
R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

Raúl Rojas

Neural Networks

A Systematic Introduction

Springer

Berlin Heidelberg NewYork

HongKong London

Milan Paris Tokyo

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

V

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

Foreword

One of the well-springs of mathematical inspiration has been the continu-
ing attempt to formalize human thought. From the syllogisms of the Greeks,
through all of logic and probability theory, cognitive models have led to beau-
tiful mathematics and wide ranging application. But mental processes have
proven to be more complex than any of the formal theories and the various
idealizations have broken off to become separate fields of study and applica-
tion.

It now appears that the same thing is happening with the recent devel-
opments in connectionist and neural computation. Starting in the 1940s and
with great acceleration since the 1980s, there has been an effort to model
cognition using formalisms based on increasingly sophisticated models of the
physiology of neurons. Some branches of this work continue to focus on biolog-
ical and psychological theory, but as in the past, the formalisms are taking on
a mathematical and application life of their own. Several varieties of adaptive
networks have proven to be practical in large difficult applied problems and
this has led to interest in their mathematical and computational properties.

We are now beginning to see good textbooks for introducing the subject
to various student groups. This book by Raúl Rojas is aimed at advanced
undergraduates in computer science and mathematics. This is a revised version
of his German text which has been quite successful. It is also a valuable self-
instruction source for professionals interested in the relation of neural network
ideas to theoretical computer science and articulating disciplines.

The book is divided into eighteen chapters, each designed to be taught in
about one week. The first eight chapters follow a progression and the later
ones can be covered in a variety of orders. The emphasis throughout is on
explicating the computational nature of the structures and processes and re-
lating them to other computational formalisms. Proofs are rigorous, but not
overly formal, and there is extensive use of geometric intuition and diagrams.
Specific applications are discussed, with the emphasis on computational rather
than engineering issues. There is a modest number of exercises at the end of
most chapters.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

VIII Foreword

The most widely applied mechanisms involve adapting weights in feed-
forward networks of uniform differentiable units and these are covered thor-
oughly. In addition to chapters on the background, fundamentals, and varia-
tions on backpropagation techniques, there is treatment of related questions
from statistics and computational complexity.

There are also several chapters covering recurrent networks including the
general associative net and the models of Hopfield and Kohonen. Stochas-
tic variants are presented and linked to statistical physics and Boltzmann
learning. Other chapters (weeks) are dedicated to fuzzy logic, modular neural
networks, genetic algorithms, and an overview of computer hardware devel-
oped for neural computation. Each of the later chapters is self-contained and
should be readable by a student who has mastered the first half of the book.

The most remarkable aspect of neural computation at the present is the
speed at which it is maturing and becoming integrated with traditional disci-
plines. This book is both an indication of this trend and a vehicle for bringing
it to a generation of mathematically inclined students.

Berkeley, California Jerome Feldman

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

Preface

This book arose from my lectures on neural networks at the Free University
of Berlin and later at the University of Halle. I started writing a new text
out of dissatisfaction with the literature available at the time. Most books
on neural networks seemed to be chaotic collections of models and there was
no clear unifying theoretical thread connecting them. The results of my ef-
forts were published in German by Springer-Verlag under the title Theorie
der neuronalen Netze. I tried in that book to put the accent on a system-
atic development of neural network theory and to stimulate the intuition of
the reader by making use of many figures. Intuitive understanding fosters a
more immediate grasp of the objects one studies, which stresses the concrete
meaning of their relations. Since then some new books have appeared, which
are more systematic and comprehensive than those previously available, but
I think that there is still much room for improvement. The German edition
has been quite successful and at the time of this writing it has gone through
five printings in the space of three years.

However, this book is not a translation. I rewrote the text, added new
sections, and deleted some others. The chapter on fast learning algorithms is
completely new and some others have been adapted to deal with interesting
additional topics. The book has been written for undergraduates, and the only
mathematical tools needed are those which are learned during the first two
years at university. The book offers enough material for a semester, although
I do not normally go through all chapters. It is possible to omit some of them
so as to spend more time on others. Some chapters from this book have been
used successfully for university courses in Germany, Austria, and the United
States.

The various branches of neural networks theory are all interrelated closely
and quite often unexpectedly. Even so, because of the great diversity of the
material treated, it was necessary to make each chapter more or less self-
contained. There are a few minor repetitions but this renders each chapter
understandable and interesting. There is considerable flexibility in the order
of presentation for a course. Chapter 1 discusses the biological motivation

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

X Preface

of the whole enterprise. Chapters 2, 3, and 4 deal with the basics of thresh-
old logic and should be considered as a unit. Chapter 5 introduces vector
quantization and unsupervised learning. Chapter 6 gives a nice geometrical
interpretation of perceptron learning. Those interested in stressing current
applications of neural networks can skip Chapters 5 and 6 and go directly
to the backpropagation algorithm (Chapter 7). I am especially proud of this
chapter because it introduces backpropagation with minimal effort, using a
graphical approach, yet the result is more general than the usual derivations
of the algorithm in other books. I was rather surprised to see that Neural
Computation published in 1996 a paper about what is essentially the method
contained in my German book of 1993.

Those interested in statistics and complexity theory should review Chap-
ters 9 and 10. Chapter 11 is an intermezzo and clarifies the relation between
fuzzy logic and neural networks. Recurrent networks are handled in the three
chapters, dealing respectively with associative memories, the Hopfield model,
and Boltzmann machines. They should be also considered a unit. The book
closes with a review of self-organization and evolutionary methods, followed
by a short survey of currently available hardware for neural networks.

We are still struggling with neural network theory, trying to find a more
systematic and comprehensive approach. Every chapter should convey to the
reader an understanding of one small additional piece of the larger picture. I
sometimes compare the current state of the theory with a big puzzle which we
are all trying to put together. This explains the small puzzle pieces that the
reader will find at the end of each chapter. Enough discussion – Let us start
our journey into the fascinating world of artificial neural networks without
further delay.

Errata and electronic information

This book has an Internet home page. Any errors reported by readers, new
ideas, and suggested exercises can be downloaded from Berlin, Germany. The
WWW link is: http://www.inf.fu-berlin.de/∼rojas/neural. The home page
offers also some additional useful information about neural networks. You can
send your comments by e-mail to rojas@inf.fu-berlin.de.

Acknowledgements

Many friends and colleagues have contributed to the quality of this book.
The names of some of them are listed in the preface to the German edition of
1993. Phil Maher, Rosi Weinert-Knapp, and Gaye Rochow revised my original
manuscript. Andrew J. Ross, English editor at Springer-Verlag in Heidelberg,
took great care in degermanizing my linguistic constructions.

The book was written at three different institutions: The Free University
of Berlin provided an ideal working environment during the first phase of writ-
ing. Vilim Vesligaj configured TeX so that it would accept Springer’s style.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

Preface XI

Günter Feuer, Marcus Pfister, Willi Wolf, and Birgit Müller were patient dis-
cussion partners. I had many discussions with Frank Darius on damned lies
and statistics. The work was finished at Halle’s Martin Luther University. My
collaborator Bernhard Frötschl and some of my students found many of my
early TeX-typos. I profited from two visits to the International Computer Sci-
ence Institute in Berkeley during the summers of 1994 and 1995. I especially
thank Jerry Feldman, Joachim Beer, and Nelson Morgan for their encour-
agement. Lokendra Shastri tested the backpropagation chapter “in the field”,
that is in his course on connectionist models at UC Berkeley. It was very re-
warding to spend the evenings talking to Andres and Celina Albanese about
other kinds of networks (namely real computer networks). Lotfi Zadeh was
very kind in inviting me to present my visualization methods at his Semi-
nar on Soft Computing. Due to the efforts of Dieter Ernst there is no good
restaurant in the Bay Area where I have not been.

It has been a pleasure working with Springer-Verlag and the head of the
planning section, Dr. Hans Wössner, in the development of this text. With
him cheering from Heidelberg I could survive the whole ordeal of TeXing more
than 500 pages.

Finally, I thank my daughter Tania and my wife Margarita Esponda for
their love and support during the writing of this book. Since my German
book was dedicated to Margarita, the new English edition is now dedicated
to Tania. I really hope she will read this book in the future (and I hope she
will like it).

Berlin and Halle Raúl Rojas González
March 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

“For Reason, in this sense, is nothing but
Reckoning (that is, Adding and Subtracting).”

Thomas Hobbes, Leviathan.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

1

The Biological Paradigm

1.1 Neural computation

Research in the field of neural networks has been attracting increasing atten-
tion in recent years. Since 1943, when Warren McCulloch and Walter Pitts
presented the first model of artificial neurons, new and more sophisticated
proposals have been made from decade to decade. Mathematical analysis has
solved some of the mysteries posed by the new models but has left many ques-
tions open for future investigations. Needless to say, the study of neurons, their
interconnections, and their role as the brain’s elementary building blocks is
one of the most dynamic and important research fields in modern biology. We
can illustrate the relevance of this endeavor by pointing out that between 1901
and 1991 approximately ten percent of the Nobel Prizes for Physiology and
Medicine were awarded to scientists who contributed to the understanding of
the brain. It is not an exaggeration to say that we have learned more about
the nervous system in the last fifty years than ever before.

In this book we deal with artificial neural networks, and therefore the first
question to be clarified is their relation to the biological paradigm. What do we
abstract from real neurons for our models? What is the link between neurons
and artificial computing units? This chapter gives a preliminary answer to
these important questions.

1.1.1 Natural and artificial neural networks

Artificial neural networks are an attempt at modeling the information pro-
cessing capabilities of nervous systems. Thus, first of all, we need to consider
the essential properties of biological neural networks from the viewpoint of in-
formation processing. This will allow us to design abstract models of artificial
neural networks, which can then be simulated and analyzed.

Although the models which have been proposed to explain the structure
of the brain and the nervous systems of some animals are different in many

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

4 1 The Biological Paradigm

respects, there is a general consensus that the essence of the operation of
neural ensembles is “control through communication” [72]. Animal nervous
systems are composed of thousands or millions of interconnected cells. Each
one of them is a very complex arrangement which deals with incoming signals
in many different ways. However, neurons are rather slow when compared to
electronic logic gates. These can achieve switching times of a few nanoseconds,
whereas neurons need several milliseconds to react to a stimulus. Nevertheless
the brain is capable of solving problems which no digital computer can yet
efficiently deal with.

Massive and hierarchical networking of the brain seems to be the funda-
mental precondition for the emergence of consciousness and complex behav-
ior [202]. So far, however, biologists and neurologists have concentrated their
research on uncovering the properties of individual neurons. Today, the mech-
anisms for the production and transport of signals from one neuron to the
other are well-understood physiological phenomena, but how these individual
systems cooperate to form complex and massively parallel systems capable
of incredible information processing feats has not yet been completely elu-
cidated. Mathematics, physics, and computer science can provide invaluable
help in the study of these complex systems. It is not surprising that the study
of the brain has become one of the most interdisciplinary areas of scientific
research in recent years.

However, we should be careful with the metaphors and paradigms com-
monly introduced when dealing with the nervous system. It seems to be a
constant in the history of science that the brain has always been compared
to the most complicated contemporary artifact produced by human industry
[297]. In ancient times the brain was compared to a pneumatic machine, in
the Renaissance to a clockwork, and at the end of the last century to the tele-
phone network. There are some today who consider computers the paradigm
par excellence of a nervous system. It is rather paradoxical that when John
von Neumann wrote his classical description of future universal computers, he
tried to choose terms that would describe computers in terms of brains, not
brains in terms of computers.

The nervous system of an animal is an information processing totality. The
sensory inputs, i.e., signals from the environment, are coded and processed
to evoke the appropriate response. Biological neural networks are just one
of many possible solutions to the problem of processing information. The
main difference between neural networks and conventional computer systems
is the massive parallelism and redundancy which they exploit in order to deal
with the unreliability of the individual computing units. Moreover, biological
neural networks are self-organizing systems and each individual neuron is also
a delicate self-organizing structure capable of processing information in many
different ways.

In this book we study the information processing capabilities of complex
hierarchical networks of simple computing units. We deal with systems whose
structure is only partially predetermined. Some parameters modify the ca-

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

1.1 Neural computation 5

pabilities of the network and it is our task to find the best combination for
the solution of a given problem. The adjustment of the parameters will be
done through a learning algorithm, i.e., not through explicit programming
but through an automatic adaptive method.

A cursory review of the relevant literature on artificial neural networks
leaves the impression of a chaotic mixture of very different network topologies
and learning algorithms. Commercial neural network simulators sometimes
offer several dozens of possible models. The large number of proposals has
led to a situation in which each single model appears as part of a big puzzle
whereas the bigger picture is absent. Consequently, in the following chapters
we try to solve this puzzle by systematically introducing and discussing each
of the neural network models in relation to the others.

Our approach consists of stating and answering the following questions:
what information processing capabilities emerge in hierarchical systems of
primitive computing units? What can be computed with these networks? How
can these networks determine their structure in a self-organizing manner?

We start by considering biological systems. Artificial neural networks have
aroused so much interest in recent years, not only because they exhibit inter-
esting properties, but also because they try to mirror the kind of information
processing capabilities of nervous systems. Since information processing con-
sists of transforming signals, we deal with the biological mechanisms for their
generation and transmission in this chapter. We discuss those biological pro-
cesses by which neurons produce signals, and absorb and modify them in order
to retransmit the result. In this way biological neural networks give us a clue
regarding the properties which would be interesting to include in our artificial
networks.

1.1.2 Models of computation

Artificial neural networks can be considered as just another approach to the
problem of computation. The first formal definitions of computability were
proposed in the 1930s and ’40s and at least five different alternatives were
studied at the time. The computer era was started, not with one single ap-
proach, but with a contest of alternative computing models. We all know that
the von Neumann computer emerged as the undisputed winner in this con-
frontation, but its triumph did not lead to the dismissal of the other computing
models. Figure 1.1 shows the five principal contenders:

The mathematical model

Mathematicians avoided dealing with the problem of a function’s computabil-
ity until the beginning of this century. This happened not just because exis-
tence theorems were considered sufficient to deal with functions, but mainly
because nobody had come up with a satisfactory definition of computability,
certainly a relative concept which depends on the specific tools that can be

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

6 1 The Biological Paradigm

used. The general solution for algebraic equations of degree five, for example,
cannot be formulated using only algebraic functions, yet this can be done if
a more general class of functions is allowed as computational primitives. The
squaring of the circle, to give another example, is impossible using ruler and
compass, but it has a trivial real solution.

If we want to talk about computability we must therefore specify which
tools are available. We can start with the idea that some primitive functions
and composition rules are “obviously” computable. All other functions which
can be expressed in terms of these primitives and composition rules are then
also computable.

David Hilbert, the famous German mathematician, was the first to state
the conjecture that a certain class of functions contains all intuitively com-
putable functions. Hilbert was referring to the primitive recursive functions,
the class of functions which can be constructed from the zero and successor
function using composition, projection, and a deterministic number of itera-
tions (primitive recursion). However, in 1928, Wilhelm Ackermann was able
to find a computable function which is not primitive recursive. This led to
the definition of the general recursive functions [154]. In this formalism, a
new composition rule has to be introduced, the so-called µ operator, which is
equivalent to an indeterminate recursion or a lookup in an infinite table. At
the same time Alonzo Church and collaborators developed the lambda calcu-
lus, another alternative to the mathematical definition of the computability
concept [380]. In 1936, Church and Kleene were able to show that the general
recursive functions can be expressed in the formalism of the lambda calculus.
This led to the Church thesis that computable functions are the general recur-
sive functions. David Deutsch has recently added that this thesis should be
considered to be a statement about the physical world and be given the same
status as a physical principle. He thus speaks of a “Church principle” [109].

The logic-operational model (Turing machines)

In his classical paper “On Computable Numbers with an Application to the
Entscheidungsproblem” Alan Turing introduced another kind of computing
model. The advantage of his approach is that it consists in an operational,
mechanical model of computability. A Turing machine is composed of an infi-
nite tape, in which symbols can be stored and read again. A read-write head
can move to the left or to the right according to its internal state, which
is updated at each step. The Turing thesis states that computable functions
are those which can be computed with this kind of device. It was formulated
concurrently with the Church thesis and Turing was able to show almost im-
mediately that they are equivalent [435]. The Turing approach made clear for
the first time what “programming” means, curiously enough at a time when
no computer had yet been built.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

1.1 Neural computation 7

co
m

p
u
te

r

lo
gi

c-
op

er
ati

onal

neural networks

Hilbert (1926)

Ackermann (1928)

Kleene, Church (1936)

Turing (1936)

Computa-
bility

Z1 to ENIAC

von Neumann

architecture

John von

 Neumann

McCulloch/Pitts (1943)

N. Wiener (1948)

Information theory

Shannon (1940-49)

mathem
atical

c
e
llu

la
r

au
to

m
ata

Fig. 1.1. Five models of computation

The computer model

The first electronic computing devices were developed in the 1930s and ’40s.
Since then, “computation-with-the-computer” has been regarded as com-
putability itself. However the first engineers developing computers were for
the most part unaware of Turing’s or Church’s research. Konrad Zuse, for ex-
ample, developed in Berlin between 1938 and 1944 the computing machines Z1
and Z3 which were programmable but not universal, because they could not
reach the whole space of the computable functions. Zuse’s machines were able
to process a sequence of instructions but could not iterate. Other computers of
the time, like the Mark I built at Harvard, could iterate a constant number of
times but were incapable of executing open-ended iterations (WHILE loops).
Therefore the Mark I could compute the primitive but not the general recur-
sive functions. Also the ENIAC, which is usually hailed as the world’s first
electronic computer, was incapable of dealing with open-ended loops, since
iterations were determined by specific connections between modules of the
machine. It seems that the first universal computer was the Mark I built in
Manchester [96, 375]. This machine was able to cover all computable functions
by making use of conditional branching and self-modifying programs, which
is one possible way of implementing indexed addressing [268].

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

8 1 The Biological Paradigm

Cellular automata

The history of the development of the first mechanical and electronic comput-
ing devices shows how difficult it was to reach a consensus on the architecture
of universal computers. Aspects such as the economy or the dependability of
the building blocks played a role in the discussion, but the main problem was
the definition of the minimal architecture needed for universality. In machines
like the Mark I and the ENIAC there was no clear separation between memory
and processor, and both functional elements were intertwined. Some machines
still worked with base 10 and not 2, some were sequential and others parallel.

John von Neumann, who played a major role in defining the architecture of
sequential machines, analyzed at that time a new computational model which
he called cellular automata. Such automata operate in a “computing space” in
which all data can be processed simultaneously. The main problem for cellular
automata is communication and coordination between all the computing cells.
This can be guaranteed through certain algorithms and conventions. It is not
difficult to show that all computable functions, in the sense of Turing, can
also be computed with cellular automata, even of the one-dimensional type,
possessing only a few states. Turing himself considered this kind of computing
model at one point in his career [192].

Cellular automata as computing model resemble massively parallel multi-
processor systems of the kind that has attracted considerable interest recently.

The biological model (neural networks)

The explanation of important aspects of the physiology of neurons set the
stage for the formulation of artificial neural network models which do not op-
erate sequentially, as Turing machines do. Neural networks have a hierarchical
multilayered structure which sets them apart from cellular automata, so that
information is transmitted not only to the immediate neighbors but also to
more distant units. In artificial neural networks one can connect each unit
to any other. In contrast to conventional computers, no program is handed
over to the hardware – such a program has to be created, that is, the free
parameters of the network have to be found adaptively.

Although neural networks and cellular automata are potentially more effi-
cient than conventional computers in certain application areas, at the time of
their conception they were not yet ready to take center stage. The necessary
theory for harnessing the dynamics of complex parallel systems is still be-
ing developed right before our eyes. In the meantime, conventional computer
technology has made great strides.

There is no better illustration for the simultaneous and related emergence
of these various computability models than the life and work of John von
Neumann himself. He participated in the definition and development of at
least three of these models: in the architecture of sequential computers [417],

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

1.2 Networks of neurons 9

the theory of cellular automata and the first neural network models. He also
collaborated with Church and Turing in Princeton [192].

Artificial neural networks have, as initial motivation, the structure of bi-
ological systems, and constitute an alternative computability paradigm. For
that reason we will review some aspects of the way in which biological sys-
tems perform information processing. The fascination which still pervades
this research field has much to do with the points of contact with the sur-
prisingly elegant methods used by neurons in order to process information at
the cellular level. Several million years of evolution have led to very sophis-
ticated solutions to the problem of dealing with an uncertain environment.
In this chapter we will discuss some elements of these strategies in order to
determine what features we want to adopt in our abstract models of neural
networks.

1.1.3 Elements of a computing model

What are the elementary components of any conceivable computing model?
In the theory of general recursive functions, for example, it is possible to
reduce any computable function to some composition rules and a small set of
primitive functions. For a universal computer, we ask about the existence of a
minimal and sufficient instruction set. For an arbitrary computing model the
following metaphoric expression has been proposed:

computation = storage+ transmission+ processing.

The mechanical computation of a function presupposes that these three
elements are present, that is, that data can be stored, communicated to the
functional units of the model and transformed. It is implicitly assumed that a
certain coding of the data has been agreed upon. Coding plays an important
role in information processing because, as Claude Shannon showed in 1948,
when noise is present information can still be transmitted without loss, if the
right code with the right amount of redundancy is chosen.

Modern computers transform storage of information into a form of infor-
mation transmission. Static memory chips store a bit as a circulating current
until the bit is read. Turing machines store information in an infinite tape,
whereas transmission is performed by the read-write head. Cellular automata
store information in each cell, which at the same time is a small processor.

1.2 Networks of neurons

In biological neural networks information is stored at the contact points be-
tween different neurons, the so-called synapses. Later we will discuss what role
these elements play for the storage, transmission, and processing of informa-
tion. Other forms of storage are also known, because neurons are themselves

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

10 1 The Biological Paradigm

complex systems of self-organizing signaling. In the next few pages we can-
not do justice to all this complexity, but we analyze the most salient features
and, with the metaphoric expression given above in mind, we will ask: how
do neurons compute?

1.2.1 Structure of the neurons

Nervous systems possess global architectures of variable complexity, but all
are composed of similar building blocks, the neural cells or neurons. They can
perform different functions, which in turn leads to a very variable morphology.
If we analyze the human cortex under a microscope, we can find several dif-
ferent types of neurons. Figure 1.2 shows a diagram of a portion of the cortex.
Although the neurons have very different forms, it is possible to recognize a
hierarchical structure of six different layers. Each one has specific functional
characteristics. Sensory signals, for example, are transmitted directly to the
fourth layer and from there processing is taken over by other layers.

Fig. 1.2. A view of the human cortex [from Lassen et al. 1988]

Neurons receive signals and produce a response. The general structure
of a generic neuron is shown in Figure 1.31. The branches to the left are the
transmission channels for incoming information and are called dendrites. Den-
drites receive the signals at the contact regions with other cells, the synapses

1 Some animals have neurons with a very different morphology. In insects, for ex-
ample, the dendrites go directly into the axon and the cell body is located far from
them. The way these neurons work is nevertheless very similar to the description
in this chapter.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

1.2 Networks of neurons 11

mentioned already. Organelles in the body of the cell produce all necessary
chemicals for the continuous working of the neuron. The mitochondria, visible
in Figure 1.3, can be thought of as part of the energy supply of the cell, since
they produce chemicals which are consumed by other cell structures. The out-
put signals are transmitted by the axon, of which each cell has at most one.
Some cells do not have an axon, because their task is only to set some cells
in contact with others (in the retina, for example).

Fig. 1.3. A typical motor neuron [from Stevens 1988]

These four elements, dendrites, synapses, cell body, and axon, are the
minimal structure we will adopt from the biological model. Artificial neurons
for computing will have input channels, a cell body and an output channel.
Synapses will be simulated by contact points between the cell body and input
or output connections; a weight will be associated with these points.

1.2.2 Transmission of information

The fundamental problem of any information processing system is the trans-
mission of information, as data storage can be transformed into a recurrent
transmission of information between two points [177].

Biologists have known for more than 100 years that neurons transmit infor-
mation using electrical signals. Because we are dealing with biological struc-
tures, this cannot be done by simple electronic transport as in metallic cables.
Evolution arrived at another solution involving ions and semipermeable mem-
branes.

Our body consists mainly of water, 55% of which is contained within the
cells and 45% forming its environment. The cells preserve their identity and
biological components by enclosing the protoplasm in a membrane made of

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

12 1 The Biological Paradigm

a double layer of molecules that form a diffusion barrier. Some salts, present
in our body, dissolve in the intracellular and extracellular fluid and dissociate
into negative and positive ions. Sodium chloride, for example, dissociates into
positive sodium ions (Na+) and negative chlorine ions (Cl−). Other positive
ions present in the interior or exterior of the cells are potassium (K+) and
calcium (Ca2+). The membranes of the cells exhibit different degrees of per-
meability for each one of these ions. The permeability is determined by the
number and size of pores in the membrane, the so-called ionic channels. These
are macromolecules with forms and charges which allow only certain ions to
go from one side of the cell membrane to the other. Channels are selectively
permeable to sodium, potassium or calcium ions. The specific permeability
of the membrane leads to different distributions of ions in the interior and
the exterior of the cells and this, in turn, to the interior of neurons being
negatively charged with respect to the extracellular fluid.

diffusion force diffusion forceelectrostatic

force

membrane

positive

ions

negative

ions

Fig. 1.4. Diffusion of ions through a membrane

Figure 1.4 illustrates this phenomenon. A box is divided into two parts
separated by a membrane permeable only to positive ions. Initially the same
number of positive and negative ions is located in the right side of the box.
Later, some positive ions move from the right to the left through the pores in
the membrane. This occurs because atoms and molecules have a thermody-
namical tendency to distribute homogeneously in space by the process called
diffusion. The process continues until the electrostatic repulsion from the pos-
itive ions on the left side balances the diffusion potential. A potential differ-
ence, called the reversal potential, is established and the system behaves like
a small electric battery. In a cell, if the initial concentration of potassium ions
in its interior is greater than in its exterior, positive potassium ions will dif-
fuse through the open potassium-selective channels. If these are the only ionic
channels, negative ions cannot disperse through the membrane. The interior
of the cell becomes negatively charged with respect to the exterior, creating
a potential difference between both sides of the membrane. This balances the

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

1.2 Networks of neurons 13

diffusion potential, and, at some point, the net flow of potassium ions through
the membrane falls to zero. The system reaches a steady state. The potential
difference E for one kind of ion is given by the Nernst formula

E = k(ln(co)− ln(ci))

where ci is the concentration inside the cell, co the concentration in the ex-
tracellular fluid and k is a proportionality constant [295]. For potassium ions
the equilibrium potential is −80 mV.

Because there are several different concentrations of ions inside and out-
side of the cell, the question is, what is the potential difference which is fi-
nally reached. The exact potential in the interior of the cell depends on the
mixture of concentrations. A typical cell’s potential is −70 mV, which is pro-
duced mainly by the ion concentrations shown in Figure 1.5 (A− designates
negatively charged biomolecules). The two main ions in the cell are sodium
and potassium. Equilibrium potential for sodium lies around 58 mV. The cell
reaches a potential between −80 mV and 58 mV. The cell’s equilibrium poten-
tial is nearer to the value induced by potassium, because the permeability of
the membrane to potassium is greater than to sodium. There is a net outflow
of potassium ions at this potential and a net inflow of sodium ions. However,
the sodium ions are less mobile because fewer open channels are available. In
the steady state the cell membrane experiences two currents of ions trying to
reach their individual equilibrium potential. An ion pump guarantees that the
concentration of ions does not change with time.

extracellular fluid
(concentration in mM)

intracellular fluid
(concentration in mM)

K 5

Na 120

Cl 125

A 0

–

+

+

–

K 125

Na 12

Cl 5

A 108

+

–

–

+

Fig. 1.5. Ion concentrations inside and outside a cell

The British scientists Alan Hodgkin and Andrew Huxley were able to show
that it is possible to build an electric model of the cell membrane based on
very simple assumptions. The membrane behaves as a capacitor made of two
isolated layers of lipids. It can be charged with positive or negative ions. The
different concentrations of several classes of ions in the interior and exterior of
the cell provide an energy source capable of negatively polarizing the interior
of the cell. Figure 1.6 shows a diagram of the model proposed by Hodgkin and

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

14 1 The Biological Paradigm

Huxley. The specific permeability of the membrane for each class of ion can
be modeled like a conductance (the reciprocal of resistance).

- - - -

++ ++

g
Na

g
K

g
Cl

environment

cell's interior

capacity of the
cell membrane

 Cm
V V VNa K Cl

Fig. 1.6. The Hodgkin–Huxley model of a cell membrane

The electric model is a simplification, because there are other classes of
ions and electrically charged proteins present in the cell. In the model, three
ions compete to create a potential difference between the interior and exterior
of the cell. The conductances gNa, gK, and gL reflect the permeability of
the membrane to sodium, potassium, and leakages, i.e., the number of open
channels of each class. A signal can be produced by modifying the polarity
of the cell through changes in the conductances gNa and gK. By making gNa

larger and the mobility of sodium ions greater than the mobility of potassium
ions, the polarity of the cell changes from −70 mV to a positive value, nearer
to the 58 mV at which sodium ions reach equilibrium. If the conductance gK
then becomes larger and gNa falls back to its original value, the interior of the
cell becomes negative again, overshooting in fact by going below −70 mV. To
generate a signal, a mechanism for depolarizing and polarizing the cell in a
controlled way is necessary.

The conductance and resistance of a cell membrane in relation to the
different classes of ions depends on its permeability. This can be controlled
by opening or closing excitable ionic channels. In addition to the static ionic
channels already mentioned, there is another class which can be electrically
controlled. These channels react to a depolarization of the cell membrane.
When this happens, that is, when the potential of the interior of the cell
in relation to the exterior reaches a threshold, the sodium-selective channels
open automatically and positive sodium ions flow into the cell making its
interior positive. This in turn leads to the opening of the potassium-selective
channels and positive potassium ions flow to the exterior of the cell, restoring
the original negative polarization.

Figure 1.7 shows a diagram of an electrically controlled sodium-selective
channel which lets only sodium ions flow across. This effect is produced by the

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

1.2 Networks of neurons 15

small aperture in the middle of the channel which is negatively charged (at
time t = 1). If the interior of the cell becomes positive relative to the exterior,
some negative charges are displaced in the channel and this produces the
opening of a gate (t = 2). Sodium ions flow through the channel and into the
cell. After a short time the second gate is closed and the ionic channel is sealed
(t = 3). The opening of the channel corresponds to a change of membrane
conductivity as explained above.

cell
membrane

Na
+

Na+ Na+

environment

closed channel closed channelopen channel

interior of the cell

t =1 t =2 t =3

Fig. 1.7. Electrically controlled ionic channels

Static and electrically controlled ionic channels are not only found in neu-
rons. As in any electrical system there are charge losses which have to be
continuously balanced. A sodium ion pump (Figure 1.8) transports the excess
of sodium ions out of the cell and, at the same time, potassium ions into its
interior. The ion pump consumes adenosine triphosphate (ATP), a substance
produced by the mitochondria, helping to stabilize the polarization potential
of −70 mV. The ion pump is an example of a self-regulating system, because it
is accelerated or decelerated by the differences in ion concentrations on both
sides of the membrane. Ion pumps are constantly active and account for a
considerable part of the energy requirements of the nervous system.

Neural signals are produced and transmitted at the cell membrane. The
signals are represented by depolarization waves traveling through the axons in
a self-regenerating manner. Figure 1.9 shows the form of such a depolarization
wave, called an action potential. The x-dimension is shown horizontally and
the diagram shows the instantaneous potential in each segment of the axon.

An action potential is produced by an initial depolarization of the cell
membrane. The potential increases from −70 mV up to +40 mV. After some
time the membrane potential becomes negative again but it overshoots, going

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

16 1 The Biological Paradigm

ion

pump
membrane

potassium ions

sodium ions

Fig. 1.8. Sodium and potassium ion pump

as low as −80 mV. The cell recovers gradually and the cell membrane returns
to the initial potential. The switching time of the neurons is determined, as
in any resistor-capacitor configuration, by the RC constant. In neurons, 2.4
milliseconds is a typical value for this constant.

+ 40

+ 20

0

- 20

- 40

- 60

- 80

2 milliseconds

resting
potential

mV
x

Fig. 1.9. Typical form of the action potential

Figure 1.10 shows an action potential traveling through an axon. A local
perturbation, produced by the signals arriving at the dendrites, leads to the
opening of the sodium-selective channels in a certain region of the cell mem-
brane. The membrane is thus depolarized and positive sodium ions flow into
the cell. After a short delay, the outward flow of potassium ions compensates
the depolarization of the membrane. Both perturbations – the opening of the
sodium and potassium-selective channels – are transmitted through the axon
like falling dominos. In the entire process only local energy is consumed, that
is, only the energy stored in the polarized membrane itself. The action po-
tential is thus a wave of Na+ permeability increase followed by a wave of K+

permeability increase. It is easy to see that charged particles only move a short

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

1.2 Networks of neurons 17

distance in the direction of the perturbation, only as much as is necessary to
perturb the next channels and bring the next “domino” to fall.

Figure 1.10 also shows how impulse trains are produced in the cells. Af-
ter a signal is produced a new one follows. Each neural signal is an all-or-
nothing self-propagating regenerative event as each signal has the same form
and amplitude. At this level we can safely speak about digital transmission of
information.

- - - - - - - - - - + + + + -
-
- - - - - - - - - - + + + + -
-

+ 40

0

- 40

- 80

mV

Na+

Na+

- + + + + -
-
- + + + + -
-

+ 40

0

- 40

- 80

mV

Na+

Na+

- - - - - - - - - - + + + + - + + + + - - - - - -
-
- - - - - - - - - - + + + + - + + + + - - - - - -
-

+ 40

0

- 40

- 80

mV

Na+

Na+

Na+

Na+

K+

K+

K+K+

resting potential

axon membrane

axon

x

x

x

Fig. 1.10. Transmission of an action potential [Stevens 1988]

With this picture of the way an action potential is generated in mind, it is
easy to understand the celebrated Hodgkin–Huxley differential equation which

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

18 1 The Biological Paradigm

describes the instantaneous variation of the cell’s potential V as a function of
the conductances of sodium, potassium and leakages (gNa, gK, gL) and of the
equilibrium potentials for all three groups of ions called VNa, VK and VL with
respect to the current potential:

dV

dt
=

1

Cm
(I − gNa(V − VNa)− gK(V − VK)− gL(V − VL)). (1.1)

In this equation Cm is the capacitance of the cell membrane. The terms
V − VNa, V − VK, V − VL are the electromotive forces acting on the ions.
Any variation of the conductances translates into a corresponding variation
of the cell’s potential V . The variations of gNa and gK are given by differential
equations which describe their oscillations. The conductance of the leakages,
gL, can be taken as a constant.

A neuron codes its level of activity by adjusting the frequency of the gen-
erated impulses. This frequency is greater for a greater stimulus. In some cells
the mapping from stimulus to frequency is linear in a certain interval [72].
This means that information is transmitted from cell to cell using what engi-
neers call frequency modulation. This form of transmission helps to increase
the accuracy of the signal and to minimize the energy consumption of the
cells.

1.2.3 Information processing at the neurons and synapses

Neurons transmit information using action potentials. The processing of this
information involves a combination of electrical and chemical processes, reg-
ulated for the most part at the interface between neurons, the synapses.

Neurons transmit information not only by electrical perturbations. Al-
though electrical synapses are also known, most synapses make use of chemical
signaling. Figure 1.11 is a classical diagram of a typical synapse. The synapse
appears as a thickening of the axon. The small vacuoles in the interior, the
synaptic vesicles, contain chemical transmitters. The small gap between a
synapse and the cell to which it is attached is known as the synaptic gap.

When an electric impulse arrives at a synapse, the synaptic vesicles fuse
with the cell membrane (Figure 1.12). The transmitters flow into the synaptic
gap and some attach themselves to the ionic channels, as in our example. If the
transmitter is of the right kind, the ionic channels are opened and more ions
can now flow from the exterior to the interior of the cell. The cell’s potential
is altered in this way. If the potential in the interior of the cell is increased,
this helps prepare an action potential and the synapse causes an excitation
of the cell. If negative ions are transported into the cell, the probability of
starting an action potential is decreased for some time and we are dealing
with an inhibitory synapse.

Synapses determine a direction for the transmission of information. Signals
flow from one cell to the other in a well-defined manner. This will be expressed
in artificial neural networks models by embedding the computing elements in a

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

1.2 Networks of neurons 19

Fig. 1.11. Transversal view of a synapse [from Stevens 1988]

membrane

acetylcholine

closed channel open channel

synapse

fused

vesicle

ionic current

synaptic
cleft

target cell

presynaptic
cell

Fig. 1.12. Chemical signaling at the synapse

directed graph. A well-defined direction of information flow is a basic element
in every computing model, and is implemented in digital systems by using
diodes and directional amplifiers.

The interplay between electrical transmission of information in the cell
and chemical transmission between cells is the basis for neural information
processing. Cells process information by integrating incoming signals and by
reacting to inhibition. The flow of transmitters from an excitatory synapse
leads to a depolarization of the attached cell. The depolarization must exceed
a threshold, that is, enough ionic channels have to be opened in order to
produce an action potential. This can be achieved by several pulses arriving
simultaneously or within a short time interval at the cell. If the quantity of
transmitters reaches a certain level and enough ionic channels are triggered,

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

20 1 The Biological Paradigm

the cell reaches its activation threshold. At this moment an action potential
is generated at the axon of this cell.

