section 2.1.4.2

STF Spatio Temporal Features , see Section 2.2.3

STLDA Stacking with Linear Discriminant Analysis , see Section 3.3.5

STLRLDA Stacking with Ledoit's Regularized Linear Discriminant Analysis , see Section

3.3.5

SVMOPTC Support Vector Machine with Optimization of the C hyper-parameter , see

Section 3.4

SMV Signi�gance Majority Voting , see Section 3.3.1

SVM Support Vector Machine , see Section 2.2.4

SWMV Signi�gance Weighted Majority Voting , see Section 3.3.1

WMV Weighted Majority Voting , see Section 2.3.2.2

WV Weighted Voting , see Section 2.3.2.2
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A. Result Section App endices

A.1. Complete List of Base-Level Learners

numb er base-level learner

1 con + CSP + LRLDA

2 � + CSP + LRLDA

3 � +CSP + LRLDA

4 � +CSP + LRLDA

5 � +CSP + LRLDA

6 
 +CSP + LRLDA

7 rem +CSP + LRLDA

8 con + PE 3 + SVMOPTC

9 con + PE 4 + SVMOPTC

10 con + PE 5 + SVMOPTC

11 con + LM + SVMOPTC

12 con + RM + SVMOPTC

13 con + GM + SVMOPTC

14 � + PE 3 + SVMOPTC

15 � + PE 4 + SVMOPTC

16 � + PE 5 + SVMOPTC

17 � + LM + SVMOPTC

18 � + RM + SVMOPTC

19 � + GM + SVMOPTC

20 � + PE 3 + SVMOPTC

21 � + PE 4 + SVMOPTC

22 � + PE 5 + SVMOPTC

23 � + LM + SVMOPTC

24 � + RM + SVMOPTC

25 � + GM + SVMOPTC

numb er base-level learner

26 � + PE 3 + SVMOPTC

27 � + PE 4 + SVMOPTC

28 � + PE 5 + SVMOPTC

29 � + LM + SVMOPTC

30 � + RM + SVMOPTC

31 � + GM + SVMOPTC

32 � + PE 3 + SVMOPTC

33 � + PE 4 + SVMOPTC

34 � + PE 5 + SVMOPTC

35 � + LM + SVMOPTC

36 � + RM + SVMOPTC

37 � + GM + SVMOPTC

38 
 + PE 3 + SVMOPTC

39 
 + PE 4 + SVMOPTC

40 
 + PE 5 + SVMOPTC

41 
 + LM + SVMOPTC

42 
 + RM + SVMOPTC

43 
 + GM + SVMOPTC

44 rem + PE 3 + SVMOPTC

45 rem + PE 4 + SVMOPTC

46 rem + PE 5 + SVMOPTC

47 rem + LM + SVMOPTC

48 rem + RM + SVMOPTC

49 rem + GM + SVMOPTC
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A. Result Section App endices

A.2. Results: Left out Subjects From the Mo di�ed Motor

Imaginary Data Sets

metho d mean rank

STLRLDA 71.72 9.33

DSWMV 70.91 8.83

AB 71.53 8

BC 70.87 8

SWMV 70.54 6.83

DHSWV 69.64 5.67

ORACLE 69.14 5.33

SelectBest 68.30 5

MV 69.64 5

HSWV 69.09 3

CONCAT 55.35 1
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