In most neurons, action potentials are produced at the so-called axon
hillock, the part of the axon nearest to the cell body. In this region of the cell,
the number of ionic channels is larger and the cell’s threshold lower [427]. The
dendrites collect the electrical signals which are then transmitted electroton-
ically, that is through the cytoplasm [420]. The transmission of information
at the dendrites makes use of additional electrical effects. Streams of ions are
collected at the dendrites and brought to the axon hillock. There is spatial
summation of information when signals coming from different dendrites are
collected, and temporal summation when signals arriving consecutively are
combined to produce a single reaction. In some neurons not only the axon
hillock but also the dendrites can produce action potentials. In this case in-
formation processing at the cell is more complex than in the standard case.

It can be shown that digital signals combined in an excitatory or inhibitory
way can be used to implement any desired logical function (Chap. 2). The
number of computing units required can be reduced if the information is not
only transmitted but also weighted. This can be achieved by multiplying the
signal by a constant. Such is the kind of processing we find at the synapses.
Each signal is an all-or-none event but the number of ionic channels triggered
by the signal is different from synapse to synapse. It can happen that a single
synapse can push a cell to fire an action potential, but other synapses can
achieve this only by simultaneously exciting the cell. With each synapse i
(1 ≤ i ≤ n) we can therefore associate a numerical weight wi. If all synapses
are activated at the same time, the information which will be transmitted is
w1 + w2 + · · ·+ wn. If this value is greater than the cell’s threshold, the cell
will fire a pulse.

It follows from this description that neurons process information at the
membrane. The membrane regulates both transmission and processing of in-
formation. Summation of signals and comparison with a threshold is a com-
bined effect of the membrane and the cytoplasm. If a pulse is generated, it
is transmitted and the synapses set some transmitter molecules free. From
this description an abstract neuron [72] can be modeled which contains den-
drites, a cell body and an axon. The same three elements will be present in
our artificial computing units.

1.2.4 Storage of information – learning

In neural networks information is stored at the synapses. Some other forms of
information storage may be present, but they are either still unknown or not
very well understood.

A synapse’s efficiency in eliciting the depolarization of the contacted cell
can be increased if more ionic channels are opened. In recent years NMDA
receptors have been studied because they exhibit some properties which could
help explain some forms of learning in neurons [72].

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

1.2 Networks of neurons 21

NMDA receptors are ionic channels permeable for different kinds of
molecules, like sodium, calcium, or potassium ions. These channels are blocked
by a magnesium ion in such a way that the permeability for sodium and cal-
cium is low. If the cell is brought up to a certain excitation level, the ionic
channels lose the magnesium ion and become unblocked. The permeability for
Ca2+ ions increases immediately. Through the flow of calcium ions a chain of
reactions is started which produces a durable change of the threshold level of
the cell [420, 360]. Figure 1.13 shows a diagram of this process.

Mg
Mg

+ +

NMDA receptor

membrane

synapse
transmitters are
set free

Mg ion is displaced
by depolarizing the cell

presynaptic
cell

target cell
Ca

2+

Fig. 1.13. Unblocking of an NMDA receptor

NMDA receptors are just one of the mechanisms used by neurons to
increase their plasticity, i.e., their adaptability to changing circumstances.
Through the modification of the membrane’s permeability a cell can be trained
to fire more often by setting a lower firing threshold. NMDA receptors also
offer an explanation for the observed phenomenon that cells which are not
stimulated to fire tend to set a higher firing threshold. The stored information
must be refreshed periodically in order to maintain the optimal permeability
of the cell membrane.

This kind of information storage is also used in artificial neural networks.
Synaptic efficiency can be modeled as a property of the edges of the network.
The networks of neurons are thus connected through edges with different
transmission efficiencies. Information flowing through the edges is multiplied
by a constant which reflects their efficiency. One of the most popular learning
algorithms for artificial neural networks is Hebbian learning. The efficiency of
synapses is increased any time the two cells which are connected through this
synapse fire simultaneously and is decreased when the firing states of the two
cells are uncorrelated. The NMDA receptors act as coincidence detectors of
presynaptic and postsynaptic activity, which in turn leads to greater synaptic
efficiency.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

22 1 The Biological Paradigm

1.2.5 The neuron – a self-organizing system

The short review of the properties of biological neurons in the previous sec-
tions is necessarily incomplete and can offer only a rough description of the
mechanisms and processes by which neurons deal with information. Nerve cells
are very complex self-organizing systems which have evolved in the course of
millions of years. How were these exquisitely fine-tuned information processing
organs developed? Where do we find the evolutionary origin of consciousness?

The information processing capabilities of neurons depend essentially on
the characteristics of the cell membrane. Ionic channels appeared very early in
evolution to allow unicellular organisms to get some kind of feedback from the
environment. Consider the case of a paramecium, a protozoan with cilia, which
are hairlike processes which provide it with locomotion. A paramecium has a
membrane cell with ionic channels and its normal state is one in which the
interior of the cell is negative with respect to the exterior. In this state the cilia
around the membrane beat rhythmically and propel the paramecium forward.
If an obstacle is encountered, some ionic channels sensitive to contact open,
let ions into the cell, and depolarize it. The depolarization of the cell leads in
turn to a reversing of the beating direction of the cilia and the paramecium
swims backward for a short time. After the cytoplasm returns to its normal
state, the paramecium swims forward, changing its direction of movement. If
the paramecium is touched from behind, the opening of ionic channels leads to
a forward acceleration of the protozoan. In each case, the paramecium escapes
its enemies [190].

From these humble origins, ionic channels in neurons have been perfected
over millions of years of evolution. In the protoplasm of the cell, ionic chan-
nels are produced and replaced continually. They attach themselves to those
regions of the neurons where they are needed and can move laterally in the
membrane, like icebergs in the sea. The regions of increased neural sensi-
tivity to the production of action potentials are thus changing continuously
according to experience. The electrical properties of the cell membrane are not
totally predetermined. They are also a result of the process by which action
potentials are generated.

Consider also the interior of the neurons. The number of biochemical re-
action chains and the complexity of the mechanical processes occurring in the
neuron at any given time have led some authors to look for its control system.
Stuart Hameroff, for example, has proposed that the cytoskeleton of neurons
does not just perform a static mechanical function, but in some way provides
the cell with feedback control. It is well known that the proteins that form
the microtubules in axons coordinate to move synaptic vesicles and other ma-
terials from the cell body to the synapses. This is accomplished through a
coordinated movement of the proteins, configured like a cellular automaton
[173, 174].

Consequently, transmission, storage, and processing of information are per-
formed by neurons exploiting many effects and mechanisms which we still do

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

1.3 Artificial neural networks 23

not understand fully. Each individual neuron is as complex or more complex
than any of our computers. For this reason, we will call the elementary compo-
nents of artificial neural networks simply “computing units” and not neurons.
In the mid-1980s, the PDP (Parallel Distributed Processing) group already
agreed to this convention at the insistence of Francis Crick [95].

1.3 Artificial neural networks

The discussion in the last section is only an example of how important it is
to define the primitive functions and composition rules of the computational
model. If we are computing with a conventional von Neumann processor, a
minimal set of machine instructions is needed in order to implement all com-
putable functions. In the case of artificial neural networks, the primitive func-
tions are located in the nodes of the network and the composition rules are
contained implicitly in the interconnection pattern of the nodes, in the syn-
chrony or asynchrony of the transmission of information, and in the presence
or absence of cycles.

1.3.1 Networks of primitive functions

Figure 1.14 shows the structure of an abstract neuron with n inputs. Each
input channel i can transmit a real value xi. The primitive function f com-
puted in the body of the abstract neuron can be selected arbitrarily. Usually
the input channels have an associated weight, which means that the incoming
information xi is multiplied by the corresponding weight wi. The transmitted
information is integrated at the neuron (usually just by adding the different
signals) and the primitive function is then evaluated.

f (w1 x1 + w2 x2 + + wnxn)

w1

w2

wn

x1

x2

xn

f
.
.
.

...

Fig. 1.14. An abstract neuron

If we conceive of each node in an artificial neural network as a primitive
function capable of transforming its input in a precisely defined output, then
artificial neural networks are nothing but networks of primitive functions.
Different models of artificial neural networks differ mainly in the assump-
tions about the primitive functions used, the interconnection pattern, and the
timing of the transmission of information.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

24 1 The Biological Paradigm

x

y

z

f

f

f

f
1

2

3

4
 (x, y, z)

α

α

α

α

α

1

2

3

4

5

Φ

Fig. 1.15. Functional model of an artificial neural network

Typical artificial neural networks have the structure shown in Figure 1.15.
The network can be thought of as a function Φ which is evaluated at the
point (x, y, z). The nodes implement the primitive functions f1, f2, f3, f4 which
are combined to produce Φ. The function Φ implemented by a neural net-
work will be called the network function. Different selections of the weights
α1, α2, . . . , α5 produce different network functions. Therefore, tree elements
are particularly important in any model of artificial neural networks:

• the structure of the nodes,
• the topology of the network,
• the learning algorithm used to find the weights of the network.

To emphasize our view of neural networks as networks of functions, the
next section gives a short preview of some of the topics covered later in the
book.

1.3.2 Approximation of functions

An old problem in approximation theory is to reproduce a given function
F : IR→ IR either exactly or approximately by evaluating a given set of prim-
itive functions. A classical example is the approximation of one-dimensional
functions using polynomials or Fourier series. The Taylor series for a function
F which is being approximated around the point x0 is

F (x) = a0 + a1(x− x0) + a2(x − x0)
2 + · · ·+ an(x− x0)

n + · · · ,

whereby the constants a0, ..., an depend on the function F and its derivatives
at x0. Figure 1.16 shows how the polynomial approximation can be represented
as a network of functions. The primitive functions z 7→ 1, z 7→ z1, . . . , z 7→
zn are computed at the nodes. The only free parameters are the constants
a0, ..., an. The output node additively collects all incoming information and
produces the value of the evaluated polynomial. The weights of the network
can be calculated in this case analytically, just by computing the first n + 1

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

1.3 Artificial neural networks 25

terms of the Taylor series of F . They can also be computed using a learning
algorithm, which is the usual case in the field of artificial neural networks.

+

z

z

x

F(x)

1

2

z n

a0

a1

an

a2

x
0

-1

-1

-1

-1

...

Fig. 1.16. A Taylor network

+

x

F(x)

w0

w
1

wn

w
2

sin

sin

sin

sin

k0

k1

kn

k 2

d0

d1

d2 ...

dn

Fig. 1.17. A Fourier network

Figure 1.17 shows how a Fourier series can be implemented as a neural
network. If the function F is to be developed as a Fourier series it has the
form

F (x) =
∞∑

i=0

(ai cos(ix) + bi sin(ix)). (1.2)

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

26 1 The Biological Paradigm

An artificial neural network with the sine as primitive function can implement
a finite number of terms in the above expression. In Figure 1.17 the constants
k0, . . . , kn determine the wave numbers for the arguments of the sine functions.
The constants d0, . . . , dn play the role of phase factors (with d0 = π/2, for
example, we have sin(x+d0) = cos(x)) and we do not need to implement the
cosine explicitly in the network. The constants w0, . . . , wn are the amplitudes
of the Fourier terms. The network is indeed more general than the conventional
formula because non-integer wave numbers are allowed as are phase factors
which are not simple integer multiples of π/2.

The main difference between Taylor or Fourier series and artificial neural
networks is, however, that the function F to be approximated is given not
explicitly but implicitly through a set of input-output examples. We know F
only at some points but we want to generalize as well as possible. This means
that we try to adjust the parameters of the network in an optimal manner to
reflect the information known and to extrapolate to new input patterns which
will be shown to the network afterwards. This is the task of the learning
algorithm used to adjust the network’s parameters.

These two simple examples show that neural networks can be used as
universal function approximators, that is, as computing models capable of
approximating a given set of functions (usually the integrable functions). We
will come back to this problem in Chap. 10.

1.3.3 Caveat

At this point we must issue a warning to the reader: in the theory of artificial
neural networks we do not consider the whole complexity of real biological
neurons. We only abstract some general principles and content ourselves with
different levels of detail when simulating neural ensembles. The general ap-
proach is to conceive each neuron as a primitive function producing numerical
results at some points in time. These will be the kinds of model that we will
discuss in the first chapters of this book. However we can also think of arti-
ficial neurons as computing units which produce pulse trains in the way that
biological neurons do. We can then simulate this behavior and look at the
output of simple networks. This kind of approach, although more closely re-
lated to the biological paradigm, is still a very rough approximation of the
biological processes. We will deal with asynchronous and spiking neurons in
later chapters.

1.4 Historical and bibliographical remarks

Philosophical reflection on consciousness and the organ in which it could pos-
sibly be localized spans a period of more than two thousand years. Greek
philosophers were among the first to speculate about the location of the

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

1.4 Historical and bibliographical remarks 27

soul. Several theories were held by the various philosophical schools of an-
cient times. Galenus, for example, identified nerve impulses with pneumatic
pressure signals and conceived the nervous system as a pneumatic machine.
Several centuries later Newton speculated that nerves transmitted oscillations
of the ether.

Our present knowledge of the structure and physiology of neurons is the
result of 100 years of special research in this field. The facts presented in this
chapter were discovered between 1850 and 1950, with the exception of the
NMDA receptors which were studied mainly in the last decade. The electri-
cal nature of nerve impulses was postulated around 1850 by Emil du Bois-
Reymond and Hermann von Helmholtz. The latter was able to measure the
velocity of nerve impulses and showed that it was not as fast as was previ-
ously thought. Signals can be transmitted in both directions of an axon, but
around 1901 Santiago Ramón y Cajal postulated that the specific networking
of the nervous cells determines a direction for the transmission of information.
This discovery made it clear that the coupling of the neurons constitutes a
hierarchical system.

Ramón y Cajal was also the most celebrated advocate of the neuron the-
ory. His supporters conceived the brain as a highly differentiated hierarchical
organ, while the supporters of the reticular theory thought of the brain as a
grid of undifferentiated axons and of dendrites as organs for the nutrition of
the cell [357]. Ramón y Cajal perfected Golgi’s staining method and published
the best diagrams of neurons of his time, so good indeed that they are still in
use. The word neuron (Greek for nerve) was proposed by the Berlin Professor
Wilhelm Waldeger after he saw the preparations of Ramón y Cajal [418].

The chemical transmission of information at the synapses was studied from
1920 to 1940. From 1949 to 1956, Hodgkin and Huxley explained the mech-
anism by which depolarization waves are produced in the cell membrane. By
experimenting with the giant axon of the squid they measured and explained
the exchange of ions through the cell membrane, which in time led to the now
famous Hodgkin–Huxley differential equations. For a mathematical treatment
of this system of equations see [97].

The Hodgkin–Huxley model was in some ways one of the first artificial neu-
ral models, because the postulated dynamics of the nerve impulses could be
simulated with simple electric networks [303]. At the same time the mathemat-
ical properties of artificial neural networks were being studied by researchers
like Warren McCulloch, Walter Pitts, and John von Neumann. Ever since that
time, research in the neurobiological field has progressed in close collaboration
with the mathematics and computer science community.

Exercises

1. Express the network function function Φ in Figure 1.15 in terms of the
primitive functions f1, . . . , f4 and of the weights α1, . . . , α5.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

28 1 The Biological Paradigm

2. Modify the network of Figure 1.17 so that it corresponds to a finite number
of addition terms of equation (1.2).

3. Look in a neurobiology book for the full set of differential equations of
the Hodgkin–Huxley model. Write a computer program that simulates an
action potential.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

2

Threshold Logic

2.1 Networks of functions

We deal in this chapter with the simplest kind of computing units used to
build artificial neural networks. These computing elements are a generalization
of the common logic gates used in conventional computing and, since they
operate by comparing their total input with a threshold, this field of research
is known as threshold logic.

2.1.1 Feed-forward and recurrent networks

Our review in the previous chapter of the characteristics and structure of bi-
ological neural networks provides us with the initial motivation for a deeper
inquiry into the properties of networks of abstract neurons. From the view-
point of the engineer, it is important to define how a network should behave,
without having to specify completely all of its parameters, which are to be
found in a learning process. Artificial neural networks are used in many cases
as a black box : a certain input should produce a desired output, but how the
network achieves this result is left to a self-organizing process.

x1

x2

xn

y1

y2

ym

F...

...

Fig. 2.1. A neural network as a black box

In general we are interested in mapping an n-dimensional real input
(x1, x2, . . . , xn) to an m-dimensional real output (y1, y2, . . . , ym). A neural

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

30 2 Threshold Logic

network thus behaves as a “mapping machine”, capable of modeling a func-
tion F : IRn → IRm. If we look at the structure of the network being used, some
aspects of its dynamics must be defined more precisely. When the function
is evaluated with a network of primitive functions, information flows through
the directed edges of the network. Some nodes compute values which are then
transmitted as arguments for new computations. If there are no cycles in the
network, the result of the whole computation is well-defined and we do not
have to deal with the task of synchronizing the computing units. We just
assume that the computations take place without delay.

f

gx g(x)

f (g (x))

Fig. 2.2. Function composition

If the network contains cycles, however, the computation is not uniquely
defined by the interconnection pattern and the temporal dimension must be
considered. When the output of a unit is fed back to the same unit, we are
dealing with a recursive computation without an explicit halting condition. We
must define what we expect from the network: is the fixed point of the recursive
evaluation the desired result or one of the intermediate computations? To
solve this problem we assume that every computation takes a certain amount
of time at each node (for example a time unit). If the arguments for a unit
have been transmitted at time t, its output will be produced at time t + 1.
A recursive computation can be stopped after a certain number of steps and
the last computed output taken as the result of the recursive computation.

f f (xt , f (xt−1, f (xt −2 ,...)...)

xt

Fig. 2.3. Recursive evaluation

In this chapter we deal first with networks without cycles, in which the
time dimension can be disregarded. Then we deal with recurrent networks
and their temporal coordination. The first model we consider was proposed
in 1943 by Warren McCulloch and Walter Pitts. Inspired by neurobiology
they put forward a model of computation oriented towards the computational
capabilities of real neurons and studied the question of abstracting universal
concepts from specific perceptions [299].

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

2.1 Networks of functions 31

We will avoid giving a general definition of a neural network at this point.
So many models have been proposed which differ in so many respects that any
definition trying to encompass this variety would be unnecessarily clumsy. As
we show in this chapter, it is not necessary to start building neural networks
with “high powered” computing units, as some authors do [384]. We will start
our investigations with the general notion that a neural network is a network
of functions in which synchronization can be considered explicitly or not.

2.1.2 The computing units

The nodes of the networks we consider will be called computing elements or
simply units. We assume that the edges of the network transmit information
in a predetermined direction and the number of incoming edges into a node
is not restricted by some upper bound. This is called the unlimited fan-in
property of our computing units.

x1

x2

xn

f f (x1 , x2 , ..., xn)

Fig. 2.4. Evaluation of a function of n arguments

The primitive function computed at each node is in general a function of n
arguments. Normally, however, we try to use very simple primitive functions
of one argument at the nodes. This means that the incoming n arguments
have to be reduced to a single numerical value. Therefore computing units
are split into two functional parts: an integration function g reduces the n
arguments to a single value and the output or activation function f produces
the output of this node taking that single value as its argument. Figure 2.5
shows this general structure of the computing units. Usually the integration
function g is the addition function.

fg

x1

x2

xn

f (g(x1 , x2 ,..., xn))

Fig. 2.5. Generic computing unit

McCulloch–Pitts networks are even simpler than this, because they use
solely binary signals, i.e., ones or zeros. The nodes produce only binary results

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

32 2 Threshold Logic

and the edges transmit exclusively ones or zeros. The networks are composed
of directed unweighted edges of excitatory or of inhibitory type. The latter are
marked in diagrams using a small circle attached to the end of the edge. Each
McCulloch–Pitts unit is also provided with a certain threshold value θ.

At first sight the McCulloch–Pitts model seems very limited, since only
binary information can be produced and transmitted, but it already contains
all necessary features to implement the more complex models. Figure 2.6
shows an abstract McCulloch–Pitts computing unit. Following Minsky [311]
it will be represented as a circle with a black half. Incoming edges arrive at
the white half, outgoing edges leave from the black half. Outgoing edges can
fan out any number of times.

x1

xn

x2 θ

...

Fig. 2.6. Diagram of a McCulloch–Pitts unit

The rule for evaluating the input to a McCulloch–Pitts unit is the follow-
ing:

• Assume that a McCulloch–Pitts unit gets an input x1, x2, . . . , xn through
n excitatory edges and an input y1, y2, . . . , ym throughm inhibitory edges.

• If m ≥ 1 and at least one of the signals y1, y2, . . . , ym is 1, the unit is
inhibited and the result of the computation is 0.

• Otherwise the total excitation x = x1 + x2 + · · · + xn is computed and
compared with the threshold θ of the unit (if n = 0 then x = 0). If x ≥ θ
the unit fires a 1, if x < θ the result of the computation is 0.

This rule implies that a McCulloch–Pitts unit can be inactivated by a sin-
gle inhibitory signal, as is the case with some real neurons. When no inhibitory
signals are present, the units act as a threshold gate capable of implementing
many other logical functions of n arguments.

Figure 2.7 shows the activation function of a unit, the so-called step func-
tion. This function changes discontinuously from zero to one at θ. When θ
is zero and no inhibitory signals are present, we have the case of a unit pro-
ducing the constant output one. If θ is greater than the number of incoming
excitatory edges, the unit will never fire.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

2.2 Synthesis of Boolean functions 33

θ

1

0

Fig. 2.7. The step function with threshold θ

In the following subsection we assume provisionally that there is no delay
in the computation of the output.

2.2 Synthesis of Boolean functions

The power of threshold gates of the McCulloch–Pitts type can be illustrated
by showing how to synthesize any given logical function of n arguments. We
deal firstly with the more simple kind of logic gates.

2.2.1 Conjunction, disjunction, negation

Mappings from {0, 1}n onto {0, 1} are called logical or Boolean functions.
Simple logical functions can be implemented directly with a single McCulloch–
Pitts unit. The output value 1 can be associated with the logical value true
and 0 with the logical value false. It is straightforward to verify that the two
units of Figure 2.8 compute the functions AND and OR respectively.

2 1

AND OR

x1

x2 x2

x1

Fig. 2.8. Implementation of AND and OR gates

A single unit can compute the disjunction or the conjunction of n argu-
ments as is shown in Figure 2.9, where the conjunction of three and four
arguments is computed by two units. The same kind of computation requires
several conventional logic gates with two inputs. It should be clear from this
simple example that threshold logic elements can reduce the complexity of
the circuit used to implement a given logical function.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

34 2 Threshold Logic

3 1

AND OR

x1

x1

x2

x2

x3

x3

x4

Fig. 2.9. Generalized AND and OR gates

As is well known, AND and OR gates alone cannot be combined to produce
all logical functions of n variables. Since uninhibited threshold logic elements
are capable of implementing more general functions than conventional AND or
OR gates, the question of whether they can be combined to produce all logical
functions arises. Stated another way: is inhibition of McCulloch–Pitts units
necessary or can it be dispensed with? The following proposition shows that
it is necessary. A monotonic logical function f of n arguments is one whose
value at two given n-dimensional points x = (x1, . . . , xn) and y = (y1, . . . , yn)
is such that f(x) ≥ f(y) whenever the number of ones in the input y is a
subset of the ones in the input x. An example of a non-monotonic logical
function of one argument is logical negation.

Proposition 1. Uninhibited threshold logic elements of the McCulloch–Pitts
type can only implement monotonic logical functions.

Proof. An example shows the kind of argumentation needed. Assume that the
input vector (1, 1, . . . , 1) is assigned the function value 0. Since no other vector
can set more edges in the network to 1 than this vector does, any other input
vector can also only be evaluated to 0. In general, if the ones in the input
vector y are a subset of the ones in the input vector x, then the first cannot
set more edges to 1 than x does. This implies that f(x) ≥ f(y), as had to be
shown. 2

1 0

AND NOR¬

0

NOT

x1 x1

x1

x2 x2

x1 x2

Fig. 2.10. Logical functions and their realization

The units of Figure 2.10 show the implementation of some non-monotonic
logical functions requiring inhibitory connections. Logical negation, for exam-
ple, can be computed using a McCulloch–Pitts unit with threshold 0 and an
inhibitory edge. The other two functions can be verified by the reader.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

2.2 Synthesis of Boolean functions 35

1

1

1

0

0

0

0

1
x1

x2

x3

Fig. 2.11. Function values of a logical function of three variables

1

1

1

1

1

1

1

0
x1

x2

x3 x1 + x2 + x3 = 1

Fig. 2.12. Separation of the input space for the OR function

2.2.2 Geometric interpretation

It is very instructive to visualize the kind of functions that can be computed
with McCulloch–Pitts cells by using a diagram. Figure 2.11 shows the eight
vertices of a three-dimensional unit cube. Each of the three logical variables
x1, x2 and x3 can assume one of two possible binary values. There are eight
possible combinations, represented by the vertices of the cube. A logical func-
tion is just an assignment of a 0 or a 1 to each of the vertices. The figure
shows one of these assignments. In the case of n variables, the cube consists
of 2n vertices and admits 22n

different binary assignments.
McCulloch–Pitts units divide the input space into two half-spaces. For a

given input (x1, x2, x3) and a threshold θ the condition x1 + x2 + x3 ≥ θ is
tested, which is true for all points to one side of the plane with the equation
x1 + x2 + x3 = θ and false for all points to the other side (without including
the plane itself in this case). Figure 2.12 shows this separation for the case in

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

36 2 Threshold Logic

x1

x2

x3 x1 + x2 + x3 = 1

x1 + x2 + x3 = 2

Fig. 2.13. Separating planes of the OR and majority functions

which θ = 1, i.e., for the OR function. Only those vertices above the separating
plane are labeled 1.

The majority function of three variables divides input space in a similar
manner, but the separating plane is given by the equation x1 + x2 + x3 = 2.
Figure 2.13 shows the additional plane. The planes are always parallel in the
case of McCulloch–Pitts units. Non-parallel separating planes can only be
produced using weighted edges.

2.2.3 Constructive synthesis

Every logical function of n variables can be written in tabular form. The
value of the function is written down for every one of the possible binary
combinations of the n inputs. If we want to build a network to compute
this function, it should have n inputs and one output. The network must
associate each input vector with the correct output value. If the number of
computing units is not limited in some way, it is always possible to build or
synthesize a network which computes this function. The constructive proof of
this proposition profits from the fact that McCulloch–Pitts units can be used
as binary decoders.

Consider for example the vector (1, 0, 1). It is the only one which fulfills
the condition x1∧¬x2∧x3. This condition can be tested by a single computing
unit (Figure 2.14). Since only the vector (1, 0, 1) makes this unit fire, the unit
is a decoder for this input.

Assume that a function F of three arguments has been defined according
to the following table:

To compute this function it is only necessary to decode all those vectors
for which the function’s value is 1. Figure 2.15 shows a network capable of
computing the function F .

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

2.2 Synthesis of Boolean functions 37

2

x1

x2

x3

Fig. 2.14. Decoder for the vector (1, 0, 1)

input vectors F

 (0,0,1) 1

 (0,1,0) 1

all others 0

1

1

1

x1

x2

x3

F

Fig. 2.15. Synthesis of the function F

The individual units in the first layer of the composite network are de-
coders. For each vector for which F is 1 a decoder is used. In our case we need
just two decoders. Components of each vector which must be 0 are transmit-
ted with inhibitory edges, components which must be 1 with excitatory ones.
The threshold of each unit is equal to the number of bits equal to 1 that
must be present in the desired input vector. The last unit to the right is a
disjunction: if any one of the specified vectors can be decoded this unit fires
a 1.

It is straightforward to extend this constructive method to other Boolean
functions of any other dimension. This leads to the following proposition:

Proposition 2. Any logical function F : {0, 1}n → {0, 1} can be computed
with a McCulloch–Pitts network of two layers.

No attempt has been made here to minimize the number of computing
units. In fact, we need as many decoders as there are ones in the table of
function values. An alternative to this simple constructive method is to use
harmonic analysis of logical functions, as will be shown in Sect. 2.5.

We can also consider the minimal possible set of building blocks needed to
implement arbitrary logical functions when the fan-in of the units is bounded

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

38 2 Threshold Logic

in some way. The circuits of Figure 2.14 and Figure 2.15 use decoders of n
inputs. These decoders can be built of simpler cells, for example, two units ca-
pable of respectively implementing the AND function and negation. Inhibitory
connections in the decoders can be replaced with a negation gate. The output
of the decoders is collected at a conjunctive unit. The decoder of Figure 2.14
can be implemented as shown in Figure 2.16. The only difference from the
previous decoder are the negated inputs and the higher threshold in the AND
unit. All decoders for a row of the table of a logical function can be designed
in a similar way. This immediately leads to the following proposition:

Proposition 3. All logical functions can be implemented with a network com-
posed of units which exclusively compute the AND, OR, and NOT functions.

The three units AND, NOT and OR are called a logical basis because of
this property. Since OR can be implemented using AND and NOT units, these
two alone constitute a logical basis. The same happens with OR and NOT
units. John von Neumann showed that through a redundant coding of the
inputs (each variable is transmitted through two lines) AND and OR units
alone can constitute a logical basis [326].

3

x1

x2

x3

0

0

Fig. 2.16. A composite decoder for the vector (0, 0, 1)

2.3 Equivalent networks

We can build simpler circuits by using units with more general properties,
for example weighted edges and relative inhibition. However, as we show in
this section, circuits of McCulloch–Pitts units can emulate circuits built out
of high-powered units by exploiting the trade-off between the complexity of
the network versus the complexity of the computing units.

2.3.1 Weighted and unweighted networks

Since McCulloch–Pitts networks do not use weighted edges the question of
whether weighted networks are more general than unweighted ones must be
answered. A simple example shows that both kinds of networks are equivalent.

Assume that three weighted edges converge on the unit shown in Fig-
ure 2.17. The unit computes

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

2.3 Equivalent networks 39

0.7

0.2

0.4

0.3

x1

x2

x3

Fig. 2.17. Weighted unit

0.2x1 + 0.4x2 + 0.3x3 ≥ 0.7.

But this is equivalent to

2x1 + 4x2 + 3x3 ≥ 7,

and this computation can be performed with the network of Figure 2.18.

x1

x2

x3

7

Fig. 2.18. Equivalent computing unit

The figure shows that positive rational weights can be simulated by simply
fanning-out the edges of the network the required number of times. This means
that we can either use weighted edges or go for a more complex topology of
the network, with many redundant edges. The same can be done in the case
of irrational weights if the number of input vectors is finite (see Chap. 3,
Exercise 3).

2.3.2 Absolute and relative inhibition

In the last subsection we dealt only with the case of positive weights. Two
classes of inhibition can be identified: absolute inhibition corresponds to the
one used in McCulloch–Pitts units. Relative inhibition corresponds to the case
of edges weighted with a negative factor and whose effect is to lower the firing
threshold when a 1 is transmitted through this edge.

Proposition 4. Networks of McCulloch–Pitts units are equivalent to net-
works with relative inhibition.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

40 2 Threshold Logic

Proof. It is only necessary to show that each unit in a network where relative
inhibition is used is equivalent to one or more units in a network where ab-
solute inhibition is used. It is clear that it is possible to implement absolute
inhibition with relative inhibitory edges. If the threshold of a unit is the in-
teger m and if n excitatory edges impinge on it, the maximum possible total
excitation for this unit is n − m. If m ≥ n the unit never fires and the in-
hibitory edge is irrelevant. It suffices to fan out the inhibitory edge n−m+ 1
times and make all these edges meet at the unit. When a 1 is transmitted
through the inhibitory edges the total amount of inhibition is n−m+ 1 and
this shuts down the unit. To prove that relative inhibitory edges can be sim-
ulated with absolute inhibitory ones, refer to Figure 2.19. The network to
the left contains a relative inhibitory edge, the network to the right absolute
inhibitory ones. The reader can verify that the two networks are equivalent.
Relative inhibitory edges correspond to edges weighted with −1. We can also
accept any other negative weight w. In that case the threshold of the unit to
the right of Figure 2.19 should be m+w instead of m+1. Therefore networks
with negative weights can be simulated using unweighted McCulloch–Pitts
elements. 2

y
... m

m

m+1

y

1

relative inhibition equivalent circuit with absolute inhibition

x1

x2

xn

x1

x2

xn

...

Fig. 2.19. Two equivalent networks

As shown above, we can implement any kind of logical function using
unweighted networks. What we trade is the simplicity of the building blocks for
a more convoluted topology of the network. Later we will always use weighted
networks in order to simplify the topology.

2.3.3 Binary signals and pulse coding

An additional question which can be raised is whether binary signals are
not a very limited coding strategy. Are networks in which the communication
channels adopt any of ten or fifteen different states more efficient than channels
which adopt only two states, as in McCulloch–Pitts networks? To give an

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

2.3 Equivalent networks 41

answer we must consider that unit states have a price, in biological networks
as well as in artificial ones. The transmitted information must be optimized
using the number of available switching states.

1 2 3 4 5 6

number of
representable

values

base

e

Fig. 2.20. Number of representable values as a function of the base

Assume that the number of states per communication channel is b and that
c channels are used to input information. The cost K of the implementation
is proportional to both quantities, i.e., K = γbc, where γ is a proportionality
constant. Using c channels with b states, bc different numbers can be repre-
sented. This means that c = K/γb and, if we set κ = K/γ, we are seeking the
numerical base b which optimizes the function bκ/b. Since we assume constant
cost, κ is a constant. Figure 2.20 shows that the optimal value for b is the
Euler constant e. Since the number of channel states must be an integer, three
states would provide a good approximation to the optimal coding strategy.
However, in electronic and biological systems decoding of the signal plays such
an important role that the choice of two states per channel becomes a better
alternative.

Wiener arrived at a similar conclusion through a somewhat different ar-
gument [452]. The binary nature of information transmission in the nervous
system seems to be an efficient way to transport signals. However, in the
next chapters we will assume that the communication channels can transport
arbitrary real numbers. This makes the analysis simpler than when we have
to deal explicitly with frequency modulated signals, but does not lead to a
minimization of the resources needed for a technical implementation. Some
researchers prefer to work with so-called weightless networks which operate
exclusively with binary data.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

42 2 Threshold Logic

2.4 Recurrent networks

We have already shown that feed-forward networks can implement arbitrary
logical functions. In this case the dimension of the input and output data is
predetermined. In many cases, though, we want to perform computations on
an input of variable length, for example, when adding two binary numbers
being fed bit for bit into a network, which in turn produces the bits of the
result one after the other. A feed-forward network cannot solve this problem
because it is not capable of keeping track of previous results and, in the case
of addition, the carry bit must be stored in order to be reused. This kind of
problem can be solved using recurrent networks, i.e., networks whose partial
computations are recycled through the network itself. Cycles in the topology
of the network make storage and reuse of signals possible for a certain amount
of time after they are produced.

2.4.1 Stored state networks

McCulloch–Pitts units can be used in recurrent networks by introducing a
temporal factor in the computation. We will assume that computation of the
activation of each unit consumes a time unit. If the input arrives at time t
the result is produced at time t + 1. Up to now, we have been working with
units which produce results without delay. The numerical capabilities of any
feed-forward network with instantaneous computation at the nodes can be
reproduced by networks of units with delay. We only have to take care to
coordinate the arrival of the input values at the nodes. This could make the
introduction of additional computing elements necessary, whose sole mission
is to insert the necessary delays for the coordinated arrival of information.
This is the same problem that any computer with clocked elements has to
deal with.

input

1

2
output

Fig. 2.21. Network for a binary scaler

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

2.4 Recurrent networks 43

Figure 2.21 shows a simple example of a recurrent circuit. The network
processes a sequence of bits, giving off one bit of output for every bit of input,
but in such a way that any two consecutive ones are transformed into the
sequence 10. The binary sequence 00110110 is transformed for example into
the sequence 00100100. The network recognizes only two consecutive ones
separated by at least a zero from a similar block.

2.4.2 Finite automata

The network discussed in the previous subsection is an example of an au-
tomaton. This is an abstract device capable of assuming different states which
change according to the received input. The automaton also produces an out-
put according to its momentary state. In the previous example, the state of
the automaton is the specific combination of signals circulating in the net-
work at any given time. The set of possible states corresponds to the set of
all possible combinations of signals traveling through the network.

0

1

input

state

0

1

input

state

0

0

1

1

state transitions output table

Q0 Q1

Q1Q1

Q0 Q0

Q0 Q1

Fig. 2.22. State tables for a binary delay

Finite automata can take only a finite set of possible states and can react
only to a finite set of input signals. The state transitions and the output of an
automaton can be specified with a table, like the one shown in Figure 2.22.
This table defines an automaton which accepts a binary signal at time t and
produces an output at time t+ 1. The automaton has two states, Q0 and Q1,
and accepts only the values 0 or 1. The first table shows the state transitions,
corresponding to each input and each state. The second table shows the output
values corresponding to the given state and input. From the table we can see
that the automaton switches from state Q0 to state Q1 after accepting the
input 1. If the input bit is a 0, the automaton remains in state Q0. If the state
of the automaton is Q1 the output at time t + 1 is 1 regardless of whether 1
or 0 was given as input at time t. All other possibilities are covered by the
rest of the entries in the two tables.

The diagram in Figure 2.23 shows how the automaton works. The values
at the beginning of the arrows represent an input bit for the automaton. The
values in the middle of the arrows are the output bits produced after each

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

44 2 Threshold Logic

new input. An input of 1, for example, produces the transition from state Q0

to state Q1 and the output 0. The input 0 produces a transition to state Q0.
The automaton is thus one that stores only the last bit of input in its current
state.

0

0

1

1

1

1

0

0

Q0

Q1

Fig. 2.23. Diagram of a finite automaton

Finite automata without input from the outside, i.e., free-wheeling au-
tomata, unavoidably fall in an infinite loop or reach a final constant state. This
is why finite automata cannot cover all computable functions, for whose com-
putation an infinite number of states are needed. A Turing machine achieves
this through an infinite storage band which provides enough space for all
computations. Even a simple problem like the multiplication of two arbitrary
binary numbers presented sequentially cannot be solved by a finite automaton.
Although our computers are finite automata, the number of possible states is
so large that we consider them as universal computing devices for all practical
purposes.

2.4.3 Finite automata and recurrent networks

We now show that finite automata and recurrent networks of McCulloch–Pitts
units are equivalent. We use a variation of a constructive proof due to Minsky
[311].

Proposition 5. Any finite automaton can be simulated with a network of
McCulloch–Pitts units.

Proof. Figure 2.24 is a diagram of the network needed for the proof. Assume
that the input signals are transmitted through the input lines I1 to Im and
at each moment t only one of these lines is conducting a 1. All other input
lines are passive (set to 0). Assume that the network starts in a well-defined

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

2.4 Recurrent networks 45

•

•

•

• • •

(ad hoc connections for state transitions)

(ad hoc connections for output signals)

• • •

I1

I2

Im

Q1 Q2 Qn

O1 O2 Ok

111

2 2 2

222

222

Fig. 2.24. Implementation of a finite automaton with McCulloch–Pitts units

state Qi. This means that one, and only one, of the lines labeled Q1, . . . , Qn

is set to 1 and the others to 0. At time t+ 1 only one of the AND units can
produce a 1, namely the one in which both input and state line are set to 1.
The state transition is controlled by the ad hoc connections defined by the
user in the upper box. If, for example, the input I1 and the state Q1 at time t
produce the transition to state Q2 at time t+ 1, then we have to connect the
output of the upper left AND unit to the input of the OR unit with the output
line named Q2 (dotted line in the diagram). This output will become active
at time t + 2. At this stage a new input line must be set to 1 (for example
I2) and a new state transition will be computed (Qn in our example). The
connections required to produce the desired output are defined in a similar
way. This can be controlled by connecting the output of each AND unit to

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

46 2 Threshold Logic

the corresponding output line O1, . . . , Ok using a box of ad hoc connections
similar to the one already described. 2

A disadvantage of this constructive method is that each simulated finite
automaton requires a special set of connections in the upper and lower boxes.
It is better to define a universal network capable of simulating any other finite
automaton without having to change the topology of the network (under the
assumption of an upper bound for the size of the simulated automata). This is
indeed an active field of research in which networks learn to simulate automata
[408]. The necessary network parameters are found by a learning algorithm. In
the case of McCulloch–Pitts units the available degrees of freedom are given
by the topology of the network.

2.4.4 A first classification of neural networks

The networks described in this chapter allow us to propose a preliminary
taxonomy of the networks we will discuss in this book. The first clear sepa-
ration line runs between weighted and unweighted networks. It has already
been shown that both classes of models are equivalent. The main difference is
the kind of learning algorithm that can be used. In unweighted networks only
the thresholds and the connectivity can be adapted. In weighted networks the
topology is not usually modified during learning (although we will see some
algorithms capable of doing this) and only an optimal combination of weights
is sought.

The second clear separation is between synchronous and asynchronous
models. In synchronous models the output of all elements is computed in-
stantaneously. This is always possible if the topology of the network does not
contain cycles. In some cases the models contain layers of computing units and
the activity of the units in each layer is computed one after the other, but in
each layer simultaneously. Asynchronous models compute the activity of each
unit independently of all others and at different stochastically selected times
(as in Hopfield networks). In these kinds of models, cycles in the underlying
connection graph pose no particular problem.

fg

x1

x2

xn

Q

f (Q, g(x1, x2,..., xn))

Fig. 2.25. A unit with stored state Q

Finally, we can distinguish between models with or without stored unit
states. In Figure 2.5 we gave an example of a unit without stored state. Fig-
ure 2.25 shows a unit in which a state Q is stored after each computation.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

2.5 Harmonic analysis of logical functions 47

The state Q can modify the output of the unit in the following activation.
If the number of states and possible inputs is finite, we are dealing with a
finite automaton. Since any finite automaton can be simulated by a network
of computing elements without memory, these units with a stored state can
be substituted by a network of McCulloch–Pitts units. Networks with stored-
state units are thus equivalent to networks without stored-state units. Data is
stored in the network itself and in its pattern of recursion.

It can be also shown that time varying weights and thresholds can be
implemented in a network of McCulloch–Pitts units using cycles, so that net-
works with time varying weights and thresholds are equivalent to networks
with constant parameters, whenever recursion is allowed.

2.5 Harmonic analysis of logical functions

An interesting alternative for the automatic synthesis of logic functions and
for a quantification of their implementation complexity is to do an analysis
of the distribution of its non-zero values using the tools of harmonic analysis.
Since we can tabulate the values of a logical function in a sequence, we can
think of it as a one-dimensional function whose fundamental “frequencies” can
be extracted using the appropriate mathematical tools. We will first deal with
this problem in a totally general setting and then show that the Hadamard–
Walsh transform is the tool we are looking for.

2.5.1 General expression

Assume that we are interested in expressing a function f : IRm → IR as a linear
combination of n functions f1, f2, . . . , fn using the n constants a1, a2, . . . , an

in the following form

f = a1f1 + a2f2 + · · ·+ anfn.

The domain and range of definition are the same for f and the base functions.
We can determine the quadratic error E of the approximation in the whole

domain of definition V for given constants a1, . . . , an by computing

E =

∫

V

(f − (a1f1 + a2f2 + · · ·+ anfn))2dV .

Here we are assuming that f and the functions fi, i = 1, . . . , n, are integrable
in its domain of definition V . Since we want to minimize the quadratic error
E we compute the partial derivatives of E with respect to a1, a2, . . . , an and
set them to zero:

dE

dai
= −2

∫

V

fi(f − a1f1 − a2f2 − · · · − anfn)dV = 0, for i = 1, . . . , n

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

48 2 Threshold Logic

This leads to the following set of n equations expressed in a simplified notation:

a1

∫

fif1 + a2

∫

fif2 + · · ·+ an

∫

fifn =

∫

fif, for i = 1, . . . , n.

Expressed in matrix form the set of equations becomes:

∫
f1f1

∫
f1f2 · · ·

∫
f1fn∫

f2f1
∫
f2f2

∫
f2fn

...
. . .

...
∫
fnf1

∫
fnf2 · · ·

∫
fnfn

a1

a2

...
an

=

∫
f1f∫
f2f

...
∫
fnf

This expression is very general. The only assumption we have used is the
integrability of the partial products of the form fifj and fif . Since no special
assumptions on the integral were used, it is also possible to use a discrete
version of this equation. Assume that the function f has been defined at m
points and let the symbol

∑
fifj stand for

∑m
k=1 fi(xk)fj(xk). In this case

the above expression transforms to

∑
f1f1

∑
f1f2 · · ·

∑
f1fn∑

f2f1
∑
f2f2

∑
f2fn

...
. . .

...
∑
fnf1

∑
fnf2 · · ·

∑
fnfn

a1

a2

...
an

=

∑
f1f∑
f2f

...
∑
fnf

The general formula for the polynomial approximation of m data points
(x1, y1), . . . , (xm, ym) using the primitive functions x0, x1, x2, . . . , xn−1 trans-
lates directly into

m
∑
xi · · ·

∑
xn−1

i∑
xi

∑
x2

i

∑
xn

i
...

. . .
...

∑
xn−1

i

∑
xn

i · · ·
∑
x2n−2

i

a1

a2

...
an

=

∑
yi∑
xiyi

...
∑
xn−1

i yi

In the case of base functions that are mutually orthogonal, the integrals
∫
fkfj vanish when k 6= j. In this case the n × n matrix is diagonal and the

above equation becomes very simple. Assume, as in the case of the Fourier
transform, that the functions are sines and cosines of the form sin(kix) and
cos(kjx). Assume that no two sine functions have the same integer wave num-
ber ki and no two cosine functions the same integer wave number kj . In this

case the integral
∫ 2π

0
sin(kix) sin(kjx) is equal to π, whenever i = j, other-

wise it vanishes. The same is true for the cosine functions. The expression
transforms then to

π

a1

a2

...
an

=

∫
f1f∫
f2f

...
∫
fnf

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

2.5 Harmonic analysis of logical functions 49

which is just another way of computing the coefficients for the Fourier ap-
proximation of the function f .

2.5.2 The Hadamard–Walsh transform

In our case we are interested in expressing Boolean functions in terms of a
set of primitive functions. We adopt bipolar coding, so that now the logical
value false is represented by −1 and the logical value true by 1. In the case
of n logical variables x1, . . . , xn and the logical functions defined on them, we
can use the following set of 2n primitive functions:

• The constant function (x1, . . . , xn) 7→ 1

• The

(

n
k

)

monomials (x1, . . . , xn) 7→ xl1xl2 · · ·xlk , where k = 1, . . . , n and

l1, l2, . . . , lk is a set of k different indices in {1, 2, . . . , n}
All these functions are mutually orthogonal. In the case of two input vari-

ables the transformation becomes:

4

a1

a2

a3

a4

=

1 1 1 1
−1 1 −1 1
−1 −1 1 1

1 −1 −1 1

f1
f2
f3
f4

In the general case we compute 2n coefficients using the formula

a1

a2

...
a2n

= Hn

f1
f2
...
f2n

where the matrix Hn is defined recursively as

Hn =
1

2

(
Hn−1 Hn−1

−Hn−1 Hn−1

)

whereby

H1 =
1

2

(
1 1
−1 1

)

.

The AND function can be expressed using this simple prescription as

x1 ∧ x2 =
1

4
(−2 + 2x1 + 2x2 + 2x1x2).

The coefficients are the result of the following computation:

a1

a2

a3

a4

=
1

4

1 1 1 1
−1 1 −1 1
−1 −1 1 1

1 −1 −1 1

f1
f2
f3
f4

.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

50 2 Threshold Logic

The expressions obtained for the logical functions can be wired as net-
works using weighted edges and only two operations, addition and binary
multiplication. The Hadamard–Walsh transform is consequently a method for
the synthesis of Boolean functions. The next step, that is, the optimization of
the number of components, demands additional techniques which have been
extensively studied in the field of combinatorics.

2.5.3 Applications of threshold logic

Threshold units can be used in any application in which we want to reduce
the execution time of a logic operation to possibly just two layers of computa-
tional delay without employing a huge number of computing elements. It has
been shown that the parity and majority functions, for example, cannot be
implemented in a fixed number of layers of computation without using an ex-
ponentially growing number of conventional logic gates [148, 464], even when
unbounded fan-in is used. The majority function k out of n is a threshold
function implementable with just a single McCulloch–Pitts unit. Although
circuits built from n threshold units can be built using a polynomial number
P (n) of conventional gates the main difference is that conventional circuits
cannot guarantee a constant delay. With threshold elements we can build mul-
tiplication or division circuits that guarantee a constant delay for 32 or 64-bit
operands. Any symmetric Boolean function of n bits can in fact be built from
two layers of computing units using n+1 gates [407]. Some authors have devel-
oped circuits of threshold networks for fast multiplication and division, which
are capable of operating with constant delay for a variable number of data
bits [405]. Threshold logic offers thus the possibility of harnessing parallelism
at the level of the basic arithmetic operations.

5

x1

x2

x3

Fig. 2.26. Fault-tolerant gate

Threshold logic also offers a simpler way to achieve fault-tolerance. Fig-
ure 2.26 shows an example of a unit that can be used to compute the conjunc-
tion of three inputs with inherent fault tolerance. Assume that three inputs
x1, x2, x3 can be transmitted, each with probability p of error. The probabil-
ity of a false result when x1, x2 and x3 are equal, and we are computing the
conjunction of the three inputs, is 3p, since we assume that all three values
are transmitted independently of each other. But assume that we transmit

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

2.5 Harmonic analysis of logical functions 51

each value using two independent lines. The gate of Figure 2.26 has a thresh-
old of 5, that is, it will produce the correct result even in the case where an
input value is transmitted with an error. The probability that exactly two
ones arrive as zeros is p2 and, since there are 15 combinations of two out of
six lines, the probability of getting the wrong answer is 15p2 in this case. If p
is small enough then 15p2 < 3p and the performance of the gate is improved
for this combination of input values. Other combinations can be analyzed in a
similar way. If threshold units are more reliable than the communication chan-
nels, redundancy can be exploited to increase the reliability of any computing
system.

x1

x2

x3

4

4

4

3

Fig. 2.27. A fault-tolerant AND built of noisy components

When the computing units are unreliable, fault tolerance is achieved using
redundant networks. Figure 2.27 is an example of a network built using four
units. Assume that the first three units connected directly to the three bits of
input x1, x2, x3 all fire with probability 1 when the total excitation is greater
than or equal to the threshold θ but also with probability p when it is θ − 1.
The duplicated connections add redundancy to the transmitted bit, but in
such a way that all three units fire with probability one when the three bits
are 1. Each unit also fires with probability p if two out of three inputs are 1.
However each unit reacts to a different combination. The last unit, finally, is
also noisy and fires any time the three units in the first level fire and also with
probability p when two of them fire. Since, in the first level, at most one unit
fires when just two inputs are set to 1, the third unit will only fire when all
three inputs are 1. This makes the logical circuit, the AND function of three
inputs, built out of unreliable components error-proof. The network can be
simplified using the approach illustrated in Figure 2.26.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

52 2 Threshold Logic

2.6 Historical and bibliographical remarks

Warren McCulloch started pondering networks of artificial neurons as early
as 1927 but had problems formulating a general, biologically plausible model
since at that time inhibition in neurons had not yet been confirmed. He also
had problems with the mathematical treatment of recurrent networks. Inhi-
bition and recurrent pathways in the brain were confirmed in the 1930s and
this cleared the way for McCulloch’s investigations.

The McCulloch–Pitts model was proposed at a time when Norbert Wiener
and Arturo Rosenblueth had started discussing the important role of feedback
in biological systems and servomechanisms [301]. Wiener and his circle had
published some of these ideas in 1943 [297]. Wiener’s book Cybernetics, which
was the first best-seller in the field of Artificial Intelligence, is the most influ-
ential work of this period. The word cybernetics was coined by Wiener and
was intended to underline the importance of adaptive control in living and
artificial systems. Wiener himself was a polymath, capable of doing first class
research in mathematics as well as in other fields, such as physiology and
medicine.

McCulloch and Pitts’ model was superseded rapidly by more powerful ap-
proaches. Although threshold elements are, from the combinatorial point of
view, more versatile than conventional logic gates, there is a problem with the
assumed unlimited fan-in. Current technology has been optimized to handle a
limited number of incoming signals into a gate. A possible way of circumvent-
ing the electrical difficulties could be the use of optical computing elements
capable of providing unlimited fan-in [278]. Another alternative is the defini-
tion of a maximal fan-in for threshold elements that could be produced using
conventional technology. Some experiments have been conducted in this di-
rection and computers have been designed using exclusively threshold logic
elements. The DONUT computer of Lewis and Coates was built in the 1960s
using 614 gates with a maximal fan-in of 15. The same processor built with
NOR gates with a maximal fan-in of 4 required 2127 gates, a factor of ap-
proximately 3.5 more components than in the former case [271].

John von Neumann [326] extensively discussed the model of McCulloch
and Pitts and looked carefully at its fault tolerance properties. He examined
the question of how to build a reliable computing mechanism built of unre-
liable components. However, he dealt mainly with the redundant coding of
the units’ outputs and a canonical building block, whereas McCulloch and his
collaborator Manuel Blum later showed how to build reliable networks out of
general noisy threshold elements [300]. Winograd and Cowan generalized this
approach by replicating modules according to the requirements of an error-
correcting code [458]. They showed that sparse coding of the input signals,
coupled with error correction, makes possible fault-tolerant networks even in
the presence of transmission or computational noise [94].

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

2.6 Historical and bibliographical remarks 53

Exercises

1. Design a McCulloch–Pitts unit capable of recognizing the letter “T” dig-
itized in a 10 × 10 array of pixels. Dark pixels should be coded as ones,
white pixels as zeroes.

2. Build a recurrent network capable of adding two sequential streams of bits
of arbitrary finite length.

3. Show that no finite automaton can compute the product of two sequential
streams of bits of arbitrary finite length.

4. The parity of n given bits is 1 if an odd number of them is equal to 1,
otherwise it is 0. Build a network of McCulloch–Pitts units capable of
computing the parity function of two, three, and four given bits.

5. How many possible states can assume the binary scaler in Figure 2.21?
Write the state and output tables for an equivalent finite automaton.

6. Design a network like the one shown in Figure 2.24 capable of simulating
the finite automaton of the previous exercise.

7. Find polynomial expressions corresponding to the OR and XOR Boolean
functions using the Hadamard–Walsh transform.

8. Show that the Hadamard–Walsh transform can be computed recursively,
so that the number of multiplications becomes O(n log n), where n is the
dimension of the vectors transformed (with n a power of two).

9. What is the probability of error in the case of the fault-tolerant gate shown
in Figure 2.26? Consider one, two, and three faulty input bits.

10. The network in Figure 2.27 consists of unreliable computing units. Sim-
plify the network. What happens if the units and the transmission channels
are unreliable?

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

3

Weighted Networks – The Perceptron

3.1 Perceptrons and parallel processing

In the previous chapter we arrived at the conclusion that McCulloch–Pitts
units can be used to build networks capable of computing any logical function
and of simulating any finite automaton. From the biological point of view,
however, the types of network that can be built are not very relevant. The
computing units are too similar to conventional logic gates and the network
must be completely specified before it can be used. There are no free param-
eters which could be adjusted to suit different problems. Learning can only
be implemented by modifying the connection pattern of the network and the
thresholds of the units, but this is necessarily more complex than just adjust-
ing numerical parameters. For that reason, we turn our attention to weighted
networks and consider their most relevant properties. In the last section of this
chapter we show that simple weighted networks can provide a computational
model for regular neuronal structures in the nervous system.

3.1.1 Perceptrons as weighted threshold elements

In 1958 Frank Rosenblatt, an American psychologist, proposed the percep-
tron, a more general computational model than McCulloch–Pitts units. The
essential innovation was the introduction of numerical weights and a spe-
cial interconnection pattern. In the original Rosenblatt model the computing
units are threshold elements and the connectivity is determined stochastically.
Learning takes place by adapting the weights of the network with a numerical
algorithm. Rosenblatt’s model was refined and perfected in the 1960s and its
computational properties were carefully analyzed by Minsky and Papert [312].
In the following, Rosenblatt’s model will be called the classical perceptron and
the model analyzed by Minsky and Papert the perceptron.

The classical perceptron is in fact a whole network for the solution of cer-
tain pattern recognition problems. In Figure 3.1 a projection surface called the

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

56 3 Weighted Networks – The Perceptron

retina transmits binary values to a layer of computing units in the projection
area. The connections from the retina to the projection units are deterministic
and non-adaptive. The connections to the second layer of computing elements
and from the second to the third are stochastically selected in order to make
the model biologically plausible. The idea is to train the system to recognize
certain input patterns in the connection region, which in turn leads to the
appropriate path through the connections to the reaction layer. The learning
algorithm must derive suitable weights for the connections.

retina

projection area association area
responses

random
connections

local connections

Fig. 3.1. The classical perceptron [after Rosenblatt 1958]

Rosenblatt’s model can only be understood by first analyzing the elemen-
tary computing units. From a formal point of view, the only difference between
McCulloch–Pitts elements and perceptrons is the presence of weights in the
networks. Rosenblatt also studied models with some other differences, such as
putting a limit on the maximum acceptable fan-in of the units.

Minsky and Papert distilled the essential features from Rosenblatt’s model
in order to study the computational capabilities of the perceptron under dif-
ferent assumptions. In the model used by these authors there is also a retina
of pixels with binary values on which patterns are projected. Some pixels from
the retina are directly connected to logic elements called predicates which can
compute a single bit according to the input. Interestingly, these predicates can
be as computationally complex as we like; for example, each predicate could
be implemented using a supercomputer. There are some constraints however,
such as the number of points in the retina that can be simultaneously exam-
ined by each predicate or the distance between those points. The predicates
transmit their binary values to a weighted threshold element which is in charge
of reaching the final decision in a pattern recognition problem. The question is
then, what kind of patterns can be recognized in this massively parallel man-
ner using a single threshold element at the output of the network? Are there
limits to what we can compute in parallel using unlimited processing power

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

3.1 Perceptrons and parallel processing 57

for each predicate, when each predicate cannot itself look at the whole retina?
The answer to this problem in some ways resembles the speedup problem in
parallel processing, in which we ask what percentage of a computational task
can be parallelized and what percentage is inherently sequential.

w1

w2

w3

w4

P1

P2

P3

P4

θ

Fig. 3.2. Predicates and weights of a perceptron

Figure 3.2 illustrates the model discussed by Minsky and Papert. The pred-
icates P1 to P4 deliver information about the points in the projection surface
that comprise their receptive fields. The only restriction on the computational
capabilities of the predicates is that they produce a binary value and the re-
ceptive field cannot cover the whole retina. The threshold element collects
the outputs of the predicates through weighted edges and computes the fi-
nal decision. The system consists in general of n predicates P1, P2, . . . , Pn

and the corresponding weights w1, w2, . . . , wn. The system fires only when
∑n

i=1 wiPi ≥ θ, where θ is the threshold of the computing unit at the output.

3.1.2 Computational limits of the perceptron model

Minsky and Papert used their simplified perceptron model to investigate
the computational capabilities of weighted networks. Early experiments with
Rosenblatt’s model had aroused unrealistic expectations in some quarters, and
there was no clear understanding of the class of pattern recognition problems
which it could solve efficiently. To explore this matter the number of predicates
in the system is fixed, and although they possess unbounded computational
power, the final bottleneck is the parallel computation with a single threshold
element. This forces each processor to cooperate by producing a partial result
pertinent to the global decision. The question now is which problems can be
solved in this way and which cannot.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

58 3 Weighted Networks – The Perceptron

The system considered by Minsky and Papert at first appears to be a
strong simplification of parallel decision processes, but it contains some of the
most important elements differentiating between sequential and parallel pro-
cessing. It is known that when some algorithms are parallelized, an irreducible
sequential component sometimes limits the maximum achievable speedup. The
mathematical relation between speedup and irreducible sequential portion of
an algorithm is known as Amdahl’s law [187]. In the model considered above
the central question is, are there pattern recognition problems in which we
are forced to analyze sequentially the output of the predicates associated with
each receptive field or not? Minsky and Papert showed that problems of this
kind do indeed exist which cannot be solved by a single perceptron acting as
the last decision unit.

The limits imposed on the receptive fields of the predicates are based on
realistic assumptions. The predicates are fixed in advance and the pattern
recognition problem can be made arbitrarily large (by expanding the retina).
According to the number of points and their connections to the predicates,
Minsky and Papert differentiated between

• Diameter limited perceptrons: the receptive field of each predicate has a
limited diameter.

• Perceptrons of limited order: each receptive field can only contain up to a
certain maximum number of points.

• Stochastic perceptrons: each receptive field consists of a number of ran-
domly chosen points

Some patterns are more difficult to identify than others and this struc-
tural classification of perceptrons is a first attempt at defining something like
complexity classes for pattern recognition. Connectedness is an example of a
property that cannot be recognized by constrained systems.

Proposition 6. No diameter limited perceptron can decide whether a geomet-
ric figure is connected or not.

A B C D

Proof. We proceed by contradiction, assuming that a perceptron can decide
whether a figure is connected or not. Consider the four patterns shown above;
notice that only the middle two are connected.

Since the diameters of the receptive fields are limited, the patterns can
be stretched horizontally in such a way that no single receptive field contains
points from both the left and the right ends of the patterns. In this case

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

3.1 Perceptrons and parallel processing 59

we have three different groups of predicates: the first group consists of those
predicates whose receptive fields contain points from the left side of a pattern.
Predicates of the second group are those whose receptive fields cover the right
side of a pattern. All other predicates belong to the third group. In Figure 3.3
the receptive fields of the predicates are represented by circles.

group 1 group 3 group 2

Fig. 3.3. Receptive fields of predicates

All predicates are connected to a threshold element through weighted edges
which we denote by the letter w with an index. The threshold element decides
whether a figure is connected or not by performing the computation

S =
∑

Pi∈group 1

w1iPi +
∑

Pi∈group 2

w2iPi +
∑

Pi∈group 3

w3iPi − θ ≥ 0.

If S is positive the figure is recognized as connected, as is the case, for example,
in Figure 3.3.

If the disconnected pattern A is analyzed, then we should have S < 0.
Pattern A can be transformed into pattern B without affecting the output of
the predicates of group 3, which do not recognize the difference since their
receptive fields do not cover the sides of the figures. The predicates of group
2 adjust their outputs by ∆2S so that now

S +∆2S ≥ 0⇒ ∆2S ≥ −S.

If pattern A is transformed into pattern C, the predicates of group 1 adjust
their outputs so that the threshold element receives a net excitation, i.e.,

S +∆1S ≥ 0⇒ ∆1S ≥ −S.

However, if pattern A is transformed into pattern D, the predicates of group
1 cannot distinguish this case from the one for figure C and the predicates
of group 2 cannot distinguish this case from the one for figure B. Since the
predicates of group 3 do not change their output we have

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

60 3 Weighted Networks – The Perceptron

∆S = ∆2S +∆1S ≥ −2S,

and from this
S +∆S ≥ −S > 0.

The value of the new sum can only be positive and the whole system classifies
figure D as connected. Since this is a contradiction, such a system cannot
exist. 2

Proposition 6 states only that the connectedness of a figure is a global
property which cannot be decided locally. If no predicate has access to the
whole figure, then the only alternative is to process the outputs of the predi-
cates sequentially.

There are some other difficult problems for perceptrons. They cannot de-
cide, for example, whether a set of points contains an even or an odd number
of elements when the receptive fields cover only a limited number of points.

3.2 Implementation of logical functions

In the previous chapter we discussed the synthesis of Boolean functions using
McCulloch–Pitts networks. Weighted networks can achieve the same results
with fewer threshold gates, but the issue now is which functions can be im-
plemented using a single unit.

3.2.1 Geometric interpretation

In each of the previous sections a threshold element was associated with a
whole set of predicates or a network of computing elements. From now on, we
will deal with perceptrons as isolated threshold elements which compute their
output without delay.

Definition 1. A simple perceptron is a computing unit with threshold θ which,
when receiving the n real inputs x1, x2, . . . , xn through edges with the associ-
ated weights w1, w2, . . . , wn, outputs 1 if the inequality

∑n
i=1 wixi ≥ θ holds

and otherwise 0.

The origin of the inputs is not important, whether they come from other
perceptrons or another class of computing units. The geometric interpretation
of the processing performed by perceptrons is the same as with McCulloch–
Pitts elements. A perceptron separates the input space into two half-spaces.
For points belonging to one half-space the result of the computation is 0, for
points belonging to the other it is 1.

Figure 3.4 shows this for the case of two variables x1 and x2. A perceptron
with threshold 1, at which two edges with weights 0.9 and 2.0 impinge, tests
the condition

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

3.2 Implementation of logical functions 61

0. 9x1 + 2x2 ≥ 1

0. 9x1 + 2x2 < 1

x1

x2

Fig. 3.4. Separation of input space with a perceptron

0.9x1 + 2x2 ≥ 1.

It is possible to generate arbitrary separations of input space by adjusting the
parameters of this example.

In many cases it is more convenient to deal with perceptrons of thresh-
old zero only. This corresponds to linear separations which are forced to go
through the origin of the input space. The two perceptrons in Figure 3.5 are
equivalent. The threshold of the perceptron to the left has been converted
into the weight −θ of an additional input channel connected to the constant
1. This extra weight connected to a constant is called the bias of the element.

1

0

w1

wn

−θ

w1

wn

x1 x1

xn xn

θ ⇒
...

...

Fig. 3.5. A perceptron with a bias

Most learning algorithms can be stated more concisely by transforming
thresholds into biases. The input vector (x1, x2, . . . , xn) must be extended with
an additional 1 and the resulting (n+1)-dimensional vector (x1, x2, . . . , xn, 1)
is called the extended input vector. The extended weight vector associated
with this perceptron is (w1, . . . , wn, wn+1), whereby wn+1 = −θ.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

62 3 Weighted Networks – The Perceptron

3.2.2 The XOR problem

We can now deal with the problem of determining which logical functions can
be implemented with a single perceptron. A perceptron network is capable
of computing any logical function, since perceptrons are even more powerful
than unweighted McCulloch–Pitts elements. If we reduce the network to a
single element, which functions are still computable?

Taking the functions of two variables as an example we can gain some
insight into this problem. Table 3.1 shows all 16 possible Boolean functions
of two variables f0 to f15. Each column fi shows the value of the function for
each combination of the two variables x1 and x2. The function f0, for example,
is the zero function whereas f14 is the OR-function.

Table 3.1. The 16 Boolean functions of two variables

x1 x2 f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Perceptron-computable functions are those for which the points whose
function value is 0 can be separated from the points whose function value is
1 using a line. Figure 3.6 shows two possible separations to compute the OR
and the AND functions.

1 1

10

0

0 0

1

OR AND

Fig. 3.6. Separations of input space corresponding to OR and AND

It is clear that two of the functions in the table cannot be computed in
this way. They are the function XOR and identity (f6 and f9). It is intuitively
evident that no line can produce the necessary separation of the input space.
This can also be shown analytically.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

3.3 Linearly separable functions 63

Let w1 and w2 be the weights of a perceptron with two inputs, and θ its
threshold. If the perceptron computes the XOR function the following four
inequalities must be fulfilled:

x1 = 0 x2 = 0 w1x1 + w2x2 = 0 ⇒ 0 < θ
x1 = 1 x2 = 0 w1x1 + w2x2 = w1 ⇒ w1 ≥ θ
x1 = 0 x2 = 1 w1x1 + w2x2 = w2 ⇒ w2 ≥ θ
x1 = 1 x2 = 1 w1x1 + w2x2 = w1 + w2 ⇒ w1 + w2 < θ

Since θ is positive, according to the first inequality, w1 and w2 are positive
too, according to the second and third inequalities. Therefore the inequality
w1 + w2 < θ cannot be true. This contradiction implies that no perceptron
capable of computing the XOR function exists. An analogous proof holds for
the function f9.

3.3 Linearly separable functions

The example of the logical functions of two variables shows that the problem
of perceptron computability must be discussed in more detail. In this section
we provide the necessary tools to deal more effectively with functions of n
arguments.

3.3.1 Linear separability

We can deduce from our experience with the XOR function that many other
logical functions of several arguments must exist which cannot be computed
with a threshold element. This fact has to do with the geometry of the n-
dimensional hypercube whose vertices represent the combination of logic val-
ues of the arguments. Each logical function separates the vertices into two
classes. If the points whose function value is 1 cannot be separated with
a linear cut from the points whose function value is 0, the function is not
perceptron-computable. The following two definitions give this problem a
more general setting.

Definition 2. Two sets of points A and B in an n-dimensional space are
called linearly separable if n + 1 real numbers w1, . . . , wn+1 exist, such that
every point (x1, x2, . . . , xn) ∈ A satisfies

∑n
i=1 wixi ≥ wn+1 and every point

(x1, x2, . . . , xn) ∈ B satisfies
∑n

i=1 wixi < wn+1

Since a perceptron can only compute linearly separable functions, an inter-
esting question is how many linearly separable functions of n binary arguments
there are. When n = 2, 14 out of the 16 possible Boolean functions are lin-
early separable. When n = 3, 104 out of 256 and when n = 4, 1882 out of
65536 possible functions are linearly separable. Although there has been ex-
tensive research on linearly separable functions in recent years, no formula for

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

64 3 Weighted Networks – The Perceptron

expressing the number of linearly separable functions as a function of n has
yet been found. However we will provide some upper bounds for this number
in the following chapters.

3.3.2 Duality of input space and weight space

The computation performed by a perceptron can be visualized as a linear sep-
aration of input space. However, when trying to find the appropriate weights
for a perceptron, the search process can be better visualized in weight space.
When m real weights must be determined, the search space is the whole of
IRm.

x1

x2

w1

w2

•

•

− θ = w3
x3

Fig. 3.7. Illustration of the duality of input and weight space

For a perceptron with n input lines, finding the appropriate linear sep-
aration amounts to finding n + 1 free parameters (n weights and the bias).
These n+1 parameters represent a point in (n+1)-dimensional weight space.
Each time we pick one point in weight space we are choosing one combina-
tion of weights and a specific linear separation of input space. This means
that every point in (n + 1)-dimensional weight space can be associated with
a hyperplane in (n + 1)-dimensional extended input space. Figure 3.7 shows
an example. Each combination of three weights, w1, w2, w3, which represent
a point in weight space, defines a separation of input space with the plane
w1x1 + w2x2 + w3x3 = 0.

There is the same kind of relation in the inverse direction, from input to
weight space. If we want the point x1, x2, x3 to be located in the positive
half-space defined by a plane, we need to determine the appropriate weights
w1, w2 and w3. The inequality

w1x1 + w2x2 + w3x3 ≥ 0

must hold. However this inequality defines a linear separation of weight space,
that is, the point (x1, x2, x3) defines a cutting plane in weight space. Points in
one space are mapped to planes in the other and vice versa. This complemen-
tary relation is called duality. Input and weight space are dual spaces and we

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

3.3 Linearly separable functions 65

can visualize the computations done by perceptrons and learning algorithms
in any one of them. We will switch from one visualization to the other as
necessary or convenient.

3.3.3 The error function in weight space

Given two sets of patterns which must be separated by a perceptron, a learn-
ing algorithm should automatically find the weights and threshold necessary
for the solution of the problem. The perceptron learning algorithm can accom-
plish this for threshold units. Although proposed by Rosenblatt it was already
known in another context [10].

Assume that the set A of input vectors in n-dimensional space must be
separated from the set B of input vectors in such a way that a perceptron
computes the binary function fw with fw(x) = 1 for x ∈ A and fw(x) = 0
for x ∈ B. The binary function fw depends on the set w of weights and
threshold. The error function is the number of false classifications obtained
using the weight vector w. It can be defined as:

E(w) =
∑

x∈A

(1 − fw(x)) +
∑

x∈B

fw(x).

This is a function defined over all of weight space and the aim of perceptron
learning is to minimize it. Since E(w) is positive or zero, we want to reach the
global minimum where E(w) = 0. This will be done by starting with a random
weight vector w, and then searching in weight space a better alternative, in
an attempt to reduce the error function E(w) at each step.

3.3.4 General decision curves

A perceptron makes a decision based on a linear separation of the input space.
This reduces the kinds of problem solvable with a single perceptron. More
general separations of input space can help to deal with other kinds of problem
unsolvable with a single threshold unit. Assume that a single computing unit
can produce the separation shown in Figure 3.8. Such a separation of the input
space into two regions would allow the computation of the XOR function with
a single unit. Functions used to discriminate between regions of input space
are called decision curves [329]. Some of the decision curves which have been
studied are polynomials and splines.

In statistical pattern recognition problems we assume that the patterns to
be recognized are grouped in clusters in input space. Using a combination of
decision curves we try to isolate one cluster from the others. One alternative
is combining several perceptrons to isolate a convex region of space. Other
alternatives which have been studied are, for example, so-called Sigma-Pi
units which, for a given input x1, x2, . . . , xn, compute the sum of all or some
partial products of the form xixj [384].

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

66 3 Weighted Networks – The Perceptron

1

1

0

0

Fig. 3.8. Non-linear separation of input space

In the general case we want to distinguish between regions of space. A
neural network must learn to identify these regions and to associate them
with the correct response. The main problem is determining whether the free
parameters of these decision regions can be found using a learning algorithm.
In the next chapter we show that it is always possible to find these free
parameters for linear decision curves, if the patterns to be classified are indeed
linearly separable. Finding learning algorithms for other kinds of decision
curves is an important research topic not dealt with here [45, 4].

3.4 Applications and biological analogy

The appeal of the perceptron model is grounded on its simplicity and the
wide range of applications that it has found. As we show in this section,
weighted threshold elements can play an important role in image processing
and computer vision.

3.4.1 Edge detection with perceptrons

A good example of the pattern recognition capabilities of perceptrons is edge
detection (Figure 3.9). Assume that a method of extracting the edges of a
figure darker than the background (or the converse) is needed. Each pixel in
the figure is compared to its immediate neighbors and in the case where the
pixel is black and one of its neighbors white, it will be classified as part of
an edge. This can be programmed sequentially in a computer, but since the
decision about each point uses only local information, it is straightforward to
implement the strategy in parallel.

Assume that the figures to be processed are projected on a screen in which
each pixel is connected to a perceptron, which also receives inputs from its
immediate neighbors. Figure 3.10 shows the shape of the receptive field (a
so-called Moore neighborhood) and the weights of the connections to the
perceptron. The central point is weighted with 8 and the rest with −1. In the
field of image processing this is called a convolution operator, because it is

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

3.4 Applications and biological analogy 67

Fig. 3.9. Example of edge detection

used by centering it at each pixel of the image to produce a certain output
value for each pixel. The operator shown has a maximum at the center of the
receptive field and local minima at the periphery.

-1

-1

-1

-1

-1

-1

-1

 8

-1

Fig. 3.10. Edge detection operator

Figure 3.11 shows the kind of interconnection we have in mind. A percep-
tron is needed for each pixel. The interconnection pattern repeats for each
pixel in the projection lattice, taking care to treat the borders of the screen
differently. The weights are those given by the edge detection operator.

0.5

Fig. 3.11. Connection of a perceptron to the projection grid

For each pattern projected onto the screen, the weighted input is com-
pared to the threshold 0.5. When all points in the neighborhood are black
or all white, the total excitation is 0. In the situation shown below the total
excitation is 5 and the point in the middle belongs to an edge.

There are many other operators for different uses, such as detecting hor-
izontal or vertical lines or blurring or making a picture sharper. The size of

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

68 3 Weighted Networks – The Perceptron

the neighborhood can be adjusted to the specific application. For example,
the operator

−1 0 1
−1 0 1
−1 0 1

can be used to detect the vertical edges between a white surface to the left
and a dark one to the right.

3.4.2 The structure of the retina

The visual pathway is the part of the human brain which is best understood.
The retina can be conceived as a continuation of this organ, since it consists
of neural cells organized in layers and capable of providing in situ some of
the information processing necessary for vision. In frogs and other small ver-
tebrates some neurons have been found directly in the retina which actually
fire in the presence of a small blob in the visual field. These are bug detectors
which tell these animals when a small insect has been sighted.

Researchers have found that the cells in the retina are interconnected in
such a way that each nerve going from the eyes to the brain encodes a summary
of the information detected by several photoreceptors in the retina. As in the
case of the convolution operators discussed previously, each nerve transmits
a signal which depends on the relative luminosity of a point in relation to its
immediate neighborhood.

Figure 3.12 shows the interconnection pattern found in the retina [205,
111]. The cones and rods are the photoreceptors which react to photons by
depolarizing. Horizontal cells compute the average luminosity in a region by
connecting to the cones or rods in this region. Bipolar and ganglion cells fire
only when the difference in the luminosity of a point is significantly higher
than the average light intensity.

Although not all details of the retinal circuits have been reverse-engineered,
there is a recurrent feature: each receptor cell in the retina is part of a roughly
circular receptive field. The receptive fields of neighboring cells overlap. Their
function is similar to the edge processing operators, because the neighborhood
inhibits a neuron whereas a photoreceptor excites it, or conversely. This kind
of weighting of the input has a strong resemblance to the so-called Mexican
hat function.

David Marr tried to summarize what we know about the visual pathway
in humans and proposed his idea of a process in three stages, in which the
brain first decomposes an image into features (edges, blobs, etc.), which are
then used to build an interpretation of surfaces, depth relations and groupings
of tokens (the “2 1

2 sketch”) and which in turn leads to a full interpretation
of the objects present in the visual field (the primal sketch) [293]. He tried
to explain the structure of the retina from the point of view of the compu-
tational machinery needed for vision. He proposed that at a certain stage of

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

3.4 Applications and biological analogy 69

receptors

bipolar cells

ganglion cell

horizontal cells

Fig. 3.12. The interconnection pattern in the retina

pattern

weights

1

1

1

1

1111

1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

Fig. 3.13. Feature detector for the pattern T

the computation the retina blurs an image and then extracts from it contrast
information. Blurring an image can be done by averaging at each pixel the
values of this pixel and its neighbors. A Gaussian distribution of weights can
be used for this purpose. Information about changes in darkness levels can be

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

70 3 Weighted Networks – The Perceptron

extracted using the sum of the second derivatives of the illumination function,
the so-called Laplace operator ∇2 = ∂2/∂x2 + ∂2/∂y2. The composition of
the Laplace operator and a Gaussian blurring corresponds to the Mexican hat
function. Processing of the image is done by computing the convolution of the
discrete version of the operator with the image. The 3× 3 discrete version of
this operator is the edge detection operator which we used before. Different
levels of blurring, and thus feature extraction at several different resolution
levels, can be controlled by adjusting the size of the receptive fields of the
computing units. It seems that the human visual pathway also exploits fea-
ture detection at several resolution levels, which has led in turn to the idea of
using several resolution layers for the computational analysis of images.

3.4.3 Pyramidal networks and the neocognitron

Single perceptrons can be thought of as feature detectors. Take the case of
Figure 3.13 in which a perceptron is defined with weights adequate for rec-
ognizing the letter ‘T’ in which t pixels are black. If another ‘T’ is presented,
in which one black pixel is missing, the excitation of the perceptron is t− 1.
The same happens if one white pixel is transformed into a black one due to
noise, since the weights of the connections going from points that should be
white are −1. If the threshold of the perceptron is set to t − 1, then this
perceptron will be capable of correctly classifying patterns with one noisy
pixel. By adjusting the threshold of the unit, 2, 3 or more noisy pixels can be
tolerated. Perceptrons thus compute the similarity of a pattern to the ideal
pattern they have been designed to identify, and the threshold is the minimal
similarity that we require from the pattern. Note that since the weights of
the perceptron are correlated with the pattern it recognizes, a simple way to
visualize the connections of a perceptron is to draw the pattern it identifies
in its receptive field. This technique will be used below.

The problem with this pattern recognition scheme is that it only works
if the patterns have been normalized in some way, that is, if they have been
centered in the window to which the perceptron connects and their size does
not differ appreciably from the ideal pattern. Also, any kind of translational
shift will lead to ideal patterns no longer being recognized. The same happens
in the case of rotations.

An alternative way of handling this problem is to try to detect patterns
not in a single step, but in several stages. If we are trying, for example,
to recognize handwritten digits, then we could attempt to find some small
distinctive features such as lines in certain orientations and then combine our
knowledge about the presence or absence of these features in a final logical
decision. We should try to recognize these small features, regardless of their
position on the projection screen.

The cognitron and neocognitron were designed by Fukushima and his col-
leagues as an attempt to deal with this problem and in some way to try to
mimic the structure of the human vision pathway [144, 145]. The main idea of

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

3.4 Applications and biological analogy 71

level 1

level 2

level 3

level 4

Fig. 3.14. Pyramidal architecture for image processing

the neocognitron is to transform the contents of the screen into other screens
in which some features have been enhanced, and then again into other screens,
and so on, until a final decision is made. The resolution of the screen can be
changed from transformation to transformation or more screens can be in-
troduced, but the objective is to reduce the representation to make a final
classification in the last stage based on just a few points of input.

The general structure of the neural system proposed by Fukushima is a
kind of variant of what is known in the image processing community as a
pyramidal architecture, in which the resolution of the image is reduced by a
certain factor from plane to plane [56]. Figure 3.14 shows an example of a
quad-pyramid, that is, a system in which the resolution is reduced by a factor
of four from plane to plane. Each pixel in one of the upper planes connects to
four pixels in the plane immediately below and deals with them as elements of
its receptive field. The computation to determine the value of the upper pixel
can be arbitrary, but in our case we are interested in threshold computations.
Note that in this case receptive fields do not overlap. Such architectures have
been studied intensively to determine their capabilities as data structures for
parallel algorithms [80, 57].

The neocognitron has a more complex architecture [280]. The image is
transformed from the original plane to other planes to look for specific fea-
tures.

Figure 3.15 shows the general strategy adopted in the neocognitron. The
projection screen is transformed, deciding for each pixel if it should be kept
white or black. This can be done by identifying the patterns shown for each
of the three transformations by looking at each pixel and its eight neighbors.
In the case of the first transformed screen only horizontal lines are kept;
in the second screen only vertical lines and in the third screen only diagonal
lines. The convolution operators needed have the same distribution of positive

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

72 3 Weighted Networks – The Perceptron

patterns

transformation

1 11

1

1

1

1

1

1

convolution
operators

Fig. 3.15. Feature extraction in the neocognitron

weights, as shown for each screen. The rest of the weights is 0. Note that these
special weights work better if the pattern has been previously ‘skeletonized’.

Strictly speaking Fukushima’s neocognitron uses linear computing units
and not perceptrons. The units compute their total weighted input and this
is interpreted as a kind of correlation index with the patterns that each unit
can identify. This means that black and white patterns are transformed into
patterns with shadings of gray, according to the output of each mapping unit.
Figure 3.16 shows the general structure of the neocognitron network. The
input layer of the network is called UC0. This input layer is processed and
converted into twelve different images numbered US1

0 to US1
11 with the same

resolution. The superindex in front of a name is the layer number and the
subindex the number of the plane in this layer. The operators used to trans-
form from UC0 to each of the US1

i planes have a receptive field of 3×3 pixels
and one operator is associated with each pixel in the US1

i planes. In each
plane only one kind of feature is recognized. The first plane US1

1 , for example,
could contain all the vertical edges found in UC0, the second plane US1

2 only
diagonal edges, and so forth. The next level of processing is represented by
the UC1

j planes. Each pixel in one of these planes connects to a receptive field

in one or two of the underlying US1
i planes. The weights are purely excitatory

and the effect of this layer is to overlap the activations of the selected US1
i

images, blurring them at the same time, that is, making the patterns wider.
This is achieved by transforming each pixel’s value in the weighted average of
its own and its neighbor’s values.

In the next level of processing each pixel in a US2
i plane connects to a

receptive field at the same position in all of the UC1
j images. At this level

the resolution of the US2
i planes can be reduced, as in standard pyramidal

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

3.4 Applications and biological analogy 73

UC

US planes

UC planes

.

.

. .
.
.

1

1

0

i

j

Fig. 3.16. The architecture of the neocognitron

architectures. Fig 3.16 shows the sizes of the planes used by Fukushima for
handwritten digit recognition. Several layers of alternating US and UC planes
are arranged in this way until at the plane UC4 a classification of the hand-
written digit in one of the classes 0, . . . , 9 is made. Finding the appropriate
weights for the classification task is something we discuss in the next chap-
ter. Fukushima has proposed several improvements of the original model [147]
over the years.

The main advantage of the neocognitron as a pattern recognition device
should be its tolerance to shifts and distortions. Since the UC layers blur
the image and the US layers look for specific features, a certain amount of
displacement or rotation of lines should be tolerated. This can happen, but the
system is highly sensitive to the training method used and does not outperform
other simpler neural networks [280]. Other authors have examined variations
of the neocognitron which are more similar to pyramidal networks [463]. The
neocognitron is just an example of a class of network which relies extensively
on convolution operators and pattern recognition in small receptive fields. For
an extensive discussion of the neocognitron consult [133].

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

74 3 Weighted Networks – The Perceptron

3.4.4 The silicon retina

Carver Mead’s group at Caltech has been active for several years in the field
of neuromorphic engineering, that is, the production of chips capable of em-
ulating the sensory response of some human organs. Their silicon retina, in
particular, is able to simulate some of the features of the human retina.

Mead and his collaborators modeled the first three layers of the retina:
the photoreceptors, the horizontal, and the bipolar cells [303, 283]. The hor-
izontal cells are simulated in the silicon retina as a grid of resistors. Each
photoreceptor (the dark points in Figure 3.17) is connected to each of its six
neighbors and produces a potential difference proportional to the logarithm
of the luminosity measured. The grid of resistors reaches electric equilibrium
when an average potential difference has settled in. The individual neurons of
the silicon retina fire only when the difference between the average and their
own potential reaches a certain threshold.

Fig. 3.17. Diagram of a portion of the silicon retina

The average potential S of n potentials Si can be computed by letting each
potential Si be proportional to the logarithm of the measured light intensity
Hi, that is,

S =
1

n

n∑

i=1

Si =
1

n

n∑

i=1

logHi.

This expression can be transformed into

S =
1

n
log(H1H2 · · ·Hn) = log(H1H2 · · ·Hn)1/n.

The equation tells us that the average potential is the logarithm of the ge-
ometric mean of the light intensities. A unit only fires when the measured
intensity Si minus the average intensity lies above a certain threshold γ, that
is,

log(Hi)− log(H1H2 · · ·Hn)1/n ≥ γ,

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

3.5 Historical and bibliographical remarks 75

and this is valid only when

log
Hi

(H1H2 · · ·Hn)1/n
≥ γ.

The units in the silicon retina fire when the relative luminosity of a point
with respect to the background is significantly higher, such as in a human
retina. We know from optical measurements that when outside on a sunny
day, the black letters in a book reflect more photons on our eyes than white
paper does in a room. Our eyes adjust automatically to compensate for the
luminosity of the background so that we can recognize patterns and read
books inside and outside.

3.5 Historical and bibliographical remarks

The perceptron was the first neural network to be produced commercially,
although the first prototypes were used mainly in research laboratories. Frank
Rosenblatt used the perceptron to solve some image recognition problems
[185]. Some researchers consider the perceptron as the first serious abstract
model of nervous cells [60].

It was not a coincidence that Rosenblatt conceived his model at the end of
the 1950s. It was precisely in this period that researchers like Hubel and Wiesel
were able to “decode” the structure of the retina and examine the structure
of the receptive fields of neurons. At the beginning of the 1970s, researchers
had a fair global picture of the architecture of the human eye [205]. David
Marr’s influential book Vision offered the first integrated picture of the visual
system in a way that fused biology and engineering, by looking at the way the
visual pathway actually computed partial results to be integrated in the raw
visual sketch.

The book Perceptrons by Minsky and Papert was very influential among
the AI community and is said to have affected the strategic funding decisions
of research agencies. This book is one of the best ever written on its subject
and set higher standards for neural network research, although it has been
criticized for stressing the incomputability, not the computability results. The
Dreyfus brothers [114] consider the reaction to Perceptrons as one of the mile-
stones in the permanent conflict between the symbolic and the connectionist
schools of thought in AI. According to them, reaction to the book opened the
way for a long period of dominance of the symbolic approach. Minsky, for his
part, now propagates an alternative massively parallel paradigm of a society
of agents of consciousness which he calls a society of mind [313].

Convolution operators for image processing have been used for many years
and are standard methods in the fields of image processing and computer
vision. Chips integrating this kind of processing, like the silicon retina, have
been produced in several variants and will be used in future robots. Some
researchers dream of using similar chips to restore limited vision to blind

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

76 3 Weighted Networks – The Perceptron

persons with intact visual nerves, although this is, of course, still an extremely
ambitious objective [123].

Exercises

1. Write a computer program that counts the number of linearly separable
Boolean functions of 2, 3, and 4 arguments. Hint: Generate the perceptron
weights randomly.

2. Consider a simple perceptron with n bipolar inputs and threshold θ = 0.
Restrict each of the weights to have the value −1 or 1. Give the smallest
upper bound you can find for the number of functions from {−1, 1}n to
{−1, 1} which are computable by this perceptron [219]. Prove that the
upper bound is sharp, i.e., that all functions are different.

3. Show that two finite linearly separable sets A and B can be separated by
a perceptron with rational weights. Note that in Def. 2 the weights are
real numbers.

4. Prove that the parity function of n > 2 binary inputs x1, x2, . . . , xn cannot
be computed by a perceptron.

5. Implement edge detection with a computer program capable of processing
a computer image.

6. Write a computer program capable of simulating the silicon retina. Show
the output produced by different pictures on the computer’s screen.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

4

Perceptron Learning

4.1 Learning algorithms for neural networks

In the two preceding chapters we discussed two closely related models,
McCulloch–Pitts units and perceptrons, but the question of how to find the
parameters adequate for a given task was left open. If two sets of points have
to be separated linearly with a perceptron, adequate weights for the comput-
ing unit must be found. The operators that we used in the preceding chapter,
for example for edge detection, used hand customized weights. Now we would
like to find those parameters automatically. The perceptron learning algorithm
deals with this problem.

A learning algorithm is an adaptive method by which a network of com-
puting units self-organizes to implement the desired behavior. This is done in
some learning algorithms by presenting some examples of the desired input-
output mapping to the network. A correction step is executed iteratively until
the network learns to produce the desired response. The learning algorithm
is a closed loop of presentation of examples and of corrections to the network
parameters, as shown in Figure 4.1.

network

test input-output
examples

compute the
error

fix network parameters

Fig. 4.1. Learning process in a parametric system

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

78 4 Perceptron Learning

In some simple cases the weights for the computing units can be found
through a sequential test of stochastically generated numerical combinations.
However, such algorithms which look blindly for a solution do not qualify as
“learning”. A learning algorithm must adapt the network parameters accord-
ing to previous experience until a solution is found, if it exists.

4.1.1 Classes of learning algorithms

Learning algorithms can be divided into supervised and unsupervised meth-
ods. Supervised learning denotes a method in which some input vectors are
collected and presented to the network. The output computed by the net-
work is observed and the deviation from the expected answer is measured.
The weights are corrected according to the magnitude of the error in the way
defined by the learning algorithm. This kind of learning is also called learning
with a teacher, since a control process knows the correct answer for the set of
selected input vectors.

Unsupervised learning is used when, for a given input, the exact numerical
output a network should produce is unknown. Assume, for example, that some
points in two-dimensional space are to be classified into three clusters. For this
task we can use a classifier network with three output lines, one for each class
(Figure 4.2). Each of the three computing units at the output must specialize
by firing only for inputs corresponding to elements of each cluster. If one unit
fires, the others must keep silent. In this case we do not know a priori which
unit is going to specialize on which cluster. Generally we do not even know
how many well-defined clusters are present. Since no “teacher” is available,
the network must organize itself in order to be able to associate clusters with
units.

cluster 1

cluster 2

cluster 3

network
x

y
x

y

•
• •

• •
• •

• •
•

Fig. 4.2. Three clusters and a classifier network

Supervised learning is further divided into methods which use reinforce-
ment or error correction. Reinforcement learning is used when after each pre-
sentation of an input-output example we only know whether the network
produces the desired result or not. The weights are updated based on this
information (that is, the Boolean values true or false) so that only the input

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

4.1 Learning algorithms for neural networks 79

vector can be used for weight correction. In learning with error correction, the
magnitude of the error, together with the input vector, determines the magni-
tude of the corrections to the weights, and in many cases we try to eliminate
the error in a single correction step.

learning

supervised learning

unsupervised learning

corrective learning

reinforcement learning

Fig. 4.3. Classes of learning algorithms

The perceptron learning algorithm is an example of supervised learning
with reinforcement. Some of its variants use supervised learning with error
correction (corrective learning).

4.1.2 Vector notation

In the following sections we deal with learning methods for perceptrons.
To simplify the notation we adopt the following conventions. The input
(x1, x2, . . . , xn) to the perceptron is called the input vector. If the weights
of the perceptron are the real numbers w1, w2, . . . , wn and the threshold is
θ, we call w = (w1, w2, . . . , wn, wn+1) with wn+1 = −θ the extended weight
vector of the perceptron and (x1, x2, . . . , xn, 1) the extended input vector. The
threshold computation of a perceptron will be expressed using scalar products.
The arithmetic test computed by the perceptron is thus

w · x ≥ θ ,

if w and x are the weight and input vectors, and

w · x ≥ 0

if w and x are the extended weight and input vectors. It will always be clear
from the context whether normal or extended vectors are being used.

If, for example, we are looking for the weights and threshold needed to
implement the AND function with a perceptron, the input vectors and their
associated outputs are

(0, 0) 7→ 0,
(0, 1) 7→ 0,
(1, 0) 7→ 0,
(1, 1) 7→ 1.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

80 4 Perceptron Learning

If a perceptron with threshold zero is used, the input vectors must be extended
and the desired mappings are

(0, 0, 1) 7→ 0,
(0, 1, 1) 7→ 0,
(1, 0, 1) 7→ 0,
(1, 1, 1) 7→ 1.

A perceptron with three still unknown weights (w1, w2, w3) can carry out this
task.

4.1.3 Absolute linear separability

The proof of convergence of the perceptron learning algorithm assumes that
each perceptron performs the test w · x > 0. So far we have been working
with perceptrons which perform the test w · x ≥ 0. We must just show that
both classes of computing units are equivalent when the training set is finite,
as is always the case in learning problems. We need the following definition.

Definition 3. Two sets A and B of points in an n-dimensional space are
called absolutely linearly separable if n + 1 real numbers w1, . . . , wn+1 exist
such that every point (x1, x2, . . . , xn) ∈ A satisfies

∑n
i=1 wixi > wn+1 and

every point (x1, x2, . . . , xn) ∈ B satisfies
∑n

i=1 wixi < wn+1

If a perceptron with threshold zero can linearly separate two finite sets
of input vectors, then only a small adjustment to its weights is needed to
obtain an absolute linear separation. This is a direct corollary of the following
proposition.

Proposition 7. Two finite sets of points, A and B, in n-dimensional space
which are linearly separable are also absolutely linearly separable.

Proof. Since the two sets are linearly separable, weights w1, . . . , wn+1 exist
for which, without loss of generality, the inequality

n∑

i=1

wiai ≥ wn+1

holds for all points (a1, . . . , an) ∈ A and

n∑

i=1

wibi < wn+1

for all points (b1, . . . , bn) ∈ B. Let ε = max{∑n
i=1 wibi − wn+1|(b1, . . . , bn) ∈

B}. It is clear that ε < ε/2 < 0. Let w′ = wn+1 + ε/2. For all points in A it
holds that

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

4.1 Learning algorithms for neural networks 81

n∑

i=1

wiai − (w′ − 1

2
ε) ≥ 0.

This means that

n∑

i=1

wiai − w′ ≥ −1

2
ε > 0⇒

n∑

i=1

wiai > w′. (4.1)

For all points in B a similar argument holds since

n∑

i=1

wibi − wn+1 =

n∑

i=1

wibi − (w′ − 1

2
ε) ≤ ε,

and from this we deduce

n∑

i=1

wibi − w′ ≤ 1

2
ε < 0. (4.2)

Equations (4.1) and (4.2) show that the sets A and B are absolutely linearly
separable. If two sets are linearly separable in the absolute sense, then they
are, of course, linearly separable in the conventional sense. 2

4.1.4 The error surface and the search method

A usual approach for starting the learning algorithm is to initialize the network
weights randomly and to improve these initial parameters, looking at each step
to see whether a better separation of the training set can be achieved. In this
section we identify points (x1, x2, . . . , xn) in n-dimensional space with the
vector x with the same coordinates.

Definition 4. The open (closed) positive half-space associated with the n-
dimensional weight vector w is the set of all points x ∈ IRn for which w ·x > 0
(w ·x ≥ 0). The open (closed) negative half-space associated with w is the set
of all points x ∈ IRn for which w · x < 0 (w · x ≤ 0).

We omit the adjectives “closed” or “open” whenever it is clear from the
context which kind of linear separation is being used.

Let P and N stand for two finite sets of points in IRn which we want to
separate linearly. A weight vector is sought so that the points in P belong to its
associated positive half-space and the points in N to the negative half-space.
The error of a perceptron with weight vector w is the number of incorrectly
classified points. The learning algorithm must minimize this error function
E(w). One possible strategy is to use a local greedy algorithm which works
by computing the error of the perceptron for a given weight vector, looking
then for a direction in weight space in which to move, and updating the
weight vector by selecting new weights in the selected search direction. We
can visualize this strategy by looking at its effect in weight space.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

82 4 Perceptron Learning

1

w1
x1

w2x2

Fig. 4.4. Perceptron with constant threshold

Let us take as an example a perceptron with constant threshold θ = 1
(Figure 4.4). We are looking for two weights, w1 and w2, which transform
the perceptron into a binary AND gate. We can show graphically the error
function for all combinations of the two variable weights. This has been done
in Figure 4.5 for values of the weights between −0.5 and 1.5. The solution
region is the triangular area in the middle. The learning algorithm should
reach this region starting from any other point in weight space. In this case, it
is possible to descend from one surface to the next using purely local decisions
at each point.

0

1 w1
0

1

w2

0

1

2

error

0

1 w1
0

1

w2

0

1

2

error

Fig. 4.5. Error function for the AND function

Figure 4.6 shows the different regions of the error function as seen from
“above”. The solution region is a triangle with error level 0. For the other
regions the diagram shows their corresponding error count. The figure illus-
trates an iterative search process that starts at w0, goes through w1, w2, and
finally reaches the solution region at w∗. Later on, this visualization will help
us to understand the computational complexity of the perceptron learning
algorithm.

The optimization problem we are trying to solve can be understood as
descent on the error surface but also as a search for an inner point of the
solution region. Let N = {(0, 0), (1, 0), (0, 1)} and P = {(1, 1)} be two sets of
points to be separated absolutely. The set P must be classified in the positive

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

4.1 Learning algorithms for neural networks 83

0

1

1

1

2

2

2

w0
w1

w2w∗

w1

w2

Fig. 4.6. Iteration steps to the region of minimal error

and the set N in the negative half-space. This is the separation corresponding
to the AND function.

Three weights w1, w2, and w3 = −θ are needed to implement the desired
separation with a generic perceptron. The first step is to extend the input
vectors with a third coordinate x3 = 1 and to write down the four inequalities
that must be fulfilled:

(0, 0, 1) · (w1, w2, w3) < 0 (4.3)

(1, 0, 1) · (w1, w2, w3) < 0 (4.4)

(0, 1, 1) · (w1, w2, w3) < 0 (4.5)

(1, 1, 1) · (w1, w2, w3) > 0 (4.6)

These equations can be written in the following simpler matrix form:

0 0 −1
−1 0 −1

0 −1 −1
1 1 1

w1

w2

w3

 >

0
0
0
0

. (4.7)

This can be written as
Aw > 0.

where A is the 4×3 matrix of Equation (4.7) and w the weight vector (written
as a column vector). The learning problem is to find the appropriate weight
vector w.

Equation (4.7) describes all points in the interior of a convex polytope.
The sides of the polytope are delimited by the planes defined by each of the
inequalities (4.3)–(4.6). Any point in the interior of the polytope represents a
solution for the learning problem.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

84 4 Perceptron Learning

We saw that the solution region for the AND function has a triangu-
lar shape when the threshold is fixed at 1. In Figure 4.7 we have a three-
dimensional view of the whole solution region when the threshold (i.e., w3) is
allowed to change. The solution region of Figure 4.5 is just a cut of the so-
lution polytope of Figure 4.7 at w3 = −1. The shaded surface represents the
present cut, which is similar to any other cut we could make to the polytope
for different values of the threshold.

-1

w1

w2

w3

Fig. 4.7. Solution polytope for the AND function in weight space

We can see that the polytope is unbounded in the direction of negative
w3. This means that the absolute value of the threshold can become as large
as we want and we will still find appropriate combinations of w1 and w2 to
compute the AND function. The fact that we have to look for interior points
of polytopes for the solution of the learning problem, is an indication that
linear programming methods could be used. We will elaborate on this idea
later on.

4.2 Algorithmic learning

We are now in a position to introduce the perceptron learning algorithm. The
training set consists of two sets, P and N , in n-dimensional extended input
space. We look for a vector w capable of absolutely separating both sets, so
that all vectors in P belong to the open positive half-space and all vectors in
N to the open negative half-space of the linear separation.

Algorithm 4.2.1 Perceptron learning

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

4.2 Algorithmic learning 85

start: The weight vector w0 is generated randomly,
set t := 0

test: A vector x ∈ P ∪N is selected randomly,

if x ∈ P and wt · x > 0 go to test,
if x ∈ P and wt · x ≤ 0 go to add,
if x ∈ N and wt · x < 0 go to test,
if x ∈ N and wt · x ≥ 0 go to subtract.

add: set wt+1 = wt + x and t := t+ 1, goto test

subtract: set wt+1 = wt − x and t := t+ 1, goto test

This algorithm [312] makes a correction to the weight vector whenever
one of the selected vectors in P or N has not been classified correctly. The
perceptron convergence theorem guarantees that if the two sets P and N are
linearly separable the vector w is updated only a finite number of times. The
routine can be stopped when all vectors are classified correctly. The corre-
sponding test must be introduced in the above pseudocode to make it stop
and to transform it into a fully-fledged algorithm.

4.2.1 Geometric visualization

There are two alternative ways to visualize perceptron learning, one more
effective than the other. Given the two sets of points P ∈ IR2 and N ∈ IR2

to be separated, we can visualize the linear separation in input space, as in
Figure 4.8, or in extended input space. In the latter case we extend the input
vectors and look for a linear separation through the origin, that is, a plane
with equation w1x1 + w2x2 + w3 = 0. The vector normal to this plane is the
weight vector w = (w1, w2, w3). Figure 4.9 illustrates this approach.

vectors in P

vectors in N

weight vector

p1

p2

n2

n1

Fig. 4.8. Visualization in input space

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

86 4 Perceptron Learning

1
p

2
p

1
n

2
n

weight
vector

Fig. 4.9. Visualization in extended input space

We are thus looking for a weight vector w with a positive scalar product
with all the extended vectors represented by the points in P and with a
negative product with the extended vectors represented by the points in N .
Actually, we will deal with this problem in a more general way. Assume that
P and N are sets of n-dimensional vectors and a weight vector w must be
found, such that w · x > 0 holds for all x ∈ P and w · x < 0 holds for all
x ∈ N .

The perceptron learning algorithm starts with a randomly chosen vector
w0. If a vector x ∈ P is found such that w · x < 0, this means that the angle
between the two vectors is greater than 90 degrees. The weight vector must
be rotated in the direction of x to bring this vector into the positive half-
space defined by w. This can be done by adding w and x, as the perceptron
learning algorithm does. If x ∈ N and w · x > 0, then the angle between x
and w is less than 90 degrees. The weight vector must be rotated away from
x. This is done by subtracting x from w. The vectors in P rotate the weight
vector in one direction, the vectors in N rotate the negative weight vector in
another. If a solution exists it can be found after a finite number of steps. A
good initial heuristic is to start with the average of the positive input vectors
minus the average of the negative input vectors. In many cases this yields an
initial vector near the solution region.

In perceptron learning we are not necessarily dealing with normalized vec-
tors, so that every update of the weight vector of the form w± x rotates the
weight vector by a different angle. If x ∈ P and ‖x‖ � ‖w‖ the new weight
vector w + x is almost equal to x. This effect and the way perceptron learn-
ing works can be seen in Figure 4.10. The initial weight vector is updated
by adding x1, x3, and x1 again to it. After each correction the weight vec-
tor is rotated in one or the other direction. It can be seen that the vector w
becomes larger after each correction in this example. Each correction rotates
the weight vector by a smaller angle until the correct linear separation has
been found. After the initial updates, successive corrections become smaller
and the algorithm “fine tunes” the position of the weight vector. The learning
rate, the rate of change of the vector w, becomes smaller in time and if we

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

4.2 Algorithmic learning 87

3) After correction with

1) Initial configuration 2) After correction with

4) After correction with

x1

x2

x3

w0

w1

w2

x1

x2

x3

w0

x1

x3

x2

x1 x1

x3

x2

w3

x3 x1

Fig. 4.10. Convergence behavior of the learning algorithm

keep on training, even after the vectors have already been correctly separated,
it approaches zero. Intuitively we can think that the learned vectors are in-
creasing the “inertia” of the weight vector. Vectors lying just outside of the
positive region are brought into it by rotating the weight vector just enough
to correct the error.

This is a typical feature of many learning algorithms for neural networks.
They make use of a so-called learning constant, which is brought to zero dur-
ing the learning process to consolidate what has been learned. The perceptron
learning algorithm provides a kind of automatic learning constant which de-
termines the degree of adaptivity (the so-called plasticity of the network) of
the weights.

4.2.2 Convergence of the algorithm

The convergence proof of the perceptron learning algorithm is easier to follow
by keeping in mind the visualization discussed in the previous section.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

88 4 Perceptron Learning

Proposition 8. If the sets P and N are finite and linearly separable, the
perceptron learning algorithm updates the weight vector wt a finite number of
times. In other words: if the vectors in P and N are tested cyclically one after
the other, a weight vector wt is found after a finite number of steps t which
can separate the two sets.

Proof. We can make three simplifications without losing generality:

i) The sets P and N can be joined in a single set P ′ = P ∪N−, where the
set N− consists of the negated elements of N .

ii) The vectors in P ′ can be normalized, because if a weight vector w is found
so that w · x > 0 this is also valid for any other vector ηx, where η is a
constant.

iii) The weight vector can also be normalized. Since we assume that a solution
for the linear separation problem exists, we call w∗ a normalized solution
vector.

Assume that after t + 1 steps the weight vector wt+1 has been computed.
This means that at time t a vector pi was incorrectly classified by the weight
vector wt and so wt+1 = wt + pi.

The cosine of the angle ρ between wt+1 and w∗ is

cos ρ =
w∗ ·wt+1

‖wt+1‖
(4.8)

For the expression in the numerator we know that

w∗wt+1 = w∗ · (wt + pi)

= w∗ ·wt + w∗ · pi

≥ w∗ ·wt + δ

with δ = min{w∗ ·p | ∀p ∈ P ′}. Since the weight vector w∗ defines an absolute
linear separation of P and N we know that δ > 0. By induction we obtain

w∗ ·wt+1 ≥ w∗ ·w0 + (t+ 1)δ. (4.9)

On the other hand for the term in the denominator of (4.8) we know that

‖wt+1‖2 = (wt + pi) · (wt + pi)

= ‖wt‖2 + 2wt · pi + ‖pi‖2

Since wt · pi is negative or zero (otherwise we would have not corrected wt

using pi) we can deduce that

‖wt+1‖2 ≤ ‖wt‖2 + ‖pi‖2

≤ ‖wt‖2 + 1

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

4.2 Algorithmic learning 89

because all vectors in P have been normalized. Induction then gives us

‖wt+1‖2 ≤ ‖w0‖2 + (t+ 1). (4.10)

From (4.9) and (4.10) and Equation (4.8) we get the inequality

cos ρ ≥ w∗ ·w0 + (t+ 1)δ
√

‖w0‖2 + (t+ 1)

The right term grows proportionally to
√
t and, since δ is positive, it can

become arbitrarily large. However, since cos ρ ≤ 1, t must be bounded by a
maximum value. Therefore, the number of corrections to the weight vector
must be finite. 2

The proof shows that perceptron learning works by bringing the initial
vector w0 sufficiently close to w∗ (since cos ρ becomes larger and ρ propor-
tionately smaller).

4.2.3 Accelerating convergence

Although the perceptron learning algorithm converges to a solution, the num-
ber of iterations can be very large if the input vectors are not normalized and
are arranged in an unfavorable way.

There are faster methods to find the weight vector appropriate for a given
problem. When the perceptron learning algorithm makes a correction, an in-
put vector x is added or subtracted from the weight vector w. The search
direction is given by the vector x. Each input vector corresponds to the bor-
der of one region of the error function defined on weight space. The direction
of x is orthogonal to the step defined by x on the error surface. The weight
vector is displaced in the direction of x until it “falls” into a region with
smaller error.

We can illustrate the dynamics of perceptron learning using the error sur-
face for the OR function as an example. The input (1, 1) must produce the
output 1 (for simplicity we fix the threshold of the perceptron to 1). The
two weights w1 and w2 must fulfill the inequality w1 + w2 ≥ 1. Any other
combination produces an error. The contribution to the total error is shown
in Figure 4.11 as a step in the error surface. If the initial weight vector lies
in the triangular region with error 1, it must be brought up to the verge of
the region with error 0. This can be done by adding the vector (1,1) to w.
However, if the input vector is, for example, (0.1, 0.1), it should be added a
few times before the weight combination (w1, w2) falls to the region of error
0. In this case we would like to make the correction in a single iteration.

These considerations provide an improvement for the perceptron learning
algorithm: if at iteration t the input vector x ∈ P is classified erroneously,
then we have wt · x ≤ 0. The error δ can be defined as

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

90 4 Perceptron Learning

(1,1)

error

(0.1,0.1)

w 1

w2

w2

w1

Fig. 4.11. A step on the error surface

δ = −wt · x.

The new weight vector wt+1 is calculated as follows:

wt+1 = wt +
δ + ε

‖x‖2 x,

where ε denotes a small positive real number. The classification of x has been
corrected in one step because

wt+1 · x = (wt +
δ + ε

‖x‖2 x) · x

= wt · x + (δ + ε)

= −δ + δ + ε

= ε > 0

The number ε guarantees that the new weight vector just barely skips over
the border of the region with a higher error. The constant ε should be made
small enough to avoid skipping to another region whose error is higher than
the current one. When x ∈ N the correction step is made similarly, but using
the factor δ − ε instead of δ + ε.

The accelerated algorithm is an example of corrective learning: We do not
just “reinforce” the weight vector, but completely correct the error that has
been made. A variant of this rule is correction of the weight vector using a
proportionality constant γ as the learning factor, in such a way that at each
update the vector γ(δ+ ε)x is added to w. The learning constant falls to zero
as learning progresses.

4.2.4 The pocket algorithm

If the learning set is not linearly separable the perceptron learning algorithm
does not terminate. However, in many cases in which there is no perfect linear

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

4.2 Algorithmic learning 91

separation, we would like to compute the linear separation which correctly
classifies the largest number of vectors in the positive set P and the negative
set N . Gallant proposed a very simple variant of the perceptron learning
algorithm capable of computing a good approximation to this ideal linear
separation. The main idea of the algorithm is to store the best weight vector
found so far by perceptron learning (in a “pocket”) while continuing to update
the weight vector itself. If a better weight vector is found, it supersedes the
one currently stored and the algorithm continues to run [152].

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

92 4 Perceptron Learning

Algorithm 4.2.2 Pocket algorithm

start : Initialize the weight vector w randomly. Define a “stored” weight
vector ws = w. Set hs, the history of ws, to zero.

iterate : Update w using a single iteration of the perceptron learning algo-
rithm. Keep track of the number h of consecutively successfully tested
vectors. If at any moment h > hs, substitute ws with w and hs with
h. Continue iterating.

The algorithm can occasionally change a good stored weight vector for an
inferior one, since only information from the last run of selected examples is
considered. The probability of this happening, however, becomes smaller and
smaller as the number of iterations grows. If the training set is finite and the
weights and vectors are rational, it can be shown that this algorithm converges
to an optimal solution with probability 1 [152].

4.2.5 Complexity of perceptron learning

The perceptron learning algorithm selects a search direction in weight space
according to the incorrect classification of the last tested vector and does not
make use of global information about the shape of the error function. It is a
greedy, local algorithm. This can lead to an exponential number of updates
of the weight vector.

w1

w2

zero error
1

1

2

iterations

w0

Fig. 4.12. Worst case for perceptron learning (weight space)

Figure 4.12 shows the different error regions in a worst case scenario. The
region with error 0 is bounded by two lines which meet at a small angle.
Starting the learning algorithm at point w0, the weight updates will lead to a
search path similar to the one shown in the figure. In each new iteration a new
weight vector is computed, in such a way that one of two vectors is classified

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

4.3 Linear programming 93

correctly. However, each of these corrections leads to the other vector being
incorrectly classified. The iteration jumps from one region with error 1 to the
other one. The algorithm converges only after a certain number of iterations,
which can be made arbitrarily large by adjusting the angle at which the lines
meet.

Figure 4.12 corresponds to the case in which two almost antiparallel vec-
tors are to be classified in the same half-space (Figure 4.13). An algorithm
which rotates the separation line in one of the two directions (like perceptron
learning) will require more and more time when the angle between the two
vectors approaches 180 degrees.

x1

x2

Fig. 4.13. Worst case for perceptron learning (input space)

This example is a good illustration of the advantages of visualizing learning
algorithms in both the input space and its dual, weight space. Figure 4.13
shows the concrete problem and Figure 4.12 illustrates why it is difficult to
solve.

4.3 Linear programming

A set of input vectors to be separated by a perceptron in a positive and a
negative set defines a convex polytope in weight space, whose inner points
represent all admissible weight combinations for the perceptron. The percep-
tron learning algorithm finds a solution when the interior of the polytope is
not void. Stated differently: if we want to train perceptrons to classify pat-
terns, we must solve an inner point problem. Linear programming can deal
with this kind of task.

4.3.1 Inner points of polytopes

Linear programming was developed to solve the following generic problem:
Given a set of n variables x1, x2, . . . , xn a function c1x1+c2x2+· · ·+cnxn must

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

94 4 Perceptron Learning

be maximized (or minimized). The variables must obey certain constraints
given by linear inequalities of the form

a11x1 + a12x2 + · · ·+ a1nxn ≤ b1

a21x1 + a22x2 + · · ·+ a2nxn ≤ b2
...

...
...

am1x1 + am2x2 + · · ·+ amnxn ≤ bm

All m linear constraints can be summarized in the matrix inequality Ax ≤ b,
in which x and b respectively represent n-dimensional and m-dimensional
column vectors and A is a m × n matrix. It is also necessary that x ≥ 0,
which can always be guaranteed by introducing additional variables.

As in the case of a perceptron, the m inequalities define a convex polytope
of feasible values for the variables x1, x2, . . . , xn. If the optimization problem
has a solution, this is found at one of the vertices of the polytope. Figure 4.14
shows a two-dimensional example. The shaded polygon is the feasible region.
The function to be optimized is represented by the line normal to the vector c.
Finding the point where this linear function reaches its maximum corresponds
to moving the line, without tilting it, up to the farthest position at which it
is still in contact with the feasible region, in our case ξ. It is intuitively clear
that when one or more solutions exist, one of the vertices of the polytope is
one of them.

x1

x2

c

ξ

Fig. 4.14. Feasible region for a linear optimization problem

The well-known simplex algorithm of linear programming starts at a ver-
tex of the feasible region and jumps to another neighboring vertex, always
moving in a direction in which the function to be optimized increases. In the
worst case an exponential number of vertices in the number of inequalities
m has to be traversed before a solution is found. On average, however, the

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

4.3 Linear programming 95

simplex algorithm is not so inefficient. In the case of Figure 4.14 the optimal
solution can be found in two steps by starting at the origin and moving to the
right. To determine the next vertex to be visited, the simplex algorithm uses
as a criterion the length of the projection of the gradient of the function to
be optimized on the edges of the polytope. It is in this sense a gradient algo-
rithm. The algorithm can be inefficient because the search for the optimum is
constrained to be carried out moving only along the edges of the polytope. If
the number of delimiting surfaces is large, a better alternative is to go right
through the middle of the polytope.

4.3.2 Linear separability as linear optimization

The simplex algorithm and its variants need to start at a point in the feasible
region. In many cases it can be arranged to start at the origin. If the feasible
region does not contain the origin as one of its vertices, a feasible point must
be found first. This problem can be transformed into a linear program.

Let A represent the m× n matrix of coefficients of the linear constraints
and b an m-dimensional column vector. Assume that we are looking for an
n-dimensional column vector x such that Ax ≤ b. This condition is fulfilled
only by points in the feasible region. To simplify the problem, assume that
b ≥ 0 and that we are looking for vectors x ≥ 0. Introducing the column
vector y of m additional slack variables (y1, . . . , ym), the inequality Ax ≤ b
can be transformed into the equality Ax+Iy = b, where I denotes the m×m
identity matrix. The linear program to be solved is then

min{
m∑

i=1

yi|Ax + Iy = b,x ≥ 0,y ≥ 0}.

An initial feasible solution for the problem is x = 0 and y = b. Starting from
here an iterative algorithm looks for the minimum of the sum of the slack
variables. If the minimum is negative the original problem does not have a
solution and the feasible region of Ax ≤ b is void. If the minimum is zero, the
value of x determined during the optimization is an inner point of the feasible
region (more exactly, a point at its boundary).

The conditions x ≥ 0 and b ≥ 0 can be omitted and additional transfor-
mations help to transform the more general problem to the canonical form
discussed here [157].

Inner points of convex polytopes, defined by separating hyperplanes, can
thus be found using linear programming algorithms. Since the computation
of the weight vector for a perceptron corresponds to the computation of inner
points of convex polytopes, this means that perceptron learning can also be
handled in this way. If two sets of vectors are not linearly separable, the linear
programming algorithm can detect it. The complexity of linearly separating
points in an input space is thus bounded by the complexity of solving linear
programming problems.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

96 4 Perceptron Learning

The perceptron learning algorithm is not the most efficient method for
perceptron learning, since the number of steps can grow exponentially in the
worst case. In the case of linear programming, theoreticians have succeeded in
crafting algorithms which need a polynomial number of iterations and return
the optimal solution or an indication that it does not exist.

4.3.3 Karmarkar’s algorithm

In 1984 a fast polynomial time algorithm for linear programming was proposed
by Karmarkar [236]. His algorithm starts at an inner point of the solution
region and proceeds in the direction of steepest ascent (if maximizing), taking
care not to step out of the feasible region.

Figure 4.15 schematically shows how the algorithm works. The algorithm
starts with a canonical form of the linear programming problem in which
the additional constraint x1 + x2 + · · · + xn = 1 is added to the basic con-
straints Ax ≥ 0, where x1, . . . , xn are the variables in the problem. Some
simple transformations can bring the original problem into this form. The
point e = 1

n (1, 1, . . . , 1) is considered the middle of the solution polytope and
each iteration step tries to transform the original problem in such a way that
this is always the starting point.

x1

x2

c

•

•
a1

a0

′a0

′a1 •

•

T

Fig. 4.15. Transformation of the solution polytope

An initial point a0 is selected in the interior of the solution polytope and
then brought into the middle e of the transformed feasible region using a
projective transformation T . A projective transformation maps each point x
in the hyperplane x1 + x2 + · · ·+ xn = 1 to a point x′ in another hyperplane,
whereby the line joining x and x′ goes through a predetermined point p.
The transformation is applied on the initial point a0, the matrix A of linear
constraints and also to the linear function cT x to be optimized. After the

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

4.3 Linear programming 97

transformation, the radius of the largest sphere with center a′0 and inside
the transformed feasible region is computed. Starting at the center of the
sphere a new point in the direction of the transformed optimizing direction
c′ is computed. The step length is made shorter than the computed maximal
radius by a small factor, to avoid reaching the surface of the solution polytope.
The new point a′1 computed in this way is a feasible point and is also strictly
in the interior of the solution polytope. The point a′1 is transformed back
to the original space using the inverse projective transformation T−1 and a
new iteration can start again from this point. This basic step is repeated,
periodically testing whether a vertex of the polytope is close enough and
optimal. At this moment the algorithm stops and takes this vertex as the
solution of the problem (Figure 4.16). Additionally, a certain checking must be
done in each iteration to confirm that a solution to the optimization problem
exists and that the cost function is not unbounded.

x1

x2

c
a1

a0

a2

al

Fig. 4.16. Example of a search path for Karmarkar’s algorithm

In the worst case Karmarkar’s algorithm executes in a number of iterations
proportional to n3.5, where n is the number of variables in the problem and
other factors are kept constant. Some published modifications of Karmarkar’s
algorithm are still more efficient but start beating the simplex method in
the average case only when the number of variables and constraints becomes
relatively large, since the computational overhead for a small number of con-
straints is not negligible [257].

The existence of a polynomial time algorithm for linear programming and
for the solution of interior point problems shows that perceptron learning
is not what is called a hard computational problem. Given any number of
training patterns, the learning algorithm (in this case linear programming)
can decide whether the problem has a solution or not. If a solution exists, it
finds the appropriate weights in polynomial time at most.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

98 4 Perceptron Learning

4.4 Historical and bibliographical remarks

The success of the perceptron and the interest it aroused in the 1960s was a
direct product of its learning capabilities, different from the hand-design ap-
proach of previous models. Later on, research in this field reached an impasse
when a learning algorithm for more general networks was still unavailable.

Minsky and Papert [312] analyzed the features and limitations of the per-
ceptron model in a rigorous way. They could show that the perceptron learning
algorithm needs an exponential number of learning steps in the worst case.
However, perceptron learning is in the average case fairly efficient. Mansfield
showed that when the training set is selected randomly from a half-space, the
number of iterations of the perceptron learning algorithm is comparable to
the number of iterations needed by ellipsoid methods for linear programming
(up to dimension 30) [290]. Baum had previously shown that when the learn-
ing set is picked by a non-malicious adversary, the complexity of perceptron
learning is polynomial [46].

More recently the question has arisen of whether a given set of nonlin-
early separable patterns can be decomposed in such a way that the largest
linearly separable subset can be detected. Amaldi showed that this is an NP-
complete problem, that is, a problem for which presumably no polynomial
time algorithm exists (compare Chap. 10).

The conditions for perfect perceptron learning can be also relaxed. If the
set of patterns is not linearly separable, we can look for the separation that
minimizes the average quadratic error, without requiring it to be zero. In this
case statistical methods or the backpropagation algorithm (Chap. 7) can be
used.

After the invention of the simplex algorithm for linear programming there
was a general feeling that it could be proven that one of its variants was of
polynomial complexity in the number of constraints and of variables. This
was due to the fact that the actual experience with the algorithm showed
that in the average case a solution was found in much less than exponential
time. However, in 1972 Klee and Minty [247] gave a counterexample which
showed that there were situations in which the simplex method visited 2n−1

vertices of a feasible region with 2n vertices. Later it was rigorously proven
that the simplex method is polynomial in the average case [64]. The question
of the existence of a polynomial time algorithm for linear programming was
settled by Khachiyan in 1979, when he showed that a recursive construction
of ellipsoids could lead to finding the optimal vertex of the feasible region
in polynomial time [244]. His algorithm, however, was very computationally
intensive for most of the average-sized problems and could not displace the
simplex method. Karmarkar’s algorithm, a further development of the ellip-
soid method including some very clever transformations, aroused much inter-
est when it was first introduced in 1984. So many variations of the original
algorithm have appeared that they are collectively known as Karmarkar-type
algorithms. Minimization problems with thousands of constraints can now be

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

4.4 Historical and bibliographical remarks 99

dealt with efficiently by these polynomial time algorithms, but since the sim-
plex method is fast in the average case it continues to be the method of choice
in medium-sized problems.

Interesting variations of perceptron learning were investigated by Fonta-
nari and Meir, who coded the different alternatives of weight updates accord-
ing to the local information available to each weight and let a population of
algorithms evolve. With this kind of “evolution strategy” they found compet-
itive algorithms similar to the standard methods [140].

Exercises

1. Implement the perceptron learning algorithm in the computer. Find the
weights for an edge detection operator using this program. The input-
output examples can be taken from a digitized picture of an object and
another one in which only the edges of the object have been kept.

2. Give a numerical example of a training set that leads to many iterations
of the perceptron learning algorithm.

3. How many vectors can we pick randomly in an n-dimensional space so
that they all belong to the same half-space? Produce a numerical estimate
using a computer program.

4. The perceptron learning algorithm is usually fast if the vectors to be
linearly separated are chosen randomly. Choose a weight vector w for a
perceptron randomly. Generate p points in input space and classify them
in a positive or negative class according to their scalar product with w.
Now train a perceptron using this training set and measure the number
of iterations needed. Make a plot of n against p for dimension up to 10
and up to 100 points.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

5

Unsupervised Learning and Clustering

Algorithms

5.1 Competitive learning

The perceptron learning algorithm is an example of supervised learning. This
kind of approach does not seem very plausible from the biologist’s point of
view, since a teacher is needed to accept or reject the output and adjust
the network weights if necessary. Some researchers have proposed alternative
learning methods in which the network parameters are determined as a result
of a self-organizing process. In unsupervised learning corrections to the net-
work weights are not performed by an external agent, because in many cases
we do not even know what solution we should expect from the network. The
network itself decides what output is best for a given input and reorganizes
accordingly.

We will make a distinction between two classes of unsupervised learning:
reinforcement and competitive learning. In the first method each input pro-
duces a reinforcement of the network weights in such a way as to enhance the
reproduction of the desired output. Hebbian learning is an example of a rein-
forcement rule that can be applied in this case. In competitive learning, the
elements of the network compete with each other for the “right” to provide the
output associated with an input vector. Only one element is allowed to answer
the query and this element simultaneously inhibits all other competitors.

This chapter deals with competitive learning. We will show that we can
conceive of this learning method as a generalization of the linear separation
methods discussed in the previous two chapters.

5.1.1 Generalization of the perceptron problem

A single perceptron divides input space into two disjoint half-spaces. However,
as we already mentioned in Chap. 3, the relative number of linearly separable
Boolean functions in relation to the total number of Boolean functions con-
verges to zero as the dimension of the input increases without bound. There-

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

102 5 Unsupervised Learning and Clustering Algorithms

fore we would like to implement some of those not linearly separable functions
using not a single perceptron but a collection of computing elements.

P
N

Fig. 5.1. The two sets of vectors P and N

Figure 5.1 shows a two-dimensional problem involving two sets of vectors,
denoted respectively P and N . The set P consists of a more or less compact
bundle of vectors. The set N consists of vectors clustered around two different
regions of space.

cluster A

cluster B

cluster C

w1

w2

w3

Fig. 5.2. Three weight vectors for the three previous clusters

This classification problem is too complex for a single perceptron. A weight
vector w cannot satisfy w · p ≥ 0 for all vectors p in P and w · n < 0 for all
vectors n in N . In this situation it is possible to find three different vectors
w1,w2 and w3 which can act as a kind of “representative” for the vectors
in each of the three clusters A, B and C shown in Figure 5.2. Each one of

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

5.1 Competitive learning 103

these vectors is not very far apart from every vector in its cluster. Each weight
vector corresponds to a single computing unit, which only fires when the input
vector is close enough to its own weight vector.

If the number and distribution of the input clusters is known in advance,
we can select a representative for each one by doing a few simple computa-
tions. However the problem is normally much more general: if the number and
distribution of clusters is unknown, how can we decide how many computing
units and thus how many representative weight vectors we should use? This is
the well-known clustering problem, which arises whenever we want to classify
multidimensional data sets whose deep structure is unknown. One example
ot this would be the number of phonemes in speech. We can transform small
segments of speech to n-dimensional data vectors by computing, for example,
the energy in each of n selected frequency bands. Once this has been done,
how many different patterns should we distinguish? As many as we think we
perceive in English? However, there are African languages with a much richer
set of articulations. It is this kind of ambiguity that must be resolved by
unsupervised learning methods.

5.1.2 Unsupervised learning through competition

The solution provided in this chapter for the clustering problem is just a gen-
eralization of perceptron learning. Correction steps of the perceptron learning
algorithm rotate the weight vector in the direction of the wrongly classified
input vector (for vectors belonging to the positive half-space). If the prob-
lem is solvable, the weight vector of a perceptron oscillates until a solution is
found.

x1

x2

w11

w12

w21

w22

w31

w32

Fig. 5.3. A network of three competing units

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

104 5 Unsupervised Learning and Clustering Algorithms

In the case of unsupervised learning, the n-dimensional input is processed
by exactly the same number of computing units as there are clusters to be
individually identified. For the problem of three clusters in Figure 5.2 we could
use the network shown in Figure 5.3.

The inputs x1 and x2 are processed by the three units in Figure 5.3. Each
unit computes its weighted input, but only the unit with the largest excitation
is allowed to fire a 1. The other units are inhibited by this active element
through the lateral connections shown in the diagram. Deciding whether or
not to activate a unit requires therefore global information about the state of
each unit. The firing unit signals that the current input is an element of the
cluster of vectors it represents. We could also think of this computation as
being performed by perceptrons with variable thresholds. The thresholds are
adjusted in each computation in such a way that just one unit is able to fire.

The following learning algorithm allows the identification of clusters of
input vectors. We can restrict the network to units with threshold zero without
losing any generality.

Algorithm 5.1.1 Competitive learning

Let X = (x1,x2, . . . ,x`) be a set of normalized input vectors in n-
dimensional space which we want to classify in k different clusters. The net-
work consists of k units, each with n inputs and threshold zero.

start: The normalized weight vectors w1, . . . ,wk are generated randomly.

test: Select a vector xj ∈ X randomly.
Compute xj ·wi for i = 1, . . . , k.
Select wm such that wm · xj ≥ wi · xj for i = 1, . . . , k.
Continue with update.

update:Substitute wm with wm + xj and normalize.
Continue with test.

The algorithm can be stopped after a predetermined number of steps. The
weight vectors of the k units are “attracted” in the direction of the clusters
in input space. By using normalized vectors we prevent one weight vector
from becoming so large that it would win the competition too often. The
consequence could be that other weight vectors are never updated so that
they just lie unused. In the literature the units associated with such vectors
are called dead units. The difference between this algorithm and perceptron
learning is that the input set cannot be classified a priori in a positive or a
negative set or in any of several different clusters.

Since input and weight vectors are normalized, the scalar product wi · xj

of a weight and an input vector is equal to the cosine of the angle spanned by
both vectors. The selection rule (maximum scalar product) guarantees that
the weight vector wm of the cluster that is updated is the one that lies closest
to the tested input vector. The update rule rotates the weight vector wm in
the direction of xj . This can be done using different learning rules:

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

5.2 Convergence analysis 105

• Update with learning constant – The weight update is given by

∆wm = ηxj .

The learning constant η is a real number between 0 and 1. It decays to 0
as learning progresses. The plasticity of the network can be controlled in
such a way that the corrections are more drastic in the first iterations and
afterwards become more gradual.

• Difference update – The weight update is given by

∆wm = η(xj −wm).

The correction is proportional to the difference of both vectors.

• Batch update – Weight corrections are computed and accumulated. After
a number of iterations the weight corrections are added to the weights.
The use of this rule guarantees some stability in the learning process.

The learning algorithm 5.1.1 uses the strategy known as winner-takes-all, since
only one of the network units is selected for a weight update. Convergence to
a good solution can be accelerated by distributing the initial weight vectors
according to an adequate heuristic. For example, one could initialize the k
weight vectors with k different input vectors. In this way no weight vector
corresponds to a dead unit. Another possibility is monitoring the number of
updates for each weight vector in order to make the process as balanced as
possible (see Exercise 4). This is called learning with conscience.

5.2 Convergence analysis

In Algorithm 5.1.1 no stop condition is included. Normally only a fixed num-
ber of iterations is performed, since it is very difficult to define the “natural”
clustering for some data distributions. If there are three well-defined clusters,
but only two weight vectors are used, it could well happen that the weight
vectors keep skipping from cluster to cluster in a vain attempt to cover three
separate regions with just two computing units. The convergence analysis of
unsupervised learning is therefore much more complicated than for perceptron
learning, since we are dealing with a much more general problem. Analysis of
the one-dimensional case already shows the difficulties of dealing with conver-
gence of unsupervised learning.

5.2.1 The one-dimensional case – energy function

In the one-dimensional case we deal with clusters of numbers in the real line.
Let the input set be {−1.3,−1.0,−0.7, 0.7, 1.0, 1.3}.

Note that we avoid normalizing the input or the weights, since this would
make no sense in the one-dimensional case. There are two well-defined clusters

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

106 5 Unsupervised Learning and Clustering Algorithms

0–1 1

centered at −1 and 1 respectively. This clustering must be identified by the
network shown in Figure 5.4, which consists of two units, each with one weight.
A possible solution is α = −1 and β = 1. The winning unit inhibits the other
unit.

x

α

β

Fig. 5.4. Network for the one-dimensional case

If the learning algorithm is started with α negative and small and β positive
and small, it is easy to see that the cluster of negative numbers will attract
α and the cluster of positive numbers will attract β. We should expect to see
α converge to −1 and β to 1. This means that one of the weights converges
to the centroid of the first cluster and the other weight to the centroid of the
second. This attraction can be modeled as a kind of force. Let x be a point in
a cluster and α0 the current weight of the first unit. The attraction of x on
the weight is given by

Fx(α0) = γ(x− α0) ,

where γ is a constant. Statisticians speak of a “potential” or “inertia” as-
sociated with this force. We will call the potential associated with Fx the
energy function corresponding to the learning task. The energy function for
our example is given by

Ex(α0) =

∫

−γ(x− α0)dα0 =
γ

2
(x − α0)

2 + C,

where C is an integration constant and the integration is performed over
cluster 1. Note that in this case we compute the form of the function for a
given α0 under the assumption that all points of cluster 1 are nearer to α0 than
to the second weight β. The energy function is quadratic with a well-defined
global minimum, since in the discrete case the integral is just a summation,
and a sum of quadratic functions is also quadratic. Figure 5.5 shows the basins
of attraction for the two weights α and β, created by two clusters in the real
line which we defined earlier.

Since the attraction of each cluster-point on each of the two weights de-
pends on their relative position, a graphical representation of the energy func-
tion must take both α and β into account. Figure 5.6 is a second visualization

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

5.2 Convergence analysis 107

-2 -1 1 2
x

E

Fig. 5.5. Attractors generated by two one-dimensional clusters

attempt. The vertical axis represents the sum of the distances from α to each
one of the cluster-points which lie nearer to α than to β, plus the sum of the
distances from β to each one of the cluster-points which lie nearer to β than to
α. The gradient of this distance function is proportional to the attraction on α
and β. As can be seen there are two global minima: the first at α = 1, β = −1
and the second at α = −1, β = 1. Which of these two global minima will be
found depends on the weight initialization.

-5

0

5

x1

-5
0

5

x2

0

2

4

-5

0

5

x1

-5
0

5

x2

0

2

4

Fig. 5.6. Energy distribution for two one-dimensional clusters

Note, however, that there are also two local minima. If α, for example, is
very large in absolute value, this weight will not be updated, so that β con-
verges to 0 and α remains unchanged. The same is valid for β. The dynamics
of the learning process is given by gradient descent on the energy function.
Figure 5.7 is a close-up of the two global minima.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

108 5 Unsupervised Learning and Clustering Algorithms

-2

-1

0
1

2

x1

-2-1012

x2

-1

0

1

2

3

-2

-1

0
1

2

x1

-2-1012

x2

-1

0

1

2

3

Fig. 5.7. Close-up of the energy distribution

The two local minima in Figure 5.6 correspond to the possibility that unit
1 or unit 2 could become “dead units”. This happens when the initial weight
vectors lie so far apart from the cluster points that they are never selected for
an update.

5.2.2 Multidimensional case – the classical methods

It is not so easy to show graphically how the learning algorithm behaves in
the multidimensional case. All we can show are “instantaneous” slices of the
energy function which give us an idea of its general shape and the direction
of the gradient. A straightforward generalization of the formula used in the
previous section provides us with the following definition:

Definition 5. The energy function of a set X = {x1, . . . ,xm} of n-
dimensional normalized vectors (n ≥ 2) is given by

EX(w) =
m∑

i=1

(xi −w)2

where w denotes an arbitrary vector in n-dimensional space.

The energy function is the sum of the quadratic distances from w to the
input vectors xi. The energy function can be rewritten in the following form:

EX(w) = mw2 − 2

m∑

i=1

xi ·w +

m∑

i=1

x2
i

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

5.2 Convergence analysis 109

= m(w2 − 2

m
w ·

m∑

i=1

xi) +
m∑

i=1

x2
i

= m(w − 1

m

m∑

i=1

xi)
2 − 1

m2
(

m∑

i=1

xi)
2 +

m∑

i=1

x2
i

= m(w − x∗)2 +K.

The vector x∗ is the centroid of the cluster {x1,x2, . . . ,xm} and K a constant.
The energy function has a global minimum at x∗. Figure 5.8 shows the energy
function for a two-dimensional example. The first cluster has its centroid at
(−1, 1), the second at (1,−1). The figure is a snapshot of the attraction exerted
on the weight vectors when each cluster attracts a single weight vector.

-2

-1

0

1

2

 w1

-2

-1

0

1

2

w2

0

2

4

E

-2

-1

0

1

2

 w1

-2

-1

0

1

2

w2

0

2

4

E

Fig. 5.8. Energy function of two two-dimensional clusters

Statisticians have worked on the problem of finding a good clustering of
empirical multidimensional data for many years. Two popular approaches are:

• k-nearest neighbors – Sample input vectors are stored and classified in one
of ` different classes. An unknown input vector is assigned to the class to
which the majority of its k closest vectors from the stored set belong (ties
can be broken with special heuristics) [110]. In this case a training set is
needed, which is later expanded with additional input vectors.

• k-means – Input vectors are classified in k different clusters (at the be-
ginning just one vector is assigned to each cluster). A new vector x is
assigned to the cluster k whose centroid ck is the closest one to the vector.
The centroid vector is updated according to

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

110 5 Unsupervised Learning and Clustering Algorithms

ck = ck +
1

nk
(x− ck),

where nk is the number of vectors already assigned to the k-th cluster.
The procedure is repeated iteratively for the whole data set [282]. This
method is similar to Algorithm 5.1.1, but there are several variants. The
centroids can be updated at the end of several iterations or right after the
test of each new vector. The centroids can be calculated with or without
the new vector [59].

The main difference between a method like k-nearest neighbors and the
algorithm discussed in this chapter is that we do not want to store the input
data but only capture its structure in the weight vectors. This is particu-
larly important for applications in which the input data changes with time.
The transmission of computer graphics is a good example. The images can
be compressed using unsupervised learning to find an adequate vector quan-
tization. We do not want to store all the details of those images, only their
relevant statistics. If these statistics change, we just have to adjust some net-
work weights and the process of image compression still runs optimally (see
Sect. 5.4.2).

5.2.3 Unsupervised learning as minimization problem

In some of the graphics of the energy function shown in the last two sections,
we used a strong simplification. We assumed that the data points belonging
to a given cluster were known so that we could compute the energy function.
But this is exactly what the network should find out. Different assumptions
lead to different energy function shapes.

Fig. 5.9. Extreme points of the normalized vectors of a cluster

We can illustrate the iteration process using a three-dimensional example.
Assume that two clusters of four normalized vectors are given. One of the
clusters is shown in Figure 5.9. Finding the center of this cluster is equivalent
to the two-dimensional problem of finding the center of two clusters of four

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

5.2 Convergence analysis 111

points at the corners of two squares. Figure 5.10 shows the distribution of
members of the two clusters and the initial points a and b selected for the
iteration process. You can think of these two points as the endpoints of two
normalized vectors in three-dimensional space and of the two-dimensional
surface as an approximation of the “flattened” surface of the sphere.

The method we describe now is similar to Algorithm 5.1.1, but uses the
Euclidian distance between points as metric. The energy of a point in IR2

corresponds to the sum of the quadratic distances to the points in one of the
two clusters. For the initial configuration shown in Figure 5.10 all points above
the horizontal line lie nearer to a than to b and all points below the line lie
nearer to b than to a.

a

b

Fig. 5.10. Two cluster and initial points ‘a’ and ‘b’

-2 -1 0 1 2

-2

-1

0

1

2

Fig. 5.11. Energy function for the initial points

Figure 5.11 shows the contours of the energy function. As can be seen,
both a and b are near to equilibrium. The point a is a representative for the
cluster of the four upper points, point b a representative for the cluster of the
four lower points. If one update of the position of a and b that modifies the
distribution of the cluster points is computed, the shape of the energy function

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

112 5 Unsupervised Learning and Clustering Algorithms

changes dramatically, as shown in Figure 5.12. In this case, the distribution
of points nearer to a than to b has changed (as illustrated by the line drawn
between a and b). After several more steps of the learning algorithm the
situation shown in Figure 5.13 could be reached, which corresponds now to
stable equilibrium. The points a and b cannot jump out of their respective
clusters, since the iterative corrections always map points inside the squares
to points inside the squares.

-2 -1 0 1 2

-2

-1

0

1

2

Fig. 5.12. Energy function for a new distribution

-2 -1 0 1 2

-2

-1

0

1

2

Fig. 5.13. Energy function for the linear separation x = 0

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

5.2 Convergence analysis 113

5.2.4 Stability of the solutions

The assignment of vectors to clusters can become somewhat arbitrary if we
do not have some way of measuring a “good clustering”. A simple approach
is determining the distance between clusters.

Figure 5.14 shows two clusters of vectors in a two-dimensional space. On
the left side we can clearly distinguish the two clusters. On the right side we
have selected two weight vectors w1 and w2 as their representatives. Each
weight vector lies near to the vectors in its cluster, but w1 lies inside the cone
defined by its cluster and w2 outside. It is clear that w1 will not jump outside
the cone in future iterations, because it is only attracted by the vectors in its
cluster. Weight vector w2 will at some point jump inside the cone defined by
its cluster and will remain there.

w1

w2

Fig. 5.14. Two vector clusters (left) and two representative weight vectors (right)

This kind of distribution is a stable solution or a solution in stable equilib-
rium. Even if the learning algorithm runs indefinitely, the weight vectors will
stay by their respective clusters.

As can be intuitively grasped, stable equilibrium requires clearly delimited
clusters. If the clusters overlap or are very extended, it can be the case that
no stable solution can be found. In this case the distribution of weight vectors
remains in unstable equilibirum.

Definition 6. Let P denote the set {p1,p2, . . . ,pm} of n-dimensional (n ≥ 2)
vectors located in the same half-space. The cone K defined by P is the set of
all vectors x of the form x = α1p1 +α2p2 + · · ·+αmpm, where α1, α2, . . . , αm

are positive real numbers.

The cone of a cluster contains all vectors “between” the cluster. The con-
dition that all vectors are located in the same half-space forbids degenerate
cones filling the whole space.

The diameter of a cone defined by normalized vectors is proportional to
the maximum possible angle between two vectors in the cluster.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

114 5 Unsupervised Learning and Clustering Algorithms

Definition 7. The angular diameter ϕ of a cone K, defined by normalized
vectors {p1,p2, . . . ,pm} is

ϕ = sup{arccos(a · b)|∀a,b ∈ K, with ‖a‖ = ‖b‖ = 1},

where 0 ≤ arccos(a · b) ≤ π.

A sufficient condition for stable equilibrium, which formalizes the intuitive
idea derived from the example shown in Figure 5.14, is that the angular diam-
eter of the cluster’s cone must be smaller than the distance between clusters.
This can be defined as follows:

Definition 8. Let P = {p1,p2, . . . ,pm} and N = {n1,n2, . . . ,nk} be two
non-void sets of normalized vectors in an n-dimensional space (n ≥ 2) that
define the cones KP and KN respectively. If the intersection of the two cones
is void, the angular distance between the cones is given by

ψPN = inf{arccos(p · n)|p ∈ KP ,n ∈ KN , with ‖p‖ = ‖n‖ = 1},

where 0 ≤ arccos(p · n) ≤ π. If the two cones intersect, the angular distance
between them is zero.

It is easy to prove that if the angular distance between clusters is greater
than the angular diameter of the clusters, a stable solution exists in which
the weight vectors of an unsupervised network lie in the cluster’s cones. Once
there, the weight vectors will not leave the cones (see Exercise 1).

In many applications it is not immediately obvious how to rank different
clusterings according to their quality. The usual approach is to define a cost
function which penalizes too many clusters, and favors less but more compact
clusters [77]. An extreme example could be identifying each data point as a
cluster. This should be forbidden by the optimization of the cost function.

5.3 Principal component analysis

In this section we discuss a second kind of unsupervised learning and its
application for the computation of the principal components of empirical data.
This information can be used to reduce the dimensionality of the data. If the
data was coded using n parameters, we would like to encode them using fewer
parameters and without losing any essential information.

5.3.1 Unsupervised reinforcement learning

For the class of algorithms we want to consider we will build networks of
linear associators. This kind of unit exclusively computes the weighted input
as result. This means that we omit the comparison with a threshold. Linear
associators are used predominantly in associative memories (Chap. ??).

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

5.3 Principal component analysis 115

x1

x2

xn

w1

wn

wixi
i =1

n

Σ+w2

Fig. 5.15. Linear associator

Assume that a set of empirical data is given which consists of n-dimensional
vectors {x1,x2, . . . ,xm}. The first principal component of this set of vectors
is a vector w which maximizes the expression

1

m

m∑

i=1

‖w · xi‖2,

that is, the average of the quadratic scalar products. Figure 5.16 shows an ex-
ample of a distribution centered at the origin (that is, the centroid of the data
lies at the origin). The diagonal runs in the direction of maximum variance of
the data. The orthogonal projection of each point on the diagonal represents
a larger absolute displacement from the origin than each one of its x1 and
x2 coordinates. It can be said that the projection contains more information
than each individual coordinate alone [276]. In order to statistically analyze
this data it is useful to make a coordinate transformation, which in this case
would be a rotation of the coordinate axis by 45 degrees. The information
content of the new x coordinate is maximized in this way. The new direction
of the x1 axis is the direction of the principal component.

x1

x2

Fig. 5.16. Distribution of input data

The second principal component is computed by subtracting from each
vector xi its projection on the first principal component. The first principal
component of the residues is the second principal component of the origi-
nal data. The second principal component is orthogonal to the first one. The

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

116 5 Unsupervised Learning and Clustering Algorithms

third principal component is computed recursively: the projection of each vec-
tor onto the first and second principal components is subtracted from each
vector. The first principal component of the residues is now the third prin-
cipal component of the original data. Additional principal components are
computed following such a recursive strategy.

Computation of the principal components makes a reduction of the di-
mension of the data with minimal loss of information feasible. In the example
of Figure 5.16 each point can be represented by a single number (the length
of its projection on the diagonal line) instead of two coordinates x1 and x2.
If we transmit these numbers to a receiver, we have to specify as sender the
direction of the principal component and each one of the projections. The
transmission error is the difference between the real and the reconstructed
data. This difference is the distance from each point to the diagonal line. The
first principal component is thus the direction of the line which minimizes
the sum of the deviations, that is the optimal fit to the empirical data. If a
set of points in three-dimensional space lies on a line, this line is the prin-
cipal component of the data and the three coordinates can be transformed
into a single number. In this case there would be no loss of information, since
the second and third principal components vanish. As we can see, analysis of
the principal components helps in all those cases in which the input data is
concentrated in a small region of the input space.

In the case of neural networks, the set of input vectors can change in the
course of time. Computation of the principal components can be done only
adaptively and step by step. In 1982 Oja proposed an algorithm for linear
associators which can be used to compute the first principal component of
empirical data [331]. It is assumed that the distribution of the data is such
that the centroid is located at the origin. If this is not the case for a data set,
it is always possible to compute the centroid and displace the origin of the
coordinate system to fulfill this requirement.

Algorithm 5.3.1 Computation of the first principal component

start: Let X be a set of n-dimensional vectors.
The vector w is initialized randomly (w 6= 0).
A learning constant γ with 0 < γ ≤ 1 is selected.

update:A vector x is selected randomly from X .
The scalar product φ = x ·w is computed.
The new weight vector is w + γφ(x− φw).
Go to update, making γ smaller.

Of course, a stopping condition has to be added to the above algorithm
(for example a predetermined number of iterations). The learning constant γ
is chosen as small as necessary to guarantee that the weight updates are not
too abrupt (see below). The algorithm is another example of unsupervised
learning, since the principal component is found by applying “blind” updates

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

5.3 Principal component analysis 117

to the weight vector. Oja’s algorithm has the additional property of automat-
ically normalizing the weight vector w. This saves an explicit normalization
step in which we need global information (the value of each weight) to modify
each individual weight. With this algorithm each update uses only local in-
formation, since each component of the weight vector is modified taking into
account only itself, its input, and the scalar product computed at the linear
associator.

5.3.2 Convergence of the learning algorithm

With a few simple geometric considerations we can show that Oja’s algorithm
must converge when a unique solution to the task exists. Figure 5.17 shows
an example with four input vectors whose principal component points in the
direction of w. If Oja’s algorithm is started with this set of vectors and w, then
w will oscillate between the four vectors but will not leave the cone defined
by them. If w has length 1, then the scalar product φ = x ·w corresponds to
the length of the projection of x on w. The vector x− φw is a vector normal
to w. An iteration of Oja’s algorithm attracts w to a vector in the cluster. If
it can be guaranteed that w remains of length 1 or close to 1, the effect of a
number of iterations is just to bring w into the middle of the cluster.

w x

Fig. 5.17. Cluster of vectors and principal component

We must show that the vector w is automatically normalized by this algo-
rithm. Figure 5.18 shows the necessary geometric constructions. The left side
shows the case in which the length of vector w is greater than 1. Under these
circumstances the vector (x ·w)w has a length greater than the length of the
orthogonal projection of x on w. Assume that x ·w > 0, that is, the vectors x
and w are not too far away. The vector x− (x ·w)w has a negative projection
on w because

(x− (x ·w)w) ·w = x ·w − ‖w‖2x ·w < 0.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

118 5 Unsupervised Learning and Clustering Algorithms

Now we have to think about the result of many iterations of this type. The
vector x − (x · w)w has a component normal to w and another pointing in
the negative direction of w. Repeated iterations will bring w into the middle
of the cluster of vectors, so that in the average case the normal components
later cancel. However, the negative component does not cancel if w is still of
a length greater than 1. The net effect of the iterations is therefore to position
w correctly, but also to make it smaller. However, care must be taken to avoid
making w too small or even reversing its direction in a single iteration. This
can be avoided by setting the learning constant γ as small as necessary. It
also helps to normalize the training vectors before the algorithm is started. If
the vector x has a positive scalar product φ with w, we would like also the
new weight vector to have a positive scalar product with x. This means that
we want the following inequality to hold

x · (w + γφ(x− φw) > 0.

This is equivalent to
γ(‖x‖2 − φ2) > −1,

and if γ is positive and small the inequality can always be satisfied regardless
of the sign of ‖x‖2 − φ2.

(w ⋅ x)w

−(w ⋅ x)w

x

(w ⋅ x)w

x

− (w ⋅ x)w

x − (w ⋅ x)w
x − (w ⋅ x)w

Fig. 5.18. The two cases in Oja’s algorithm

The right side of Figure 5.18 shows what happens when the vector w has
a length smaller than 1. In this case the vector x − (x · w)w has a positive
projection on w. The normal component of this vector will bring w into the
center of the cluster after repeated iterations. The positive projection of this
vector on w has the net effect of making w larger. Combining both cases, we
can deduce that the net effect of the algorithm is to bring w into the middle
of the cluster, while at the same time the length of w oscillates around 1 (for
a small enough γ). Once this state is achieved, and if the task has a unique
solution, w just oscillates around its equilibrium position and equilibrium
length. Note, however, that these are considerations about the expected value

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

5.3 Principal component analysis 119

of w. If the clusters are sparsely populated or if the data vectors are of very
different lengths, the actual value of w can differ significantly at each iteration
from its average value.

It can be shown that the first principal component of a set of vectors
is equivalent to the direction of the longest eigenvector of their correlation
matrix [225] and that Oja’s algorithm finds approximately this direction.

5.3.3 Multiple principal components

Sanger proposed a network architecture capable of finding the firstm principal
components of a data set [387]. The idea is to compute the first principal
component using a linear associator and then to subtract the projection of
the data on this direction from the data itself. The residues are processed
by the next linear associator in the chain. This unit computes the second
principal component of the original data. Figure 5.19 shows the structure of
the network. The figure shows the connections associated with vector w1 as
an arrow in order to simplify the wiring diagram.

⇒
⇐

x +
w1 φ 1

⇒ +

⇒ +

w2

w2

w3

w3

φ 2

φ 3

x − φ1w1

x − φ1w1 − φ2w2

*
w1

–

*–

*–

⇐

⇐
Fig. 5.19. Network for the iterative computation of the first three principal com-
ponents

The network weights are found using Oja’s algorithm at each level of the
network. It must be guaranteed that the individual weight vectors (which
appear twice in the network) are kept consistent. The three linear associators
shown in the figure can be trained simultaneously, but we can stop training
the last unit only after the weight vectors of the previous units have stabilized.

Other authors have proposed alternative network topologies to compute
the first m principal components of empirical data [332, 381], but the essential
idea is roughly the same.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

120 5 Unsupervised Learning and Clustering Algorithms

5.4 Some applications

Vector quantization and unsupervised clustering have found many interesting
applications. In this section we discuss two of them.

5.4.1 Pattern recognition

Unsupervised learning can be used in all cases where the number of different
input clusters is known a priori, as is the case with optical character recogni-
tion. Assume that letters in a document are scanned and centered in 16× 16
projection screens. Each letter is coded as a vector of dimension 256, assigning
the value 1 to black pixels and −1 to white pixels. There is some noise asso-
ciated with each image, so that sometimes pixels are assigned the false bit.
If the number of errors per image is not excessive, then the input vectors for
the same letter cluster around a definite region in input space. These clusters
can be identified by a network of competitive units.

Fig. 5.20. A digital “J” (4 × 4 matrix)

If only 26 different letters are to be recognized, our network needs only 26
different units. The weights of each unit can be initialized randomly and an
unsupervised learning algorithm can be used to find the correct parameters.
There are conflicts with letters having a similar shape (for example O and Q),
which can be solved only by pulling the clusters apart using a higher scanning
resolution.

5.4.2 Image compression

Assume that a picture with 1024 × 1024 pixels is to be transmitted. The
number of bits needed is 220. However, images are not totally random. They
have a structure which can be analyzed with the purpose of compressing
the image before transmission. This can be done by dividing the picture in
128 × 128 fields of 8 × 8 pixels. Each field can contain any of 264 different
possible patterns, but assume that we decide to classify them in 64 different
classes. We start an unsupervised network with 64 outputs and train it to
classify all 8 × 8 patterns found in the image. Note that we do not train
the network with all 264 different possible patterns, but only using those that
actually appear in the picture. The units in the network classify these patterns
in clusters. The weight vectors of the 64 units are then transmitted as a

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

5.4 Some applications 121

representative of each cluster and correspond to a certain pattern identified
by the corresponding unit. The 64 weight vectors are the codebook for the
transmission.

codebook

64-dimensional code vectors

Fig. 5.21. Part of a codebook for image compression

The transmission of the image can begin once the sender and receiver
have agreed on a codebook. For each of the 128×128 fields in the picture, the
sender transmits the name of the code vector nearer to the 8 × 8 content of
the field. Since there are only 64 codebook vectors, the sender has to transmit
6 bits. The compression ratio achieved for the transmission is 64/6 = 10.66.
The image reconstructed by the sender contains some errors, but if a good
clustering has been found, those errors will be minimal. Figure 5.21 shows 8 of
the weight vectors found by unsupervised learning applied to a picture. The
weight vectors are represented by gray values and show the kind of features
identified by the algorithm. Note that there are weight vectors for units which
recognize vertical or horizontal lines, white or black regions as well as other
kinds of structures. The compression ratio can be modified by using more or
less codebook vectors, that is, more or less clusters.

Scientists have long speculated about the possible mechanisms of informa-
tion compression in the human brain. Many different experiments have shown
that the connection pattern of the brain is determined by genetic factors, but
also by experience. There is an interplay between “nature and nurture” that
leads to the gradual modification of the neural connections. Some classical
results were obtained analyzing the visual cortex of cats. It is now well known
that if a cat is blind in one eye, the part of the visual cortex normally as-
signed to that eye is reassigned to the other one. Some other experiments, in
which cats were kept in a special environment (lacking for example any kind
of horizontal lines) have shown that feature detectors in the brain specialize

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

122 5 Unsupervised Learning and Clustering Algorithms

to identify only those patterns present in the real world. These results are
interpreted by assuming that genetic factors determine the rules by which
unsupervised learning takes place in the neural connections, whereas actual
experience shapes the feature detectors. Some regions of the visual cortex are
in fact detectors which identify patterns of the kind shown in Figure 5.21.

5.5 Historical and bibliographical remarks

Frank Rosenblatt was the first to experiment with unsupervised learning in
networks of threshold elements [382]. He interpreted the ability of the networks
to find clusters as a kind of mechanism similar to the abstraction power of
the human mind, capable of forming new concepts out of empirical material.

After Rosenblatt there were not many other examples of unsupervised
networks until the 1970s. Grossberg and von der Malsburg formulated bio-
logically oriented models capable of self-organizing in an unsupervised envi-
ronment [168, 284]. Theoretical models of synaptic plasticity were developed
later by Sejnowski and Tesauro [397] and Klopf [249]. The Nobel prizewinner
Gerald Edelman developed a whole theory of “neuronal selection” with which
he tried to explain the global architecture of the brain [124]. Using large com-
puter simulations he showed that the “market forces”, that is, competition at
all levels of the neuronal circuits, can explain some of their characteristics.

Vector quantization has become a common tool for the transmission and
analysis of images and signals. Although the resulting assignment problem
is known to be computationally expensive (NP-hard indeed, see Chap. 10),
many heuristics and approximate methods have been developed that are now
being used [159]. Codebooks have also been applied to the digital transmission
of voice signals over telephone lines.

Principal component analysis has been a standard statistical technique
since it was first described by Pearson and Hotelling between 1901 and 1903
[225]. The methods were discussed analytically but only found real application
with the advent of the computer. Traditional methods of principal component
analysis proceed by finding eigenvalues of the correlation matrix. Adaptive
methods, of the kind introduced in the 1970s, do not assume that the data
set is fixed and constant, but that it can change in the course of time [387].
The algorithms of Oja and Linsker can be used in these cases. The possible
applications of such an adaptive principal component analysis are real-time
compression of signals, simplification and acceleration of learning algorithms
for neural networks [404], or adaptive pattern recognition [208].

Exercises

1. Prove that if m weight vectors lie in the cones of m clusters such that
their angular diameters are smaller that the minimum angular distance

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

5.5 Historical and bibliographical remarks 123

between clusters, unsupervised learning will not bring any of the weight
vectors out of its respective cone.

2. Implement an optical character recognizer. Train a classifier network of
competitive units with scanned examples of 10 different letters. Test if the
network can identify noisy examples of the same scanned letters.

3. Train the classifier network using Oja’s algorithm.
4. How can dead units be avoided in a network of competitive units? Propose

two or three different heuristics.
5. Compute a codebook for the compression of a digitized image. Compare

the reconstructed image with the original. Can you improve the recon-
structed image using a Gaussian filter?

6. A network can be trained to classify characters using a decision tree.
Propose an architecture for such a network and a training method.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

6

One and Two Layered Networks

6.1 Structure and geometric visualization

In the previous chapters the computational properties of isolated threshold
units have been analyzed extensively. The next step is to combine these ele-
ments and look at the increased computational power of the network. In this
chapter we consider feed-forward networks structured in successive layers of
computing units.

6.1.1 Network architecture

The networks we want to consider must be defined in a more precise way in
terms of their architecture. The atomic elements of any architecture are the
computing units and their interconnections. Each computing unit collects the
information from n input lines with an integration function Ψ : IRn → IR. The
total excitation computed in this way is then evaluated using an activation
function Φ : IR→ IR. In perceptrons the integration function is the sum of the
inputs. The activation (also called output function) compares the sum with
a threshold. Later we will generalize Φ to produce all values between 0 and
1. In the case of Ψ some functions other than addition can also be considered
[454], [259]. In this case the networks can compute some difficult functions
with fewer computing units.

Definition 9. A network architecture is a tuple (I,N,O,E) consisting of a
set I of input sites, a set N of computing units, a set O of output sites and a
set E of weighted directed edges. A directed edge is a tuple (u, v, w) whereby
u ∈ I ∪N , v ∈ N ∪O and w ∈ IR.

The input sites are just entry points for information into the network and
do not perform any computation. Results are transmitted to the output sites.
The set N consists of all computing elements in the network. Note that the
edges between all computing units are weighted, as are the edges between
input and output sites and computing units.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

126 6 One and Two Layered Networks

In neural network literature there is an inconsistency in notation that
unfortunately has become tradition. The input sites of a network are usually
called input units, although nothing is computed here. The output sites of
the network are implicit in the construction but not explicitly given. The
computing units from which results are read off are called the output units.

Layered architectures are those in which the set of computing units N is
subdivided into ` subsets N1, N2, . . . , N` in such a way that only connections
from units in N1 go to units in N2, from units in N2 to units in N3, etc. The
input sites are only connected to the units in the subset N1, and the units in
the subset N` are the only ones connected to the output sites. In the usual
terminology, the units in N` are the output units of the network. The subsets
Ni are called the layers of the network. The set of input sites is called the
input layer, the set of output units is called the output layer. All other layers
with no direct connections from or to the outside are called hidden layers.
Usually the units in a layer are not connected to each other (although some
neural models make use of this kind of architecture) and the output sites are
omitted from the graphical representation.

A neural network with a layered architecture does not contain cycles. The
input is processed and relayed from one layer to the other, until the final
result has been computed. Figure 6.1 shows the general structure of a layered
architecture.

input layer output layer

hidden layers

...

...
.
.
.

.

.

.

.

.

.

Fig. 6.1. A generic layered architecture

In layered architectures normally all units from one layer are connected
to all other units in the following layer. If there are m units in the first layer
and n units in the second one, the total number of weights is mn. The total
number of connections can become rather large and one of the problems with
which we will deal is how to reduce the number of connections, that is, how
to prune the network.

6.1.2 The XOR problem revisited

The properties of one- and two-layered networks can be discussed using the
case of the XOR function as an example. We already saw that a single per-
ceptron cannot compute this function, but a two-layered network can. The

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

6.1 Structure and geometric visualization 127

1.0

1.0

0.5

1.0
0.5

-1.0

-1.0

1.0
0.5

x1

x2

Fig. 6.2. A three-layered network for the computation of XOR

network in Figure 6.2 is capable of doing this using the parameters shown in
the figure. The network consists of three layers (adopting the usual definition
of the layer of input sites as input layer) and three computing units. One of
the units in the hidden layer computes the function x1 ∧ ¬x2, and the other
the function ¬x1 ∧ x2. The third unit computes the OR function, so that the
result of the complete network computation is

(x1 ∧ ¬x2) ∨ (¬x1 ∧ x2).

A natural question to ask is how many basically different solutions can be
implemented with this network. Different solutions are only those expressed
with a different combination of two-dimensional binary functions, not those
which differ only in the weights being used and not in the individual functions
being computed. The question then is how many different expressions for XOR
can be written using only three out of 14 of the 16 possible Boolean functions
of two variables (since XOR and ¬XOR are not among the possible building
blocks). An exhaustive search for all possible combinations can be made and
the solution is the one shown in Figure 6.3.

The notation used in the figure is as follows: since we are considering logical
functions of two variables, there are four possible combinations for the input.
The outputs for the four inputs are four bits which uniquely distinguish each
logical function. We use the number defined by these four bits as a subindex
for the name of the functions. The function (x1, x2) 7→ 0, for example, is
denoted by f0 (since 0 corresponds to the bit string 0000). The AND function
is denoted by f8 (since 8 corresponds to the bit string 1000), whereby the
output bits are ordered according to the following ordering of the inputs:
(1,1), (0,1), (1,0), (0,0).

The sixteen possible functions of two variables are thus:

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

128 6 One and Two Layered Networks

f0(x1, x2) = f0000(x1, x2) = 0
f1(x1, x2) = f0001(x1, x2) = ¬(x1 ∨ x2)
f2(x1, x2) = f0010(x1, x2) = x1 ∧ ¬x2

f3(x1, x2) = f0011(x1, x2) = ¬x2

f4(x1, x2) = f0100(x1, x2) = ¬x1 ∧ x2

f5(x1, x2) = f0101(x1, x2) = ¬x1

f6(x1, x2) = f0110(x1, x2) = x1 ⊕ x2

f7(x1, x2) = f0111(x1, x2) = ¬(x1 ∧ x2)

f8(x1, x2) = f1000(x1, x2) = x1 ∧ x2

f9(x1, x2) = f1001(x1, x2) = x1 ≡ x2

f10(x1, x2) = f1010(x1, x2) = x1

f11(x1, x2) = f1011(x1, x2) = x1 ∨ ¬x2

f12(x1, x2) = f1100(x1, x2) = x2

f13(x1, x2) = f1101(x1, x2) = ¬x1 ∨ x2

f14(x1, x2) = f1110(x1, x2) = x1 ∨ x2

f15(x1, x2) = f1111(x1, x2) = 1

Figure 6.3 shows all solutions found by an exhaustive search. The network
of Figure 6.2 corresponds to the function composition

(x1 ∧ ¬x2) ∨ (¬x1 ∧ x2) = f14(f2(x1, x2), f4(x1, x2)).

Increasing the number of units in the hidden layer increases the number of
possible combinations available. We say that the capacity of the network in-
creases. Note the symmetry in the function compositions of Figure 6.3, which
is not just a random effect as we show later on.

The network of Figure 6.4 can also be used to compute the XOR function.
This is not a pure layered architecture, since there are direct connections from
the input sites to the output unit. The output unit computes the OR function
of the two inputs but is inhibited by the first unit if both inputs are 1.

6.1.3 Geometric visualization

The symmetry of the 16 basic solutions for the XOR problem can be under-
stood by looking at the regions defined in weight space by the two-layered
network. Each of the units in Figure 6.2 separates the input space into a
closed positive and an open negative half-space. Figure 6.5 shows the linear
separations defined by each unit and the unit square. The positive half-spaces
have been shaded.

The three regions defined in this way can be labeled with two bits: the
first bit is 1 or 0 according to whether this region is included in the positive
or negative half-space of the first linear separation. The second bit is 1 or
0 if it is included in the positive or negative half-space of the second linear
separation. In this way we get the labeling shown in Figure 6.6.

The two units in the first layer produce the labeling of the region in which
the input is located. The point (1, 1), for example is contained in the region 00.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

6.1 Structure and geometric visualization 129

f1

f7

f2

f4

f14

f1

f1 f1

f1f1

f7

f4

f4

f4

f4f2

f2

f2

f11

f11

f11

f11

f11

f11

f7f7

f7

f7

f14

f14

f14

f14 f13

f13

f13

f13

f13

f8

f8

f8f8

f4

f13

f14

f2

f8

f8

f2

Fig. 6.3. The 16 solutions for the computation of XOR with three computing units

1.0

1.0

0.5

1.0

x
1

x
2

1.5
–2.0

1.0

Fig. 6.4. Two unit network for the computation of XOR

This recoding of the input bits makes the XOR problem solvable, because the
output unit must only decode three region labels. Only the shaded areas must
produce a 1 and this can be computed with the OR function applied to the
two bits of the regions labels. This is a general feature of layered architectures:
the first layer of computing units maps the input vector to a second space,
called classification or feature space. The units in the last layer of the network
must decode the classification produced by the hidden units and compute the
final output.

We can now understand in a more general setting how layered networks
work by visualizing in input space the computations they perform. Each unit
in the first hidden layer computes a linear separation of input space. Assume
that input space is the whole of IR2. It is possible to isolate a well-defined
cluster of points in the plane by using three linear separations as shown in
Figure 6.7. Assume that we are looking for a network which computes the

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

130 6 One and Two Layered Networks

x2 − x1 ≥ 0. 5

x1 − x2 ≥ 0. 5

(1,1)

(1,0)

(0,1)

(0,0)

Fig. 6.5. Space separation defined by a two-layered network

region C

region A
region B

01
00

10

Fig. 6.6. Labeling of the regions in input space

value 1 for the points in the cluster. Three hidden units, and an output unit
which computes the AND function of three inputs, can solve this problem. The
output unit just decodes the label of the shaded region (111) and produces
in this case a 1. Note that, in general, to define a convex cluster in an input
space of dimension n at least n+ 1 hidden units are needed.

If the union of two clusters has to be identified and points in them are
assigned the value 1, it is possible to use three units in the first hidden layer
to enclose the first cluster and another three units in this layer to enclose the
second cluster. Two AND units in the second hidden layer can identify when a
point belongs to one or to the other cluster. A final output unit computes the
OR function of two inputs. Such a network can identify points in the union
of the two clusters. In general, any union of convex polytopes in input space
can be classified in this way: units in the first hidden layer define the sides of

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

6.2 Counting regions in input and weight space 131

111

011

101
110

•

••
•

••

100

001010

Fig. 6.7. Delimiting a cluster with three linear separations

the polytopes, the units in the second layer the conjunction of sides desired,
and the final output unit computes whether the input is located inside one of
the convex polytopes.

6.2 Counting regions in input and weight space

The construction used in the last section to isolate clusters is not optimal,
because no effort is made to “reuse” hyperplanes already defined. Each cluster
is treated in isolation and uses as many units as necessary. In general we do
not know how many different clusters are contained in the data and besides
the clusters do not need to be convex. We must look more deeply into the
problem of how many regions can be defined by intersecting half-spaces and
why in some cases a network does not contain enough “plasticity” to solve a
given problem.

6.2.1 Weight space regions for the XOR problem

Assume that we are interested in finding the weight vectors for a perceptron
capable of computing the AND function. The weights w1, w2, w3 must fulfill
the following inequalities:

for the point (0,0):0 · w1 + 0 · w2 + 1 · w3<0,output =0 ,
for the point (0,1):0 · w1 + 1 · w2 + 1 · w3<0,output =0 ,
for the point (1,0):1 · w1 + 0 · w2 + 1 · w3<0,output =0 ,
for the point (1,1):1 · w1 + 1 · w2 + 1 · w3≥0,output =1 .

These three inequalities define half-spaces in three-dimensional weight
space. The four separating planes go through the origin and are given by
the equations:

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

132 6 One and Two Layered Networks

plane 1:w3 = 0
plane 2:w2 + w3 = 0
plane 3:w1 + w3 = 0
plane 4:w1 + w2 + w3 = 0

Three separating planes in a three-dimensional space define 8 different
regions, but four separating planes define only 14 regions. Each region corre-
sponds to one of 14 possible combinations of inequality symbols in the set of
four inequalities which defines a Boolean function. Since there are 16 Boolean
functions of two variables, two of them cannot be computed with a perceptron.
We already know that they are the XOR and ¬XOR functions.

We can visualize the fourteen regions with the help of a three-dimensional
sphere. It was shown in Chapter 4 that the four inequalities associated with
the four points (1,1), (0,1), (1,0), and (0,0) define a solution polytope in weight
space. One way of looking at the regions defined by m hyperplane cuts going
through the origin in an n-dimensional space is by requiring that the weight
vectors for our perceptron be normalized. This does not affect the perceptron
computation and is equivalent to the condition that the tip of all weight
vectors should end at the unit hypersphere of dimension n. In this way all the
convex regions produced by the m hyperplane cuts define solution regions on
the “surface” of the unit sphere. The 14 solution polytopes define 14 solution
regions. Each region corresponds to a logical function. Figure 6.8 shows some
of them and their labeling. Each label consists of the four output bits for the
four possible binary inputs associated with the function. The region 0000, for
example, is the solution region for the function f0000 = f0. The region 1000 is
the solution region for the function f1000 = f8, i.e., the AND function.

0000

10
00

00
01

0010

0100

0101

110
0

1010

0
0
11

1101

Fig. 6.8. The Boolean sphere

The labeling of neighboring regions separated by a great circle differs in
just one bit, as is clear from Figure 6.9. The only regions present are delimited
by three of four circles. The AND region (1000) has only the three neighbors

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

6.2 Counting regions in input and weight space 133

0000, 1100 and 0011, because the region 1001 is void. It corresponds to a
non-computable function.

0101 0100 1100

0001 0000 1000

0011 0010 1010

1100 1101 0101

1110 1111 0111

1010 1011 0011

Fig. 6.9. Two opposite sides of the Boolean sphere

6.2.2 Bipolar vectors

Many models of neural networks use bipolar, not binary, vectors. In a bipolar
coding the value 0 is substituted by −1. This change does not affect the essen-
tial properties of the perceptrons, but changes the symmetry of the solution
regions. It is well known that the algebraic development of some terms useful
for the analysis of neural networks becomes simpler when bipolar coding is
used.

With a bipolar coding the equations for the 4 cutting planes of the three-
dimensional Boolean sphere become

plane 1:−w1 − w2 + w3 = 0
plane 2:−w1 + w2 + w3 = 0
plane 3: w1 − w2 + w3 = 0
plane 4: w1 + w2 + w3 = 0

All three planes meet at the origin and form symmetric solution polytopes,
since the vectors normal to the planes have pairwise scalar products of 1 or
−1.

Since the relative sizes of the solution regions on the Boolean sphere rep-
resent how difficult it is to learn them, and since our learning algorithm will
be asked to learn one of these functions randomly, the best strategy is to try
to get regions of about the same relative size. Table 6.1 was calculated using
a Monte Carlo method. A normalized weight vector was generated randomly
and its associated Boolean function was computed. By repeating the experi-
ment a number of times it was possible to calculate the relative volumes of the

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

134 6 One and Two Layered Networks

solution regions. The table shows that the maximum variation in the relative
sizes of the 14 possible regions is given by a factor of 1.33 when bipolar cod-
ing is used, whereas in the binary case it is about 12.5. This means that with
binary coding some regions are almost one order of magnitude smaller than
others. And indeed, it has been empirically observed that multilayer neural
networks are easier to train using a bipolar representation than a binary one
[341]. The rationale for this is given by the size of the regions in the Boolean
sphere. It is also possible to show that bipolar coding is optimal under this
criterion.

Table 6.1. Relative sizes of the regions on the Boolean sphere as percentage of the
total surface

Coding Boolean function number

0 1 2 3 4 5 6 7

binary 26.832.134.184.134.174.220.004.13

bipolar 8.336.296.268.326.248.360.006.22

Coding Boolean function number

8 9 10 11 12 13 14 15

binary 4.280.004.264.174.174.142.0727.12

bipolar6.160.008.426.338.276.316.25 8.23

Bipolar coding is still better in n-dimensional space and for a large n,
since two randomly selected vectors with coordinates 1 or −1 are orthogonal
with a probability near 1. This is so because each component is 1 or −1 with
probability 1/2. The expected value of the scalar product is small compared
to the length of the two vectors, which is

√
n. Since the separating planes

in weight space are defined by these vectors, they also tend to be mutually
orthogonal when bipolar coding is used. The expected value of the scalar
product of binary vectors, on the other hand, is n/4, which is not negligible
when compared to

√
n, even for large n.

6.2.3 Projection of the solution regions

Another way of looking at the solution regions in the surface of the Boolean
sphere is by projecting them onto a plane. A kind of stereographic projection
can be used in this case. The stereographic projection is shown in Figure 6.10.
From the north pole of the sphere a line is projected to each point P on the
surface of the sphere and its intersection with the plane is the point in the
plane associated with P . This defines a unique mapping from the surface of
the sphere to the plane, adopting the convention that the north pole itself is
mapped to a point at infinity.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

6.2 Counting regions in input and weight space 135

•

•

Fig. 6.10. Stereographic projection

0

1

AND ORNORNAND

f

g

f = x1 ∧ x2 g = x1 ∧ x2

x1 ∨ x2

x1 ∨ x2

x2

x2 x1

x1

Fig. 6.11. Projection of the solution regions of the Boolean sphere

The stereographic projection projects circles on the sphere (which do not
touch the north pole) to ellipses. The four cuts produced by the four separating
hyperplanes define four circles on the surface of the Boolean sphere, and these
in turn four ellipses on the projection plane. Since we are not interested in
the exact shape of these projections, but in the regions they define on the
plane, we transform them into circles. Figure 6.11 shows the result of such a
projection when the center of region 1111 is chosen as the north pole.

Instead of repeating the four-bit labeling of the regions in Figure 6.11 the
expressions for the logical functions “contained” in each region are written
explicitly. It is obvious that the number of regions cannot be increased, because
four circles on a plane cannot define more than 14 different regions. This result
is related to the Euler characteristic of the plane [63].

The symmetry of the solution regions is made more evident by adopting
a stylized representation. Only the neighborhood relations are important for

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

136 6 One and Two Layered Networks

0

1

AND ORNORNAND

f

g

x1 ∨ x2

x2

x2 x1

x1

x1 ∨ x2

f = x1 ∧ x2 g = x1 ∧ x2

Fig. 6.12. Stylized representation of the projected solution regions

1

1 1

1

2 2

2 2

3

3

3

3

0

4

2

2 0

2

3 1

3 1

4

2

2

2

1

3

Fig. 6.13. Error functions for the computation of f1111 and x1 ∨ x2

our discussion, so we transform Figure 6.11 into Figure 6.12. We can see that
functions f and ¬f are always located in symmetrical regions of the space.

The number of neighbors of each region is important if an iterative algo-
rithm is used which, starting from a randomly chosen point, goes from one
region to another, trying to minimize the classification error, as the percep-
tron learning algorithm does. The error function for a given Boolean function
of two variables can be represented with this kind of diagram. Figure 6.13
shows the values of the error in each region when looking for the parameters
to compute the function f1111.

There is a global maximum and a global minimum only. The first is the
solution region for f0000, the second, the solution region for f1111. Starting

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

6.2 Counting regions in input and weight space 137

from a randomly selected point, a possible strategy is to greedily descend the
error function. From each region with error 1 there is one path leading to a
region with error 0. From regions with error two, there are two alternatives
and from regions with error three, three possible paths.

0

1

2

3

4

error

0

1

2

3

4

error

Fig. 6.14. The error function for f1111

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

Fig. 6.15. Two perspectives of the error function for OR

The error distribution in weight space in shown in Figure 6.13. The global
maximum lies in the solution region for ¬XOR. From each region there is a
path which leads to the global minimum.

Figures 6.14 and 6.15 show the error functions for the functions f1111 and
f1110 (OR). The global maxima and minima can be readily identified.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

138 6 One and Two Layered Networks

6.2.4 Geometric interpretation

We analyzed the surface of the Boolean sphere in so much detail because it
gives us a method to interpret the functioning of networks with a hidden layer.
This is the problem we want to analyze now.

Consider a network with three perceptrons in the hidden layer and one
output unit. An input vector is processed and the three hidden units produce
a new code for it using three bits. This new code is then evaluated by the
output unit. Each unit in the hidden layer separates input space into two half-
spaces. In order to simplify the visualization, we only deal with normalized
vectors. Each division of input space is equivalent to a subdivision of the
unit sphere which now represents vectors in input space. Figure 6.16 shows
a stylized graphical representation of this idea. The input vector has three
components.

Fig. 6.16. Stylized representation of the input space separations

The separation of input space can be summarized in a single unit sphere
in three-dimensional space (Figure 6.17). The three units in the hidden layer
produce the labeling of three bits for each region on the sphere. The output
unit decodes the three bits and, according to the region, computes a 1 or a 0.

111

110

010

100
101

011

Fig. 6.17. Labeling of the regions in input space

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

6.2 Counting regions in input and weight space 139

This kind of representation leads to an important idea: the “shattering” of
an input space by a class of concepts. In computational learning theory we are
interested in dealing with elements from an input space which can be arranged
into subsets or classes. If a subset S of an input spaceX is given, and its points
are assigned the value 1 or 0, we are interested in determining the “concept”
which can correctly classify this subset of X . In the case of perceptrons the
input space is IRn and the concepts are half-spaces. If the positive elements of
subset S (the elements with associated value 1) are located in one half-space,
then it is said to be learnable, because one of our concepts (i.e., a half-space)
can correctly classify the points of S. One important question is, what is the
maximum number of elements of an input space which can be classified by
our concepts. In the case of perceptrons with two inputs, this number is three.
We can arrange three points arbitrarily in IR2 and assign each one a 0 or a 1,
and there is always a way to separate the positive from the negative examples.
But four points in general position cannot be separated and the XOR function
illustrates this fact.

What kind of shatterings (divisions of input space) are produced by a
network with two units in the hidden layer? This question is easier to answer
by considering the surface of the unit sphere in input space. In general the two
units in the hidden layer divide the surface of the sphere into four regions.
The output unit assigns a 1 or a 0 to each region. Figure 6.18 shows the
possible shatterings. Regions in which the input is assigned the value 1 have
been shaded and regions in which the input is mapped to zero are shown in
white. There are sixteen possible colorings, but two of them are impossible
because the output unit cannot decode the XOR function. Our network can
only produce 14 different shatterings.

Fig. 6.18. Coloring of the regions in input space

The XOR problem can be solved with one of the shatterings of Figure 6.18
and, in general, any four points in input space can be divided arbitrarily into
a positive and a negative class using two hidden units (two dividing lines).
However, eight points in input space cannot be divided using only two lines.
Consider the example of Figure 6.19. In this case the points at the corners
of the square belong to the positive class, the points in the middle of each
edge to the negative class. It is not difficult to see that no combination of
two separating lines can divide input space in such a way as to separate

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

140 6 One and Two Layered Networks

both classes. In this case we say that the shattering produced by the class
of concepts represented by our network does not cover all possible subsets of
eight points and not every Boolean function defined on these eight points is
learnable.

Fig. 6.19. Example of a non-learnable concept for two linear separations

The maximum number of points d of an input space X which can be shat-
tered by a class of concepts C is called the Vapnik-Chervonenkis dimension of
the class of concepts C. We will come back to this important definition after
learning how to count the threshold functions.

6.3 Regions for two layered networks

We now proceed to formalize the intuitive approach made possible by the
graphical representation and examine especially the problem of counting the
number of solution regions for perceptron learning defined by a data set.

6.3.1 Regions in weight space for the XOR problem

We can now deal with other aspects of the XOR problem and its solution
using a network of three units. Since nine parameters must be defined (two
weights and a threshold per unit), weight space is nine-dimensional. We al-
ready know that there are sixteen different solutions for the XOR problem
with this network, but what is the total number of solution regions for this
network?

Let w1, w2, w3 be the weights for the first unit, w4, w5, w6 the weights for
the second unit and w7, w8, w9 the weights for the output unit. Let x1 and x2

denote the components of the input vector and y1 and y2 the outputs of the
hidden units. These inputs for each unit define a set of separating hyperplanes
in weight space. The set of equations for the two hidden units is

0 · w1 + 0 · w2 + 1 · w3 = 0 0 · w4 + 0 · w5 + 1 · w6 = 0
0 · w1 + 1 · w2 + 1 · w3 = 0 0 · w4 + 1 · w5 + 1 · w6 = 0
1 · w1 + 0 · w2 + 1 · w3 = 0 1 · w4 + 0 · w5 + 1 · w6 = 0
1 · w1 + 1 · w2 + 1 · w3 = 0 1 · w4 + 1 · w5 + 1 · w6 = 0

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

6.3 Regions for two layered networks 141

For the output unit there are as many cutting hyperplanes as there are (y1, y2)-
combinations produced by the hidden units. The form of the equation for each
plane is:

y1w7 + y2w8 + 1 · w9 = 0.

The separating hyperplanes of the first unit are orthogonal to the separating
hyperplanes of the second unit and of the output unit. The first four cuts can
generate at most 14 different regions (as in the case of the simple perceptron).
The cuts defined by the second unit are also at most 14 and the same hap-
pens with the output unit. The maximum total number of regions we get by
combining these orthogonal cuts is 14 · 14 · 14, that is, 2744 polytopes.

This result can be interpreted as meaning that the number of solution
regions defined at the surface of the nine-dimensional Boolean sphere is 2744.
Sixteen of them are solutions for the XOR problem and 16 for ¬XOR prob-
lem. The XOR problem can be solved with this network because the number
of solution regions in weight space was increased enormously. Is it possible to
proceed as in perceptron learning, by descent on the error function of the net-
work, in order to find an appropriate set of parameters? What is the shape of
this error function? Before answering these questions we turn to a topological
problem.

6.3.2 Number of regions in general

The capacity of a unit or network depends on the dimension of weight space
and the number of cuts with separating hyperplanes. The general question
to be answered is: how many regions are defined by m cutting hyperplanes
of dimension n − 1 in an n-dimensional space? We consider only the case of
hyperplanes going through the origin but otherwise in general position. This
means that the intersection of ` ≤ n hyperplanes is of dimension n− `.

The two-dimensional case is simple: m lines going through the origin define
at most 2m different regions. Each new line can only go through the cone
defined by two previous lines, dividing its two sides in two and adding two
new regions in this way.

The three-dimensional case with one, two, or three cuts is simple too. Each
cut increases the number of regions by a factor 2. In general: n cuts with
(n − 1)-dimensional hyperplanes in n-dimensional space define 2n different
regions.

The three-dimensional case with four cutting hyperplanes can be solved
by projecting on dimension two. The three-dimensional input space is first cut
three times with planes in general position. The fourth cutting plane intersects
the three previous planes at three different lines. These three lines define a
maximum of six regions on the fourth separating hyperplane. This means
that the fourth cutting hyperplane divides at most six of the eight existing
regions. After the cut with the fourth hyperplane there are six new regions
which, added to the eight old ones, gives a total of 14. The general case can
be solved using a similar argument.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

142 6 One and Two Layered Networks

Proposition 9. Let R(m,n) denote the number of different regions defined
by m separating hyperplanes of dimension n − 1, in general position, in an
n-dimensional space. We set R(1, n) = 2 for n ≥ 1 and R(m, 0) = 0, ∀m ≥ 1.
For n ≥ 1 and m > 1

R(m,n) = R(m− 1, n) +R(m− 1, n− 1).

Proof. The proof is by induction on m. When m = 2 and n = 1 the formula
is valid. If m = 2 and n ≥ 2 we know that R(2, n) = 4 and the formula is
valid again:

R(2, n) = R(1, n) +R(1, n− 1) = 2 + 2 = 4.

Now m+ 1 hyperplanes of dimension n− 1 are given in n-dimensional space
and in general position (n ≥ 2). From the induction hypotheses it follows
that the first m hyperplanes define R(m,n) regions in n-dimensional space.
The hyperplane m + 1 intersects the first m hyperplanes in m hyperplanes
of dimension n − 2 (since all are in general position). These m hyperplanes
divide the (n − 1)-dimensional space into R(m,n− 1) regions. After the cut
with the hyperplane m+1, exactlyR(m,n−1) new regions have been created.
The new number of regions is therefore R(m+ 1, n) = R(m,n) +R(m,n− 1)
and the proof by induction is complete. 2

This result can be represented using a table. Each column of the table
corresponds to a different dimension of input space and each row to a different
number of separating hyperplanes. The table shows some values for R(m,n).

dimension

1 2 3 4

2

2

2

2

2

4

6

8

2

4

8

14

222 10

2

4

8

16

30

1

2

3

4

5

m
n 0

0

0

0

0

0

Fig. 6.20. Recursive calculation of R(m,n)

It follows from the table that R(m,n) = 2m whenever m ≤ n. This means
that the number of regions increases exponentially until the dimension of
the space puts a limit to this growth. For m > n the rate of increase becomes
polynomial instead of exponential. For n = 2 and n = 3 we can derive analytic
expressions for the polynomials: R(m, 2) = 2m and R(m, 3) = m2 −m + 2.
The following proposition shows that this is not accidental.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

6.3 Regions for two layered networks 143

Proposition 10. For n ≥ 1, R(m,n) is a polynomial of degree n− 1 on the
variable m.

Proof. The proof follows from induction on n. We denote with P (a, b) a poly-
nomial of degree b on the variable a. The polynomial was explicitly given for
n = 2. For dimension n+1 and m = 1 we know that R(1, n+1) = 2. If m > 1
then

R(m,n+ 1) = R(m− 1, n+ 1) +R(m− 1, n).

Since R(m− 1, n) is a polynomial of degree n− 1 in the variable m it follows
that

R(m,n+ 1) = R(m− 1, n+ 1) + P (m,n− 1).

Repeating this reduction m− 1 times we finally get

R(m,n+ 1) = R(m− (m− 1), n+ 1) + (m− 1)P (m,n− 1)

= 2 + (m− 1)P (m,n− 1)

= P (m,n)

R(m,n+ 1) is thus a polynomial of degree n in the variable m and the proof
by induction is complete. 2

A useful formula for R(m,n)is

R(m,n) = 2

n−1∑

i=0

(

m− 1
i

)

.

The validity of the equation can be proved by induction. It allows us to com-
pute R(m,n) iteratively [271]. Note that this formula tells us how many re-
gions are formed when hyperplanes meet in a general position. In the case of
Boolean formulas with Boolean inputs, the hyperplanes in weight space have
binary or bipolar coefficients, that is, they do not lie in a general position. The
number of regions defined in a 4-dimensional weight space by 8 hyperplanes
is, according to the formula, 128. But there are only 104 threshold functions
computable with a perceptron with three input lines (and therefore four pa-
rameters and eight possible input vectors). The number R(m,n) must then be
interpreted as an upper bound on the number of logical functions computable
with binary inputs.

It is easy to find an upper bound for R(m,n) which can be computed with
a few arithmetical operations [457]:

R(m,n) < 2
mn

n!
.

Table 6.2 shows how these bounds behave when the number of inputs n is
varied from 1 to 5 [271]. The number of threshold functions of n inputs is
denoted in the table by T (2n, n).

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

144 6 One and Two Layered Networks

Table 6.2. Comparison of the number of Boolean and threshold functions of n
inputs and two different bounds

n 22
n

T (2n, n) R(2n, n) b2n
2
+1/n!c

1 4 4 4 4

2 16 14 14 16

3 256 104 128 170

4 65, 536 1, 882 3, 882 5, 461

5 4.3 × 109 94, 572 412, 736 559, 240

6.3.3 Consequences

Two important consequences become manifest from the analysis just per-
formed.

• First consequence. The number of threshold functions in an n-dimensional
space grows polynomially whereas the number of possible Boolean func-
tions grows exponentially. The number of Boolean functions definable on
n Boolean inputs is 22n

. The number of threshold functions is a function
of the form 2n(n−1), since the 2n input vectors define at most R(2n, n)
regions in weight space, that is, a polynomial of degree n− 1 on 2n. The
percentage of threshold functions in relation to the total number of logical
functions goes to zero as n increases.

• Second consequence. In networks with two or more layers we also have
learnability problems. Each unit in the first hidden layer separates input
space into two halves. If the hidden layer contains m units and the input
vector is of dimension n, the maximum number of classification regions is
R(m,n). If the number of input vectors is higher, it can happen that not
enough classification regions are available to compute a given logical func-
tion. Unsolvable problems for all networks with a predetermined number
of units can easily be fabricated by increasing the number of input lines
into the network.

Let us give an example of a network and its computational limits. The
network consists of two units in the hidden layer and one output unit. The
extended input vectors are of dimension n. The number of weights in the
network is 2n+3. The number of different input vectors is 2n−1. The number
of regions N in weight space defined by the input vectors is bounded by

N ≤ R(2n−1, n) ·R(2n−1, n) ·R(4, 3).

This means that N is bounded by a function of order 22(n−1)2 . Since the
number of functions F definable on n inputs is 22n

, there is a value of n
which guarantees F > N . Some of the Boolean functions are therefore not

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

6.3 Regions for two layered networks 145

computable with this network. Such unsolvable problems can always be found
by just overloading the network capacity. The converse is also true: to solve
certain problems, the network capacity must be increased if it is not sufficiently
high.

6.3.4 The Vapnik–Chervonenkis dimension

Computation of the number of regions defined by m hyperplanes in n-
dimensional weight space brings us back to the consideration of the Vapnik-
Chervonenkis dimension of a class of concepts and its importance for machine
learning.

Assume that a linear separation of the points in the unit square is selected
at random by an opponent and we have to find the parameters of the separat-
ing line (Figure 6.21). We can select points in the unit square randomly and
ask our opponent for their classification, that is, if they belong to the positive
or negative half-space. We refine our computation with each new example and
we expect to get better and better approximations to the right solution.

x1

x2

Fig. 6.21. Linear separation of the unit square

Figure 6.22 shows how more examples reduce the range of possible linear
separations we can choose from. The linear separations defined by the lines
`1 and `2 are compatible with the selected points and their classification. All
other lines between `1 and `2 are also compatible with the known examples.
The margin of error, however, is larger in the first than in the second case.
Both extreme lines `1 and `2 converge asymptotically to the correct linear
separation.

If a perceptron is trained with a randomly selected set of examples and
tested with another set of points, we call the expected number of correct
classifications the generalization capability of the perceptron. Generalization
becomes better if the training set is larger. In other types of problem in which
another class of concepts is used, it is not necessarily so. If, for example, a
polynomial of arbitrary degree is fitted to a set of points, it can well happen
that the function is overfitted, that is, it learns the training set perfectly

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

146 6 One and Two Layered Networks

•

•

•
•

•

•

•
•

•

•

•

x1 x1

x2 x2

•

l1

l2

l1

l2

Fig. 6.22. Linear separations compatible with the examples

but interpolates unknown points erroneously. Figure 6.23 shows how this can
happen. The learned function oscillates excessively in order to accommodate
all points in the training set without error but is very different from the
unknown function, which is smoother. More points do not reduce the error as
long as our class of concepts consists of all polynomials of arbitrary degree.
The only possibility of profiting from more examples is to reduce the size of the
search space by, for example, putting a limit on the degree of the acceptable
polynomial approximations.

computed approximation

error

unknown
function

Fig. 6.23. Overfitting a polynomial approximation

A desirable property of the learning process is that it converges to the
unknown function with high probability. Additional examples and the mini-
mization of the classification error should bring us monotonically closer to the
solution of the problem. We demand that the absolute value of the difference
of the approximating function and the unknown function at any point in the
input space be less than a given ε > 0.

Neural network’s learning consists of approximating an unknown function
g with a network function f . Let πf be the probability that the network
function f computes the correct classification of a point chosen randomly in
input space. Let νf stand for the empirical error rate measured by sampling the

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

6.3 Regions for two layered networks 147

input space and testing the classification computed by the network function
f . The learning algorithm should guarantee the uniform convergence of νf to
πf . In this way, using νf as the learning criterion correctly reflects the effective
success rate πf of the network function.

Vapnik and Chervonenkis [437] found a condition for the uniform conver-
gence of νf to πf . They proved the following inequality

Pr[sup
f∈F
|νf − πf | > ε] ≤ 4φ(2N)e−ε2N/8,

which states that the probability that νf and πf of the network function f
chosen from the model (the set of computable network functions F) differ by

more than ε is smaller than 4φ(2N)e−ε2N/8. The variable N stands for the
number of examples used and φ(2N) is the number of binary functions in
search space which can be defined over 2N examples.

Note that the term e−ε2N/8 falls exponentially in the number of examples
N . In this case νf can come exponentially closer to πf as long as the number
of binary functions definable on 2N examples does not grow exponentially.
But remember that given a set of points of size 2N the number of possible
binary labelings is 22N . The Vapnik-Chervonenkis dimension measures how
many binary labelings of a set of points can be computed by one member of a
class of concepts. As long as the class of concepts is only capable of covering a
polynomial number of these labelings, φ(2N) will not grow exponentially and

will not win the race against the factor e−ε2N/8.
Vapnik and Chervonenkis showed that φ(2N) is bounded by Nd+1, where

d is the VC-dimension of the class of concepts. If its VC-dimension is finite
we call a class of concepts learnable. Perceptron learning is learnable because
the VC-dimension of a perceptron with n weights (including the threshold) is
finite.

In the case of a perceptron like the one computing the linear separation
shown in Figure 6.21, if the empirical success rate νf = 1 the probability that
it differs from πf by more than ε is

Pr[sup
f∈F

(1− πf) > ε] ≤ 4R(2N,n)e−ε2N/8, (6.1)

since the number of labelings computable by a perceptron on 2N points in
general position is equal to R(2N,n), that is, the number of solution regions
available in weight space. Since R(2N,n) is a polynomial of degree n−1 in the

variableN and the term e−ε2N/8 goes exponentially to zero, the generalization
error margin falls exponentially to zero as the number of examples increases.

6.3.5 The problem of local minima

One of the fundamental problems of iterative learning algorithms is the exis-
tence of local minima of the error function. In the case of a single perceptron

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

148 6 One and Two Layered Networks

the error function has a single global minimum region. This is not so with
more complex networks.

In the case of the network of three units used in this chapter to compute
all solutions for the XOR problem, there are four classes of regions in weight
space with associated error from 0 to 4, that is, any subset of the four input
vectors can be correctly classified or not. Using an exhaustive search over all
possible regions in weight space, it can be shown that there are no spurious
local minima in the error function. A path can always be found from regions
with error greater than zero to any other region with smaller error.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

f 0

f 1

f 2

f 3

f 4

f 5

f 7

f 8

f15

f14

f13

f12

f11

f10

f 0 f 1 f 2 f 3 f 4 f 5 f 7 f 8 f10 f11 f12 f13 f14 f15

f 8

f1

f13

f13

f8

f2

f7

f7

f4f8

f11

f11

f1

f14

f14

f2

f4

Fig. 6.24. Distribution of the solutions for XOR

Figure 6.24 shows a diagram of the distribution of the solution regions for
the XOR problem. Since each of the units in the hidden layer can compute 14
Boolean functions and they are independent, and since the associated cuts in
weight space are orthogonal, we can divide the surface of the nine-dimensional
Boolean sphere into 14 × 14 regions. Each one of these is subdivided by the
14 regions defined by the output unit. The column labeling of the diagram
corresponds to the function computed by the first hidden unit, the row labeling
to the function computed by the second hidden unit. The dark regions indicate
where a solution region for the XOR problem can be found and which function
is computed by the output unit. The shadowed columns and rows correspond
to the XOR and ¬XOR functions, which are not computable by each of the
hidden units. The diagram shows that the solution regions are distributed
symmetrically on the surface of the Boolean sphere. Although this simple

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

6.4 Historical and bibliographical remarks 149

diagram cannot capture the whole complexity of the neighborhood relations in
a nine-dimensional space, it gives a pretty good idea of the actual distribution
of solutions. The symmetrical distribution of the solution regions is important,
because we can start randomly from any point in weight space and a solution
is never very far away. The problem, however, is deciding in what direction
to start the search. We will deal with this problem in the next chapter by
generalizing the kind of activation functions acceptable in each unit.

6.4 Historical and bibliographical remarks

Although networks with several layers of computing units were proposed right
at the beginning of the development of neural network models, the problem
which limited their applicability was that no reliable learning method was
known. Rosenblatt experimented with a kind of learning in which the error at
the output was propagated to elements in the first layers of computing units.

Another important problem is the location and number of local minima of
the error function which can lead the learning algorithm astray. Hecht-Nielsen
[186] and Poston et al. [349] have discussed the structure of the error func-
tion. Others, like Hush et al. [206], developed similar visualization methods
to explore the shape of the error function.

Threshold functions were studied intensively in the 1960s and the bounds
on the number of threshold functions given in this chapter were derived at that
time. It is possible to characterize any threshold function of n inputs uniquely
by a set of n+ 1 parameters, as was shown by Chow and by Dertouzos [401].
The Chow coefficients correspond to the centroid of the vertices with function
value 1 on the n-dimensional binary hypercube.

Much research has been done on the topological properties of polytopes
and figures on spheres [388]. Nilsson [329] and others studied the importance
of the number of regions defined by cutting hyperplanes relatively early. The
number of regions defined by cuts in an n-dimensional space was studied in
more general form by Euler [29]. The relation between learnability and the
Euler characteristic was studied by Minsky and Papert [312].

In the 1970s it became clear that Vapnik and Chervonenkis’ approach
provided the necessary tools for a general definition of “learnable problems”.
Valiant [436] was one of the first to propose such a model-independent the-
ory of learning. In this approach the question to be answered is whether the
search space in the domain of learnable functions can be restricted in poly-
nomial time. The VC-dimension of the class of concepts can thus help to
determine learnability. The VC-dimension of some network architectures has
been studied by Baum [44]. Some authors have studied the VC-dimension
of other interesting classes of concepts. For example, the VC-dimension of
sparse polynomials over the reals, that is polynomials with at most t mono-
mials, is linear in t and thus this class of concepts can be uniformly learned
[238]. Such sparse polynomials have a finite VC-dimension because they do

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

150 6 One and Two Layered Networks

not have enough plasticity to shatter an infinite number of points, since their
number of different roots is bounded by 2t− 1.

Exercises

1. Consider the Boolean functions of two arguments. Write a computer pro-
gram to measure the relative sizes of the 14 solution regions for perceptron
learning.

2. Figure 6.19 shows that eight points on the plane can produce non-learnable
concepts for two linear separations. What is the minimum number of
points in IR2 which can produce a non-learnable concept using two linear
separations?

3. Write a computer program to test the validity of equation (6.1) for a linear
separation of the type shown in Figure 6.21.

4. Consider a perceptron that accepts complex inputs x1, x2. The weights
w1, w2 are also complex numbers, and the threshold is zero. The percep-
tron fires if the condition Re(x1w1+x2w2) ≥ Im(x1w1+x2w2) is satisfied.
The binary input 0 is coded as the complex number (1, 0) and the binary
input 1 as the number (0, 1). How many of the logical functions of two
binary arguments can be computed with this system? Can XOR be com-
puted?

5. Construct a non-learnable concept in IR2 for three linear separations.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

7

The Backpropagation Algorithm

7.1 Learning as gradient descent

We saw in the last chapter that multilayered networks are capable of com-
puting a wider range of Boolean functions than networks with a single layer
of computing units. However the computational effort needed for finding the
correct combination of weights increases substantially when more parameters
and more complicated topologies are considered. In this chapter we discuss a
popular learning method capable of handling such large learning problems —
the backpropagation algorithm. This numerical method was used by different
research communities in different contexts, was discovered and rediscovered,
until in 1985 it found its way into connectionist AI mainly through the work of
the PDP group [382]. It has been one of the most studied and used algorithms
for neural networks learning ever since.

In this chapter we present a proof of the backpropagation algorithm based
on a graphical approach in which the algorithm reduces to a graph labeling
problem. This method is not only more general than the usual analytical
derivations, which handle only the case of special network topologies, but
also much easier to follow. It also shows how the algorithm can be efficiently
implemented in computing systems in which only local information can be
transported through the network.

7.1.1 Differentiable activation functions

The backpropagation algorithm looks for the minimum of the error function
in weight space using the method of gradient descent. The combination of
weights which minimizes the error function is considered to be a solution of
the learning problem. Since this method requires computation of the gradient
of the error function at each iteration step, we must guarantee the conti-
nuity and differentiability of the error function. Obviously we have to use a
kind of activation function other than the step function used in perceptrons,

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

152 7 The Backpropagation Algorithm

because the composite function produced by interconnected perceptrons is
discontinuous, and therefore the error function too. One of the more popu-
lar activation functions for backpropagation networks is the sigmoid, a real
function sc : IR→ (0, 1) defined by the expression

sc(x) =
1

1 + e−cx
.

The constant c can be selected arbitrarily and its reciprocal 1/c is called
the temperature parameter in stochastic neural networks. The shape of the
sigmoid changes according to the value of c, as can be seen in Figure 7.1. The
graph shows the shape of the sigmoid for c = 1, c = 2 and c = 3. Higher
values of c bring the shape of the sigmoid closer to that of the step function
and in the limit c→∞ the sigmoid converges to a step function at the origin.
In order to simplify all expressions derived in this chapter we set c = 1, but
after going through this material the reader should be able to generalize all
the expressions for a variable c. In the following we call the sigmoid s1(x) just
s(x).

-4 -2 0 2 4
x

1

Fig. 7.1. Three sigmoids (for c = 1, c = 2 and c = 3)

The derivative of the sigmoid with respect to x, needed later on in this
chapter, is

d

dx
s(x) =

e−x

(1 + e−x)2
= s(x)(1 − s(x)).

We have already shown that, in the case of perceptrons, a symmetrical activa-
tion function has some advantages for learning. An alternative to the sigmoid
is the symmetrical sigmoid S(x) defined as

S(x) = 2s(x)− 1 =
1− e−x

1 + e−x
.

This is nothing but the hyperbolic tangent for the argument x/2 whose shape
is shown in Figure 7.2 (upper right). The figure shows four types of continuous
“squashing” functions. The ramp function (lower right) can also be used in

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

7.1 Learning as gradient descent 153

learning algorithms taking care to avoid the two points where the derivative
is undefined.

-4 -2 0 2 4
x

1

-3 -2 -1 1 2 3
x

-1

1

-3 -2 -1 1 2 3
x

-1

1

-3 -2 -1 1 2 3
x

-1

1

Fig. 7.2. Graphics of some “squashing” functions

Many other kinds of activation functions have been proposed and the back-
propagation algorithm is applicable to all of them. A differentiable activation
function makes the function computed by a neural network differentiable (as-
suming that the integration function at each node is just the sum of the
inputs), since the network itself computes only function compositions. The
error function also becomes differentiable.

Figure 7.3 shows the smoothing produced by a sigmoid in a step of the error
function. Since we want to follow the gradient direction to find the minimum of
this function, it is important that no regions exist in which the error function
is completely flat. As the sigmoid always has a positive derivative, the slope of
the error function provides a greater or lesser descent direction which can be
followed. We can think of our search algorithm as a physical process in which
a small sphere is allowed to roll on the surface of the error function until it
reaches the bottom.

7.1.2 Regions in input space

The sigmoid’s output range contains all numbers strictly between 0 and 1.
Both extreme values can only be reached asymptotically. The computing units
considered in this chapter evaluate the sigmoid using the net amount of exci-
tation as its argument. Given weights w1, . . . , wn and a bias −θ, a sigmoidal
unit computes for the input x1, . . . , xn the output

1

1 + exp (
∑n

i=1 wixi − θ)
.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

154 7 The Backpropagation Algorithm

Fig. 7.3. A step of the error function

A higher net amount of excitation brings the unit’s output nearer to 1. The
continuum of output values can be compared to a division of the input space
in a continuum of classes. A higher value of c makes the separation in input
space sharper.

(0,0)

(0,1)

(1,0)

(1,1)

weight

Fig. 7.4. Continuum of classes in input space

Note that the step of the sigmoid is normal to the vector (w1, . . . , wn,−θ)
so that the weight vector points in the direction in extended input space in
which the output of the sigmoid changes faster.

7.1.3 Local minima of the error function

A price has to be paid for all the positive features of the sigmoid as activation
function. The most important problem is that, under some circumstances,
local minima appear in the error function which would not be there if the
step function had been used. Figure 7.5 shows an example of a local minimum
with a higher error level than in other regions. The function was computed
for a single unit with two weights, constant threshold, and four input-output
patterns in the training set. There is a valley in the error function and if

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

7.2 General feed-forward networks 155

gradient descent is started there the algorithm will not converge to the global
minimum.

Fig. 7.5. A local minimum of the error function

In many cases local minima appear because the targets for the outputs
of the computing units are values other than 0 or 1. If a network for the
computation of XOR is trained to produce 0.9 at the inputs (0,1) and (1,0)
then the surface of the error function develops some protuberances, where
local minima can arise. In the case of binary target values some local minima
are also present, as shown by Lisboa and Perantonis who analytically found
all local minima of the XOR function [277].

7.2 General feed-forward networks

In this section we show that backpropagation can easily be derived by linking
the calculation of the gradient to a graph labeling problem. This approach is
not only elegant, but also more general than the traditional derivations found
in most textbooks. General network topologies are handled right from the
beginning, so that the proof of the algorithm is not reduced to the multilayered
case. Thus one can have it both ways, more general yet simpler [375].

7.2.1 The learning problem

Recall that in our general definition a feed-forward neural network is a com-
putational graph whose nodes are computing units and whose directed edges
transmit numerical information from node to node. Each computing unit is ca-
pable of evaluating a single primitive function of its input. In fact the network
represents a chain of function compositions which transform an input to an
output vector (called a pattern). The network is a particular implementation
of a composite function from input to output space, which we call the network
function. The learning problem consists of finding the optimal combination

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

156 7 The Backpropagation Algorithm

of weights so that the network function ϕ approximates a given function f
as closely as possible. However, we are not given the function f explicitly but
only implicitly through some examples.

Consider a feed-forward network with n input and m output units. It can
consist of any number of hidden units and can exhibit any desired feed-forward
connection pattern. We are also given a training set {(x1, t1), . . . , (xp, tp)}
consisting of p ordered pairs of n- and m-dimensional vectors, which are called
the input and output patterns. Let the primitive functions at each node of the
network be continuous and differentiable. The weights of the edges are real
numbers selected at random. When the input pattern xi from the training set
is presented to this network, it produces an output oi different in general from
the target ti. What we want is to make oi and ti identical for i = 1, . . . , p,
by using a learning algorithm. More precisely, we want to minimize the error
function of the network, defined as

E =
1

2

p
∑

i=1

‖oi − ti‖2.

After minimizing this function for the training set, new unknown input pat-
terns are presented to the network and we expect it to interpolate. The network
must recognize whether a new input vector is similar to learned patterns and
produce a similar output.

The backpropagation algorithm is used to find a local minimum of the
error function. The network is initialized with randomly chosen weights. The
gradient of the error function is computed and used to correct the initial
weights. Our task is to compute this gradient recursively.

network +network +

.

.

.

xi1

xi 2

xin

Ei

1
2(oi1 − t i1)

2

1
2(oi 2 − t i2)

2

1
2(oim − tim)

2

Fig. 7.6. Extended network for the computation of the error function

The first step of the minimization process consists of extending the net-
work, so that it computes the error function automatically. Figure 7.6 shows

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

7.2 General feed-forward networks 157

how this is done. Every one of the j output units of the network is connected
to a node which evaluates the function 1

2 (oij − tij)2, where oij and tij denote
the j-th component of the output vector oi and of the target ti. The outputs
of the additional m nodes are collected at a node which adds them up and
gives the sum Ei as its output. The same network extension has to be built for
each pattern ti. A computing unit collects all quadratic errors and outputs
their sum E1 + · · · + Ep. The output of this extended network is the error
function E.

We now have a network capable of calculating the total error for a given
training set. The weights in the network are the only parameters that can
be modified to make the quadratic error E as low as possible. Because E is
calculated by the extended network exclusively through composition of the
node functions, it is a continuous and differentiable function of the ` weights
w1, w2, . . . , w` in the network. We can thus minimize E by using an iterative
process of gradient descent, for which we need to calculate the gradient

∇E = (
∂E

∂w1
,
∂E

∂w2
, . . . ,

∂E

∂w`
).

Each weight is updated using the increment

∆wi = −γ ∂E
∂wi

for i = 1, . . . , `,

where γ represents a learning constant, i.e., a proportionality parameter which
defines the step length of each iteration in the negative gradient direction.

With this extension of the original network the whole learning problem
now reduces to the question of calculating the gradient of a network function
with respect to its weights. Once we have a method to compute this gradient,
we can adjust the network weights iteratively. In this way we expect to find a
minimum of the error function, where ∇E = 0.

7.2.2 Derivatives of network functions

Now forget everything about training sets and learning. Our objective is to find
a method for efficiently calculating the gradient of a one-dimensional network
function according to the weights of the network. Because the network is
equivalent to a complex chain of function compositions, we expect the chain
rule of differential calculus to play a major role in finding the gradient of the
function. We take account of this fact by giving the nodes of the network
a composite structure. Each node now consists of a left and a right side, as
shown in Figure 7.7. We call this kind of representation a B-diagram (for
backpropagation diagram).

The right side computes the primitive function associated with the node,
whereas the left side computes the derivative of this primitive function for the
same input.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

158 7 The Backpropagation Algorithm

f′ f

Fig. 7.7. The two sides of a computing unit

s′ s+1

Fig. 7.8. Separation of integration and activation function

Note that the integration function can be separated from the activation
function by splitting each node into two parts, as shown in Figure 7.8. The first
node computes the sum of the incoming inputs, the second one the activation
function s. The derivative of s is s′ and the partial derivative of the sum of n
arguments with respect to any one of them is just 1. This separation simplifies
our discussion, as we only have to think of a single function which is being
computed at each node and not of two.

The network is evaluated in two stages: in the first one, the feed-forward
step, information comes from the left and each unit evaluates its primitive
function f in its right side as well as the derivative f ′ in its left side. Both
results are stored in the unit, but only the result from the right side is transmit-
ted to the units connected to the right. The second step, the backpropagation
step, consists in running the whole network backwards, whereby the stored
results are now used. There are three main cases which we have to consider.

First case: function composition

The B-diagram of Figure 7.9 contains only two nodes. In the feed-forward step,
incoming information into a unit is used as the argument for the evaluation
of the node’s primitive function and its derivative. In this step the network
computes the composition of the functions f and g. Figure 7.10 shows the
state of the network after the feed-forward step. The correct result of the
function composition has been produced at the output unit and each unit has
stored some information on its left side.

In the backpropagation step the input from the right of the network is
the constant 1. Incoming information to a node is multiplied by the value
stored in its left side. The result of the multiplication is transmitted to the
next unit to the left. We call the result at each node the traversing value
at this node. Figure 7.11 shows the final result of the backpropagation step,
which is f ′(g(x))g′(x), i.e., the derivative of the function composition f(g(x))

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

7.2 General feed-forward networks 159

x g′ g ′ f f

Fig. 7.9. Network for the composition of two functions

x

function composition

f (g(x))g′ g (x) ′ f (g(x)) f

Fig. 7.10. Result of the feed-forward step

implemented by this network. The backpropagation step provides an imple-
mentation of the chain rule. Any sequence of function compositions can be
evaluated in this way and its derivative can be obtained in the backpropa-
gation step. We can think of the network as being used backwards with the
input 1, whereby at each node the product with the value stored in the left
side is computed.

g′ g (x) ′ f (g(x)) f 1

backpropagation

′ f (g(x)) ′ g (x)

Fig. 7.11. Result of the backpropagation step

+
1

1
x

function composition

f1

f2

f1(x) + f2(x)

′ f 1 (x)

′ f 2(x)

Fig. 7.12. Addition of functions

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

160 7 The Backpropagation Algorithm

Second case: function addition

The next case to consider is the addition of two primitive functions. Fig-
ure 7.12 shows a network for the computation of the addition of the functions
f1 and f2 . The additional node has been included to handle the addition of
the two functions. The partial derivative of the addition function with respect
to any one of the two inputs is 1. In the feed-forward step the network com-
putes the result f1(x) + f2(x). In the backpropagation step the constant 1 is
fed from the left side into the network. All incoming edges to a unit fan out
the traversing value at this node and distribute it to the connected units to
the left. Where two right-to-left paths meet, the computed traversing values
are added. Figure 7.13 shows the result f ′

1(x) + f ′
2(x) of the backpropagation

step, which is the derivative of the function addition f1 + f2 evaluated at x.
A simple proof by induction shows that the derivative of the addition of any
number of functions can be handled in the same way.

+
1

1

backpropagation

f1

f2

′ f 1 (x)

′ f 2(x)

1′ f 1 (x) + ′ f 2 (x)

Fig. 7.13. Result of the backpropagation step

w
x wx

backpropagation

w
1

feed-forward

w

Fig. 7.14. Forward computation and backpropagation at an edge

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

7.2 General feed-forward networks 161

Third case: weighted edges

Weighted edges could be handled in the same manner as function composi-
tions, but there is an easier way to deal with them. In the feed-forward step
the incoming information x is multiplied by the edge’s weight w. The result
is wx. In the backpropagation step the traversing value 1 is multiplied by
the weight of the edge. The result is w, which is the derivative of wx with
respect to x. From this we conclude that weighted edges are used in exactly
the same way in both steps: they modulate the information transmitted in
each direction by multiplying it by the edges’ weight.

7.2.3 Steps of the backpropagation algorithm

We can now formulate the complete backpropagation algorithm and prove by
induction that it works in arbitrary feed-forward networks with differentiable
activation functions at the nodes. We assume that we are dealing with a
network with a single input and a single output unit.

Algorithm 7.2.1 Backpropagation algorithm.

Consider a network with a single real input x and network function F . The
derivative F ′(x) is computed in two phases:

Feed-forward: the input x is fed into the network. The primitive func-
tions at the nodes and their derivatives are evaluated at
each node. The derivatives are stored.

Backpropagation: the constant 1 is fed into the output unit and the network
is run backwards. Incoming information to a node is added
and the result is multiplied by the value stored in the left
part of the unit. The result is transmitted to the left of the
unit. The result collected at the input unit is the derivative
of the network function with respect to x.

The following proposition shows that the algorithm is correct.

Proposition 11. Algorithm 7.2.1 computes the derivative of the network
function F with respect to the input x correctly.

Proof. We have already shown that the algorithm works for units in series,
units in parallel and also for weighted edges. Let us make the induction as-
sumption that the algorithm works for any feed-forward network with n or
fewer nodes. Consider now the B-diagram of Figure 7.15, which contains n+1
nodes. The feed-forward step is executed first and the result of the single
output unit is the network function F evaluated at x. Assume that m units,
whose respective outputs are F1(x), . . . , Fm(x) are connected to the output
unit. Since the primitive function of the output unit is ϕ, we know that

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

162 7 The Backpropagation Algorithm

F(x)

F
1
(x)

F
2

(x)

F
m

(x)

w
1

w
2

w
m

x ϕ(s)′ ϕ (s)
.
.
.

Fig. 7.15. Backpropagation at the last node

F (x) = ϕ(w1F1(x) + w2F2(x) + · · ·+ wmFm(x)).

The derivative of F at x is thus

F ′(x) = ϕ′(s)(w1F
′
1(x) + w2F

′
2(x) + · · ·+ wmF

′
m(x)),

where s = ϕ(w1F1(x) + w2F2(x) + · · · + wmFm(x)). The subgraph of the
main graph which includes all possible paths from the input unit to the unit
whose output is F1(x) defines a subnetwork whose network function is F1

and which consists of n or fewer units. By the induction assumption we can
calculate the derivative of F1 at x, by introducing a 1 into the unit and
running the subnetwork backwards. The same can be done with the units
whose outputs are F2(x), . . . , Fm(x). If instead of 1 we introduce the constant
ϕ′(s) and multiply it by w1 we get w1F

′
1(x)ϕ

′(s) at the input unit in the
backpropagation step. Similarly we get w2F

′
2(x)ϕ

′(s), . . . , wmF
′
m(x)ϕ′(s) for

the rest of the units. In the backpropagation step with the whole network we
add these m results and we finally get

ϕ′(s)(w1F
′
1(x) + w2F

′
2(x) + · · ·+ wmF

′
m(x))

which is the derivative of F evaluated at x. Note that introducing the con-
stants w1ϕ

′(s), . . . , wmϕ
′(s) into the m units connected to the output unit can

be done by introducing a 1 into the output unit, multiplying by the stored
value ϕ′(s) and distributing the result to the m units through the edges with
weights w1, w2, . . . , wm. We are in fact running the network backwards as the
backpropagation algorithm demands. This means that the algorithm works
with networks of n+ 1 nodes and this concludes the proof. 2

Implicit in the above analysis is that all inputs to a node are added be-
fore the one-dimensional activation function is computed. We can consider

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

7.2 General feed-forward networks 163

also activation functions f of several variables, but in this case the left side
of the unit stores all partial derivatives of f with respect to each variable.
Figure 7.16 shows an example for a function f of two variables x1 and x2, de-
livered through two different edges. In the backpropagation step each stored
partial derivative is multiplied by the traversing value at the node and trans-
mitted to the left through its own edge. It is easy to see that backpropagation
still works in this more general case.

∂F

∂x1

∂F

∂x2

F

x2

x1

Fig. 7.16. Stored partial derivatives at a node

The backpropagation algorithm also works correctly for networks with
more than one input unit in which several independent variables are involved.
In a network with two inputs for example, where the independent variables x1

and x2 are fed into the network, the network result can be called F (x1, x2).
The network function now has two arguments and we can compute the par-
tial derivative of F with respect to x1 or x2. The feed-forward step remains
unchanged and all left side slots of the units are filled as usual. However, in
the backpropagation step we can identify two subnetworks: one consists of all
paths connecting the first input unit to the output unit and another of all
paths from the second input unit to the output unit. By applying the back-
propagation step in the first subnetwork we get the partial derivative of F
with respect to x1 at the first input unit. The backpropagation step on the
second subnetwork yields the partial derivative of F with respect to x2 at the
second input unit. Note that we can overlap both computations and perform
a single backpropagation step over the whole network. We still get the same
results.

7.2.4 Learning with backpropagation

We consider again the learning problem for neural networks. Since we want
to minimize the error function E, which depends on the network weights, we
have to deal with all weights in the network one at a time. The feed-forward
step is computed in the usual way, but now we also store the output of each
unit in its right side. We perform the backpropagation step in the extended
network that computes the error function and we then fix our attention on
one of the weights, say wij whose associated edge points from the i-th to the

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

164 7 The Backpropagation Algorithm

j-th node in the network. This weight can be treated as an input channel into
the subnetwork made of all paths starting at wij and ending in the single
output unit of the network. The information fed into the subnetwork in the
feed-forward step was oiwij , where oi is the stored output of unit i. The
backpropagation step computes the gradient of E with respect to this input,
i.e., ∂E/∂oiwij . Since in the backpropagation step oi is treated as a constant,
we finally have

∂E

∂wij
= oi

∂E

∂oiwij
.

Summarizing, the backpropagation step is performed in the usual way. All
subnetworks defined by each weight of the network can be handled simulta-
neously, but we now store additionally at each node i:

• The output oi of the node in the feed-forward step.

• The cumulative result of the backward computation in the backpropaga-
tion step up to this node. We call this quantity the backpropagated error.

If we denote the backpropagated error at the j-th node by δj , we can then
express the partial derivative of E with respect to wij as:

∂E

∂wij
= oiδj .

Once all partial derivatives have been computed, we can perform gradient
descent by adding to each weight wij the increment

∆wij = −γoiδj .

This correction step is needed to transform the backpropagation algorithm
into a learning method for neural networks.

This graphical proof of the backpropagation algorithm applies to arbitrary
feed-forward topologies. The graphical approach also immediately suggests
hardware implementation techniques for backpropagation.

7.3 The case of layered networks

An important special case of feed-forward networks is that of layered networks
with one or more hidden layers. In this section we give explicit formulas for the
weight updates and show how they can be calculated using linear algebraic
operations. We also show how to label each node with the backpropagated
error in order to avoid redundant computations.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

7.3 The case of layered networks 165

7.3.1 Extended network

We will consider a network with n input sites, k hidden, and m output units.

The weight between input site i and hidden unit j will be called w
(1)
ij . The

weight between hidden unit i and output unit j will be called w
(2)
ij . The bias

−θ of each unit is implemented as the weight of an additional edge. Input
vectors are thus extended with a 1 component, and the same is done with the
output vector from the hidden layer. Figure 7.17 shows how this is done. The

weight between the constant 1 and the hidden unit j is called w
(1)
n+1,j and the

weight between the constant 1 and the output unit j is denoted by w
(2)
k+1,j .

n

input sites

m

output units

1

1

hidden units

connection matrix

W1
connection matrix

W2

w n+1,

(1)

w +1,k

site n+1

k

k m
(2)

.

.

.

.

.

.

.

.

.

Fig. 7.17. Notation for the three-layered network

There are (n + 1) × k weights between input sites and hidden units and
(k+ 1)×m between hidden and output units. Let W1 denote the (n+ 1)× k
matrix with component w

(1)
ij at the i-th row and the j-th column. Similarly

let W2 denote the (k + 1) × m matrix with components w
(2)
ij . We use an

overlined notation to emphasize that the last row of both matrices corresponds
to the biases of the computing units. The matrix of weights without this last
row will be needed in the backpropagation step. The n-dimensional input
vector o = (o1, . . . , on) is extended, transforming it to ô = (o1, . . . , on, 1). The
excitation netj of the j-th hidden unit is given by

netj =

n+1∑

i=1

w
(1)
ij ôi.

The activation function is a sigmoid and the output o
(1)
j of this unit is thus

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

166 7 The Backpropagation Algorithm

o
(1)
j = s

(
n+1∑

i=1

w
(1)
ij ôi

)

.

The excitation of all units in the hidden layer can be computed with the
vector-matrix multiplication ôW1. The vector o(1) whose components are the
outputs of the hidden units is given by

o(1) = s(ôW1),

using the convention of applying the sigmoid to each component of the ar-
gument vector. The excitation of the units in the output layer is computed

using the extended vector ô(1) = (o
(1)
1 , . . . , o

(1)
k , 1). The output of the network

is the m-dimensional vector o(2), where

o(2) = s(ô(1)W2).

These formulas can be generalized for any number of layers and allow direct
computation of the flow of information in the network with simple matrix
operations.

7.3.2 Steps of the algorithm

Figure 7.18 shows the extended network for computation of the error function.
In order to simplify the discussion we deal with a single input-output pair (o, t)
and generalize later to p training examples. The network has been extended
with an additional layer of units. The right sides compute the quadratic de-

viation 1
2 (o

(2)
i − ti) for the i-th component of the output vector and the left

sides store (o
(2)
i − ti). Each output unit i in the original network computes

the sigmoid s and produces the output o
(2)
i . Addition of the quadratic devi-

ations gives the error E. The error function for p input-output examples can
be computed by creating p networks like the one shown, one for each training
pair, and adding the outputs of all of them to produce the total error of the
training set.

After choosing the weights of the network randomly, the backpropagation
algorithm is used to compute the necessary corrections. The algorithm can be
decomposed in the following four steps:

i) Feed-forward computation

ii) Backpropagation to the output layer

iii) Backpropagation to the hidden layer

iv) Weight updates

The algorithm is stopped when the value of the error function has become
sufficiently small.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

7.3 The case of layered networks 167

E

′ s s

′ s s

′ s s

output units

i-th hidden

unit

+oi

(1)

o1

(2)

o2

(2)

1
2(o1

(2) − t1)
2(o1

(2) − t1)

1
2(o2

(2) − t2)
2(o2

(2) − t2)

1
2(om

(2) − tm)
2(om

(2) − tm)
2

.

.

.

.

.

.

om

(2)

wim

(2)

Fig. 7.18. Extended multilayer network for the computation of E

First step: feed-forward computation

The vector o is presented to the network. The vectors o(1) and o(2) are com-
puted and stored. The evaluated derivatives of the activation functions are
also stored at each unit.

Second step: backpropagation to the output layer

We are looking for the first set of partial derivatives ∂E/∂w
(2)
ij . The back-

propagation path from the output of the network up to the output unit j is
shown in the B-diagram of Figure 7.19.

+1 1

j-th output unit

i-th hidden unit quadratic error of the

j-th component

backpropagated error up to unit j

backpropagation

oi

(1)

wij

(2)

o j

(2)
1− o j

(2)()

o j

(2)
1− o j

(2)() o j

(2) − t j()
o j

(2) − t j() 1

2
oj

(2) − t j()
2

o j

(2)

Fig. 7.19. Backpropagation path up to output unit j

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

168 7 The Backpropagation Algorithm

From this path we can collect by simple inspection all the multiplicative

terms which define the backpropagated error δ
(2)
j . Therefore

δ
(2)
j = o

(2)
j (1− o(2)j)(o

(2)
j − tj),

and the partial derivative we are looking for is

∂E

∂w
(2)
ij

= [o
(2)
j (1− o(2)j)(o

(2)
j − tj)]o

(1)
i = δ

(2)
j o

(1)
i .

Remember that for this last step we consider the weight w
(2)
ij to be a variable

and its input oi(1) a constant.

oi

(1) δ j

(2)
wij

(2)

Fig. 7.20. Input and backpropagated error at an edge

Figure 7.20 shows the general situation we find during the backpropagation

algorithm. At the input side of the edge with weight wij we have o
(1)
i and at

the output side the backpropagated error δ
(2)
j .

Third step: backpropagation to the hidden layer

Now we want to compute the partial derivatives ∂E/∂w
(1)
ij . Each unit j in

the hidden layer is connected to each unit q in the output layer with an edge

of weight w
(2)
jq , for q = 1, . . . ,m. The backpropagated error up to unit j in

the hidden layer must be computed taking into account all possible backward
paths, as shown in Figure 7.21. The backpropagated error is then

δ
(1)
j = o

(1)
j (1− o(1)j)

m∑

q=1

w
(2)
jq δ

(2)
q .

Therefore the partial derivative we are looking for is

∂E

∂w
(1)
ij

= δ
(1)
j oi.

The backpropagated error can be computed in the same way for any number
of hidden layers and the expression for the partial derivatives of E keeps the
same analytic form.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

7.3 The case of layered networks 169

Σ

hidden unit j

backpropagated error to the j-th hidden unit

backpropagation

input site i

backpropagated error

o j

(1)

wij

(1)
oi

w j1

(2)

w j 2

(2)

w jm

(2)

δ1

(2)

δ 2

(2)

δm

(2)

o j

(1)
(1 − oj

(1)
) w jq

(2)

δ q

(2)

q =1

m

o j

(1)
(1− oj

(1)
)

.

.

. .
.
.

Fig. 7.21. All paths up to input site i

Fourth step: weight updates

After computing all partial derivatives the network weights are updated in
the negative gradient direction. A learning constant γ defines the step length
of the correction. The corrections for the weights are given by

∆w
(2)
ij = −γo(1)i δ

(2)
j , for i = 1, . . . , k + 1; j = 1, . . . ,m,

and
∆w

(1)
ij = −γoiδ

(1)
j , for i = 1, . . . , n+ 1; j = 1, . . . , k,

where we use the convention that on+1 = o
(1)
k+1 = 1. It is very important

to make the corrections to the weights only after the backpropagated error
has been computed for all units in the network. Otherwise the corrections
become intertwined with the backpropagation of the error and the computed
corrections do not correspond any more to the negative gradient direction.
Some authors fall in this trap [16]. Note also that some books define the
backpropagated error as the negative traversing value in the network. In that
case the update equations for the network weights do not have a negative sign
(which is absorbed by the deltas), but this is a matter of pure convention.

More than one training pattern

In the case of p > 1 input-output patterns, an extended network is used to
compute the error function for each of them separately. The weight corrections

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

170 7 The Backpropagation Algorithm

are computed for each pattern and so we get, for example, for weight w
(1)
ij the

corrections
∆1w

(1)
ij , ∆2w

(1)
ij , . . . , ∆pw

(1)
ij .

The necessary update in the gradient direction is then

∆w
(1)
ij = ∆1w

(1)
ij +∆2w

(1)
ij + · · ·+∆pw

(1)
ij .

We speak of batch or off-line updates when the weight corrections are made
in this way. Often, however, the weight updates are made sequentially after
each pattern presentation (this is called on-line training). In this case the
corrections do not exactly follow the negative gradient direction, but if the
training patterns are selected randomly the search direction oscillates around
the exact gradient direction and, on average, the algorithm implements a
form of descent in the error function. The rationale for using on-line training
is that adding some noise to the gradient direction can help to avoid falling
into shallow local minima of the error function. Also, when the training set
consists of thousands of training patterns, it is very expensive to compute
the exact gradient direction since each epoch (one round of presentation of
all patterns to the network) consists of many feed-forward passes and on-line
training becomes more efficient [391].

7.3.3 Backpropagation in matrix form

We have seen that the graph labeling approach for the proof of the backpropa-
gation algorithm is completely general and is not limited to the case of regular
layered architectures. However this special case can be put into a form suitable
for vector processors or special machines for linear algebraic operations.

We have already shown that in a network with a hidden and an output
layer (n, k and m units) the input o produces the output o(2) = s(ô(1)W2)
where o(1) = s(ôW1). In the backpropagation step we only need the first n
rows of matrix W1. We call this n×k matrix W1. Similarly, the k×m matrix
W2 is composed of the first k rows of the matrix W2. We make this reduction
because we do not need to backpropagate any values to the constant inputs
corresponding to each bias.

The derivatives stored in the feed-forward step at the k hidden units and
the m output units can be written as the two diagonal matrices

D2 =

o
(2)
1 (1− o(2)1) 0 · · · 0

0 o
(2)
2 (1 − o(2)2) · · · 0

...
...

. . .
...

0 0 · · · o(2)m (1 − o(2)m)

,

and

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

7.3 The case of layered networks 171

D1 =

o
(1)
1 (1− o(1)1) 0 · · · 0

0 o
(1)
2 (1 − o(1)2) · · · 0

...
...

. . .
...

0 0 · · · o(1)k (1 − o(1)k)

.

Define the vector e of the stored derivatives of the quadratic deviations as

e =

(o
(2)
1 − t1)

(o
(2)
2 − t2)

...

(o
(2)
m − tm)

The m-dimensional vector δ
(2) of the backpropagated error up to the output

units is given by the expression

δ
(2) = D2e.

The k-dimensional vector of the backpropagated error up to the hidden layer
is

δ
(1) = D1W2δ

(2).

The corrections for the matrices W1 and W2 are then given by

∆W
T

2 = −γδ(2)ô1 (7.1)

and
∆W

T

1 = −γδ(1)ô. (7.2)

The only necessary operations are vector-matrix, matrix-vector, and vector-
vector multiplications. In Chap. 16 we describe computer architectures op-
timized for this kind of operation. It is easy to generalize these equations
for ` layers of computing units. Assume that the connection matrix between
layer i and i+ 1 is denoted by Wi+1 (layer 0 is the layer of input sites). The
backpropagated error to the output layer is then

δ
(`) = D`e.

The backpropagated error to the i-th computing layer is defined recursively
by

δ
(i) = DiWi+1δ

(i+1), for i = 1, . . . , `− 1.

or alternatively

δ
(i) = DiWi+1 · · ·W`−1D`−1W`D`e.

The corrections to the weight matrices are computed in the same way as for
two layers of computing units.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

172 7 The Backpropagation Algorithm

7.3.4 The locality of backpropagation

We can now prove using a B-diagram that addition is the only integration
function which preserves the locality of learning when backpropagation is
used.

f′f*

a

b

a

b

f ′(a b)b

backpropagation

f ′(a b)a

Fig. 7.22. Multiplication as integration function

In the networks we have seen so far the backpropagation algorithm ex-
ploits only local information. This means that only information which arrives
from an input line in the feed-forward step is stored at the unit and sent back
through the same line in the backpropagation step. An example can make this
point clear. Assume that the integration function of a unit is multiplication
and its activation function is f . Figure 7.22 shows a split view of the compu-
tation: two inputs a and b come from two input lines, the integration function
responds with the product ab and this result is passed as argument to f . With
backpropagation we can compute the partial derivative of f(ab) with respect
to a and with respect to b. But in this case the value b must be transported
back through the upper edge and the value a through the lower one. Since
b arrived through the other edge, the locality of the learning algorithm has
been lost. The question is which kinds of integration functions preserve the
locality of learning. The answer is given by the following proposition.

Proposition 12. In a unit with n inputs x1, . . . , xn only integration functions
of the form

I(x1, . . . , xn) = F1(x1) + F2(x2) + · · ·+ Fn(xn) + C,

where C is a constant, guarantee the locality of the backpropagation algorithm
in the sense that at an edge i 6= j no information about xj has to be explicitly
stored.

Proof. Let the integration function of the unit be the function I of n argu-
ments. If, in the backpropagation step, only a function fi of the variable xi

can be stored at the computing unit in order to be transmitted through the
i-th input line in the backpropagation step, then we know that

∂I

∂xi
= fi(xi), for i = 1, . . . , n.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

7.4 Recurrent networks 173

Therefore by integrating these equations we obtain:

I(x1, x2, . . . , xn) = F1(x1) +G1(x2, . . . , xn),

I(x1, x2, . . . , xn) = F2(x2) +G2(x2, . . . , xn),

...

I(x1, x2, . . . , xn) = Fn(xn) +Gn(x2, . . . , xn),

where Fi denotes the integral of fi and G1, . . . , Gn are real functions of n− 1
arguments. Since the function I has a unique form, the only possibility is

I(x1, x2, . . . , xn) = F1(x1) + F2(x2) + · · ·+ Fn(xn) + C

where C is a constant. This means that information arriving from each line
can be preprocessed by the Fi functions and then has to be added. Therefore
only integration functions with this form preserve locality. 2

7.3.5 Error during training

We discussed the form of the error function for the XOR problem in the
last chapter. It is interesting to see how backpropagation performs when con-
fronted with this problem. Figure 7.23 shows the evolution of the total error
during training of a network of three computing units. After 600 iterations
the algorithm found a solution to the learning problem. In the figure the error
falls fast at the beginning and end of training. Between these two zones lies a
region in which the error function seems to be almost flat and where progress
is slow. This corresponds to a region which would be totally flat if step func-
tions were used as activation functions of the units. Now, using the sigmoid,
this region presents a small slope in the direction of the global minimum.

In the next chapter we discuss how to make backpropagation converge
faster, taking into account the behavior of the algorithm at the flat spots of
the error function.

7.4 Recurrent networks

The backpropagation algorithm can also be extended to the case of recurrent
networks. To deal with this kind of systems we introduce a discrete time
variable t. At time t all units in the network recompute their outputs, which
are then transmitted at time t+1. Continuing in this step-by-step fashion, the
system produces a sequence of output values when a constant or time varying
input is fed into the network. As we already saw in Chap. 2, a recurrent
network behaves like a finite automaton. The question now is how to train
such an automaton to produce a desired sequence of output values.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

174 7 The Backpropagation Algorithm

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

XOR experiment

iterations

error

6000 300

Fig. 7.23. Error function for 600 iterations of backpropagation

7.4.1 Backpropagation through time

The simplest way to deal with a recurrent network is to consider a finite num-
ber of iterations only. Assume for generality that a network of n computing
units is fully connected and that wij is the weight associated with the edge
from node i to node j. By unfolding the network at the time steps 1, 2, . . . , T ,
we can think of this recurrent network as a feed-forward network with T stages
of computation. At each time step t an external input x(t) is fed into the net-

work and the outputs (o
(t)
1 , . . . , o

(t)
n) of all computing units are recorded. We

call the n-dimensional vector of the units’ outputs at time t the network state
o(t). We assume that the initial values of all unit’s outputs are zero at t = 0,
but the external input x(0) can be different from zero. Figure 7.24 shows a
diagram of the unfolded network. This unfolding strategy which converts a
recurrent network into a feed-forward network in order to apply the back-
propagation algorithm is called backpropagation through time or just BPTT
[383].

Let W stand for the n× n matrix of network weights wij . Let W0 stand
for the m× n matrix of interconnections between m input sites and n units.
The feed-forward step is computed in the usual manner, starting with an
initial m-dimensional external input x(0). At each time step t the network
state o(t) (an n-dimensional row vector) and the vector of derivatives of the
activation function at each node o′(t) are stored. The error of the network can
be measured after each time step if a sequence of values is to be produced,
or just after the final step T if only the final output is of importance. We
will handle the first, more general case. Denote the difference between the
n-dimensional target y(t) at time t and the output of the network by e(t) =
(
o(t) − y(t)

)T
. This is an n-dimensional column vector, but in most cases we

are only interested in the outputs of some units in the network. In that case

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

7.4 Recurrent networks 175

unit 2

unit n

t = 1 t = 2 t = Tt = 0

(0) (1) (2) (T)x x x x

(0) (1) (T)o o ounit 1

Fig. 7.24. Backpropagation through time

define ei(t) = 0 for each unit i, whose precise state is unimportant and which
can remain hidden from view.

w1 ≡ w

w2 ≡ w

Fig. 7.25. A duplicated weight in a network

Things become complicated when we consider that each weight in the
network is present at each stage of the unfolded network. Until now we had
only handled the case of unique weights. However, any network with repeated
weights can easily be transformed into a network with unique weights. Assume
that after the feed-forward step the state of the network is the one shown
in Figure 7.25. Weight w is duplicated, but received different inputs o1 and
o2 in the feed-forward step at the two different locations in the network.
The transformed network in Figure 7.26 is indistinguishable from the original
network from the viewpoint of the results it produces. Note that the two edges
associated with weight w now have weight 1 and a multiplication is performed
by the two additional units in the middle of the edges. In this transformed
network w appears only once and we can perform backpropagation as usual.
There are two groups of paths, the ones coming from the first multiplier to w

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

176 7 The Backpropagation Algorithm

w

*

*

Fig. 7.26. Transformed network

and the ones coming from the second. This means that we can just perform
backpropagation as usual in the original network. At the first edge we obtain
∂E/∂w1, at the second ∂E/∂w2, and since w1 is the same variable as w2, the
desired partial derivative is

∂E

∂w
=

∂E

∂w1
+
∂E

∂w2
.

We can thus conclude in general that in the case of the same weight being
associated with several edges, backpropagation is performed as usual for each
of those edges and the results are simply added.

The backpropagation phase of BPTT starts from the right. The backprop-
agated error at time T is given by

δ
(T) = D(T)e(T),

where D(T) is the n×n diagonal matrix whose component at the i-th diagonal

element is o′i
(T)

, i.e., the stored derivative of the i-th unit output at time T .
The backpropagated error at time T − 1 is given by

δ
(T−1) = D(T−1)e(T−1) + D(T−1)WD(T)e(T) ,

where we have considered all paths from the computed errors at time T and
T − 1 to each weight. In general, the backpropagated error at stage i, for
i = 0, . . . , T − 1 is

δ
(i) = D(i)(e(i) + Wδ

(i+1)).

The analytic expression for the final weight corrections are

∆W
T

= −γ
(

δ
(1)ô(0) + · · ·+ δ

(T)ô(T−1)
)

(7.3)

∆W
T

0 = −γ
(

δ
(0)x̂(0) + · · ·+ δ

(T)x̂(T)
)

, (7.4)

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

7.4 Recurrent networks 177

where ô(1), . . . , ô(T) denote the extended output vectors at steps 1, . . . , T and
W and W0 the extended matrices W and W0.

Backpropagation through time can be extended to the case of infinite time
T . In this case we are interested in the limit value of the network’s state, on
the assumption that the network’s state stabilizes to a fixpoint õ. Under some
conditions over the activation functions and network topology such a fixpoint
exists and its derivative can be calculated by backpropagation. The feed-
forward step is repeated a certain number of times, until the network relaxes to
a numerically stable state (with certain precision). The stored node’s outputs
and derivatives are the ones computed in the last iteration. The network is
then run backwards in backpropagation manner until it reaches a numerically
stable state. The gradient of the network function with respect to each weight
can then be calculated in the usual manner. Note that in this case, we do
not need to store all intermediate values of outputs and derivatives at the
units, only the final ones. This algorithm, called recurrent backpropagation,
was proposed independently by Pineda [342] and Almeida [20].

7.4.2 Hidden Markov Models

Hidden Markov Models (HMM) form an important special type of recurrent
network. A first-order Markov model is any system capable of assuming one of
n different states at time t. The system does not change its state at each time
step deterministically but according to a stochastic dynamics. The probability
of transition from the i-th to the j-th state at each step is given by 0 ≤ aij ≤ 1
and does not depend on the previous history of transitions. These probabilities
can be arranged in an n × n matrix A. We also assume that at each step
the model emits one of m possible output values. We call the probability of
emitting the k-th output value while in the i-th state bik. Starting from a
definite state at time t = 0, the system is allowed to run for T time units and
the generated outputs are recorded. Each new run of the system generally
produces a different sequence of output values. The system is called a HMM
because only the emitted values, not the state transitions, can be observed.

An example may make this point clear. In speech recognition researchers
postulate that the vocal tract shapes can be quantized in a discrete set of states
roughly associated with the phonemes which compose speech. When speech is
recorded the exact transitions in the vocal tract cannot be observed and only
the produced sound can be measured at some predefined time intervals. These
are the emissions, and the states of the system are the quantized configurations
of the vocal tract. From the measurements we want to infer the sequence of
states of the vocal tract, i.e., the sequence of utterances which gave rise to
the recorded sounds. In order to make this problem manageable, the set of
states and the set of possible sound parameters are quantized (see Chap. 9
for a deeper discussion of automatic speech recognition).

The general problem when confronted with the recorded sequence of out-
put values of a HMM is to compute the most probable sequence of state

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

178 7 The Backpropagation Algorithm

a33a32

a31

a23

a22

a21 a13

a12

a11

S

S

S

1

2 3

Fig. 7.27. Transition probabilities of a Markov model with three states

transitions which could have produced them. This is done with a recursive
algorithm.

The state diagram of a HMM can be represented by a network made of n
units (one for each state) and with connections from each unit to each other.
The weights of the connections are the transition probabilities (Figure 7.27).

As in the case of backpropagation through time, we can unfold the network
in order to observe it at each time step. At t = 0 only one of the n units, say
the i-th, produces the output 1, all others zero. State i is the the actual state
of the system. The probability that at time t = 1 the system reaches state j
is given by aij (to avoid cluttering only some of these values are shown in the
diagram). The probability of reaching state k at t = 2 is

n∑

j=1

aijajk

which is just the net input at the k-th node in the stage t = 2 of the network
shown in Figure 7.28. Consider now what happens when we can only observe
the output of the system but not the state transitions (refer to Figure 7.29). If
the system starts at t = 0 in a state given by a discrete probability distribution
ρ1, ρ2, . . . , ρn, then the probability of observing the k-th output at t = 0 is
given by

n∑

i=1

ρibik.

The probability of observing the k-th output at t = 0 and the m-th output at
t = 1 is

n∑

j=1

n∑

i=1

ρibikaijbjm.

The rest of the stages of the network compute the corresponding probabilities
in a similar manner.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

7.4 Recurrent networks 179

state 1

state 2

state n

t = 1 t = 2 t = Tt = 0

a11
a11 a11

ann ann ann

an2 an2 an2

an1 an1 an1

ok1 ok 2 okT

Fig. 7.28. Unfolded Hidden Markov Model

t = 2 t = Tt = 1

a11 a11

ann ann

+

b1k1

b2k1

bnk1

b1k2

b2k2

bnk2

ρ1

ρ2

ρn

1

+

+

+

+

+

+

+

+

+

bnkT

b2kT

b1kT

Fig. 7.29. Computation of the likelihood of a sequence of observations

How can we find the unknown transition and emission probabilities for
such an HMM? If we are given a sequence of T observed outputs with indices
k1, k2, . . . , kT we would like to maximize the likelihood of this sequence, i.e.,
the product of the probabilities that each of them occurs. This can be done by
transforming the unfolded network as shown in Figure 7.29 for T = 3. Notice
that at each stage h we introduced an additional edge from the node i with the
weight bi,kh

. In this way the final node which collects the sum of the whole
computation effectively computes the likelihood of the observed sequence.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

180 7 The Backpropagation Algorithm

Since this unfolded network contains only differentiable functions at its nodes
(in fact only addition and the identity function) it can be trained using the
backpropagation algorithm. However, care must be taken to avoid updating
the probabilities in such a way that they become negative or greater than 1.
Also the transition probabilities starting from the same node must always add
up to 1. These conditions can be enforced by an additional transformation of
the network (introducing for example a “softmax” function [39]) or using the
method of Lagrange multipliers. We give only a hint of how this last technique
can be implemented so that the reader may complete the network by her- or
himself.

Assume that a function F of n parameters x1, x2, . . . , xn is to be mini-
mized, subject to the constraint C(x1, x2, . . . , xn) = 0. We introduce a La-
grange multiplier λ and define the new function

L(x1, . . . , xn, λ) = F (x1, . . . , xn) + λC(x1, . . . , xn).

To minimize L we compute its gradient and set it to zero. To do this numer-
ically, we follow the negative gradient direction to find the minimum. Note
that since

∂L

∂λ
= C(x1, . . . , xn)

the iteration process does not finish as long as C(x1, . . . , xn) 6= 0, because
in that case the partial derivative of L with respect to λ is non-zero. If the
iteration process converges, we can be sure that the constraint C is satisfied.
Care must be taken when the minimum of F is reached at a saddle point
of L. In this case some modifications of the basic gradient descent algorithm
are needed [343]. Figure 7.30 shows a diagram of the network (a Lagrange
neural network [468]) adapted to include a constraint. Since all functions in
the network are differentiable, the partial derivatives needed can be computed
with the backpropagation algorithm.

x1

x2

xn

+

C

λ

F

Fig. 7.30. Lagrange neural network

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

7.4 Recurrent networks 181

7.4.3 Variational problems

Our next example, deals not with a recurrent network, but with a class of
networks built of many repeated stages. Variational problems can also be ex-
pressed and solved numerically using backpropagation networks. A variational
problem is one in which we are looking for a function which can optimize a
certain cost function. Usually cost is expressed analytically in terms of the
unknown function and finding a solution is in many cases an extremely dif-
ficult problem. An example can illustrate the general technique that can be
used.

Assume that the problem is to minimize P with two boundary conditions:

P (u) =

∫ 1

o

F (u, u′)dx with u(0) = a and u(1) = b.

Here u is an unknown function of x and F (u, u′) a cost function. P represents
the total cost associated with u over the interval [0, 1]. Since we want to
solve this problem numerically, we discretize the function u by partitioning
the interval [0, 1] into n − 1 subintervals. The discrete successive values of
the function are denoted by u1, u2, . . . , un, where u1 = a and un = b are the
boundary conditions. The length of the subintervals is ∆x = 1/(n− 1). The
discrete function Pd that we want to minimize is thus:

Pd(u) =

n∑

i=1

F (ui, u
′
i)∆x.

Since minimizing Pd(u) is equivalent to minimizing PD(u) = Pd(u)/∆x (∆x
is constant), we proceed to minimize PD(u). We can approximate the deriva-
tive u′i by (ui − ui−1)/∆x. Figure 7.31 shows the network that computes the
discrete approximation PD(u).

We can now compute the gradient of PD with respect to each ui by per-
forming backpropagation on this network. Note that there are three possible
paths from PD to ui, so the partial derivative of PD with respect to ui is

∂PD

∂ui
=
∂F

∂u
(ui, u

′
i)

︸ ︷︷ ︸

path1

+
1

∆x

∂F

∂u′
(ui, u

′
i)

︸ ︷︷ ︸

path2

− 1

∆x

∂F

∂u′
(ui+1, u

′
i+1)

︸ ︷︷ ︸

path3

which can be rearranged to

∂Pd

∂ui
=
∂F

∂u
(ui, u

′
i)−

1

∆x

(
∂F

∂u′
(ui+1, u

′
i+1)−

∂F

∂u′
(ui, u

′
i)

)

.

At the minimum all these terms should vanish and we get the expression

∂F

∂u
(ui, u

′
i)−

1

∆x

(
∂F

∂u′
(ui+1, u

′
i+1)−

∂F

∂u′
(ui, u

′
i)

)

= 0

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

182 7 The Backpropagation Algorithm

ui−1

ui

ui+1

+ 1
∆ x

-1

+

-1

+ PD

F
∂F

∂u

∂F

∂ ′u

F
∂F

∂u

∂F

∂ ′u

1
∆ x

Fig. 7.31. A network for variational calculus

which is the discrete version of the celebrated Euler equation

∂F

∂u
− d

dx

(
∂F

∂u′

)

= 0.

In fact this can be considered a simple derivation of Euler’s result in a discrete
setting.

By selecting another function F many variational problems can be solved
numerically. The curve of minimal length between two points can be found
by using the function

F (u, u′) =
√

1 + u′2 =

√
dx2 + du2

dx

which when integrated with respect to x corresponds to the path length
between the boundary conditions. In 1962 Dreyfus solved the constrained
brachystochrone problem, one of the most famous problems of variational
calculus, using a numerical approach similar to the one discussed here [115].

7.5 Historical and bibliographical remarks

The field of neural networks started with the investigations of researchers of
the caliber of McCulloch, Wiener, and von Neumann. The perceptron era was
its Sturm und Drang period, the epoch in which many new ideas were tested
and novel problems were being solved using perceptrons. However, at the end
of the 1960s it became evident that more complex multilayered architectures
demanded a new learning paradigm. In the absence of such an algorithm,

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

7.5 Historical and bibliographical remarks 183

a new era of cautious incremental improvements and silent experimentation
began.

The algorithm that the neural network community needed had already
been developed by researchers working in the field of optimal control. These
researchers were dealing with variational problems with boundary conditions
in which a function capable of optimizing a cost function subject to some con-
straints must be determined. As in the field of neural networks, a function f
must be found and a set of input-output values is predefined for some points.
Around 1960 Kelley and Bryson developed numerical methods to solve this
variational problem which relied on a recursive calculation of the gradient of a
cost function according to its unknown parameters [241, 76]. In 1962 Dreyfus,
also known for his criticism of symbolic AI, showed how to express the varia-
tional problems as a kind of multistage system and gave a simple derivation of
what we now call the backpropagation algorithm [115, 116]. He was the first to
use an approach based on the chain rule, in fact one very similar to that used
later by the PDP group. Bryson and Ho later summarized this technique in
their classical book on optimal control [76]. However, Bryson gives credit for
the idea of using numerical methods to solve variational problems to Courant,
who in 1943 proposed using gradient descent along the Euler expression (the
partial derivative of the cost function) to find numerical approximations to
variational problems [93].

The algorithm was redeveloped by some other researchers working in the
field of statistics or pattern recognition. We can look as far back as Gauss
to find mathematicians already doing function-fitting with numerical meth-
ods. Gauss developed the method of least squares and considered the fitting
of nonlinear functions of unknown parameters. In the Gauss–Newton method
the function F of parameters w1, . . . , wn is approximated by its Taylor ex-
pansion at an initial point using only the first-order partial derivatives. Then
a least-squares problem is solved and a new set of parameters is found. This
is done iteratively until the function F approximates the empirical data with
the desired accuracy [180]. Another possibility, however, is the use of the par-
tial derivatives of F with respect to the parameters to do a search in the
gradient direction. This approach was already being used by statisticians in
the 1960s [292]. In 1974 Werbos considered the case of general function com-
position and proposed the backpropagation algorithm [442, 443] as a kind of
nonlinear regression. The points given as the training set are considered not
as boundary conditions, which cannot be violated, but as experimental points
which have to be approximated by a suitable function. The special case of
recursive backpropagation for Hidden Markov Models was solved by Baum,
also considering the restrictions on the range of probability values [47], which
he solved by doing a projective transformation after each update of the set of
probabilities. His “forward-backward” algorithm for HMMs can be considered
one of the precursors of the backpropagation algorithm.

Finally, the AI community also came to rediscovering backpropagation on
its own. Rumelhart and his coauthors [383] used it to optimize multilayered

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

184 7 The Backpropagation Algorithm

neural networks in the 1980s. Le Cun is also mentioned frequently as one
of the authors who reinvented backpropagation [269]. The main difference
however to the approach of both the control or statistics community was in
conceiving the networks of functions as interconnected computing units. We
said before that backpropagation reduces to the recursive computation of the
chain rule. But there is also a difference: the network of computing units serves
as the underlying data structure to store values of previous computations,
avoiding redundant work by the simple expedient of running the network
backwards and labeling the nodes with the backpropagated error. In this sense
the backpropagation algorithm, as rediscovered by the AI community, added
something new, namely the concept of functions as dynamical objects being
evaluated by a network of computing elements and backpropagation as an
inversion of the network dynamics.

Exercises

1. Implement the backpropagation algorithm and train a network that com-
putes the parity of 5 input bits.

2. The symmetric sigmoid is defined as t(x) = 2s(x) − 1, where s(·) is the
usual sigmoid function. Find the new expressions for the weight corrections
in a layered network in which the nodes use t as a primitive function.

3. Find the analytic expressions for the partial derivative of the error function
according to each one of the input values to the network. What could be
done with this kind of information?

4. Find a discrete approximation to the curve of minimal length between two
points in IR3 using a backpropagation network.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

8

Fast Learning Algorithms

8.1 Introduction – classical backpropagation

Artificial neural networks attracted renewed interest over the last decade,
mainly because new learning methods capable of dealing with large scale
learning problems were developed. After the pioneering work of Rosenblatt
and others, no efficient learning algorithm for multilayer or arbitrary feed-
forward neural networks was known. This led some to the premature con-
clusion that the whole field had reached a dead-end. The rediscovery of the
backpropagation algorithm in the 1980s, together with the development of
alternative network topologies, led to the intense outburst of activity which
put neural computing back into the mainstream of computer science.

Much has changed since the original proposals of the PDP group. There is
now no lack of alternative fast learning algorithms for neural networks. Each
new conference and each new journal issue features some kind of novel learning
method offering better and faster convergence than the tried and trusted stan-
dard backpropagation method. The reason for this combinatorial explosion of
new algorithms is twofold: on the one hand, backpropagation itself is a rather
slow learning algorithm, which through malicious selection of parameters can
be made even slower. By using any of the well-known techniques of nonlinear
optimization, it is possible to accelerate the training method with practically
no effort. Since authors usually compare their new algorithms with standard
backpropagation, they always report a substantial improvement [351]. On the
other hand, since the learning problem for artificial neural networks is NP-
complete (see Chap. 10) in the worst case, the computational effort involved
in computing the network parameters grows exponentially with the number of
unknowns. This leaves room for alternative proposals which could deal with
some learning tasks in a more efficient manner. However, it is always possible
to fool the best learning method with a suitable learning task and it is always
possible to make it perform incomparably better than all its competitors. It is
a rather surprising fact that standard on-line backpropagation performs bet-
ter than many fast learning algorithms as soon as the learning task achieves a

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

186 8 Fast Learning Algorithms

realistic level of complexity and when the size of the training set goes beyond
a critical threshold [391].

In this chapter we try to introduce some order into the burgeoning field of
fast learning algorithms for neural networks. We show the essential character-
istics of the proposed methods, the fundamental alternatives open to anyone
wishing to improve traditional backpropagation and the similarities and dif-
ferences between the different techniques. Our analysis will be restricted to
those algorithms which deal with a fixed network topology. One of the lessons
learned over the past years is that significant improvements in the approxi-
mation capabilities of neural networks will only be obtained through the use
of modularized networks. In the future, more complex learning algorithms will
deal not only with the problem of determining the network parameters, but
also with the problem of adapting the network topology. Algorithms of this
type already in existence fall beyond the scope of this chapter.

8.1.1 Backpropagation with momentum

Before reviewing some of the variations and improvements which have been
proposed to accelerate the learning process in neural networks, we briefly dis-
cuss the problems involved in trying to minimize the error function using
gradient descent. Therefore, we first describe a simple modification of back-
propagation called backpropagation with momentum, and then look at the
form of the iteration path in weight space.

w

w

(a) (b)

iteration path

1

2
w

2

w1

Fig. 8.1. Backpropagation without (a) or with (b) momentum term

When the minimum of the error function for a given learning task lies in a
narrow “valley”, following the gradient direction can lead to wide oscillations
of the search process. Figure 8.1 shows an example for a network with just
two weights w1 and w2. The best strategy in this case is to orient the search
towards the center of the valley, but the form of the error function is such
that the gradient does not point in this direction. A simple solution is to

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

8.1 Introduction – classical backpropagation 187

introduce a momentum term. The gradient of the error function is computed
for each new combination of weights, but instead of just following the negative
gradient direction a weighted average of the current gradient and the previous
correction direction is computed at each step. Theoretically, this approach
should provide the search process with a kind of inertia and could help to
avoid excessive oscillations in narrow valleys of the error function.

As explained in the previous chapter, in standard backpropagation the
input-output patterns are fed into the network and the error function E is
determined at the output. When using backpropagation with momentum in a
network with n different weights w1, w2, . . . , wn, the i-th correction for weight
wk is given by

∆wk(i) = −γ ∂E
∂wk

+ α∆wk(i− 1),

where γ and α are the learning and momentum rate respectively. Normally, we
are interested in accelerating convergence to a minimum of the error function,
and this can be done by increasing the learning rate up to an optimal value.
Several fast learning algorithms for neural networks work by trying to find
the best value of γ which still guarantees convergence. Introduction of the
momentum rate allows the attenuation of oscillations in the iteration process.

The adjustment of both learning parameters to obtain the best possible
convergence is normally done by trial and error or even by some kind of ran-
dom search [389]. Since the optimal parameters are highly dependent on the
learning task, no general strategy has been developed to deal with this prob-
lem. Therefore, in the following we show the trade-offs involved in choosing
a specific learning and momentum rate, and the kind of oscillating behav-
ior which can be observed with the backpropagation feedback rule and large
momentum rates. We show that they are necessary when the optimal size
of the learning step is unknown and the form of the error function is highly
degenerate.

The linear associator

Let us first consider the case of a linear associator, that is, a single comput-
ing element with associated weights w1, w2, . . . , wn and which for the input
x1, x2, . . . , xn produces w1x1 + · · ·+wnxn as output, as shown in Figure 8.2.

x1

x2

xn

w1

wn

wixi
i =1

n

Σ+w2

Fig. 8.2. Linear associator

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

188 8 Fast Learning Algorithms

The input-output patterns in the training set are the p ordered pairs
(x1, y1), . . . , (xp, yp), whereby the input patterns are row vectors of dimension
n and the output patterns are scalars. The weights of the linear associator can
be ordered in an n-dimensional column vector w and the learning task consists
of finding the w that minimizes the quadratic error

E =

n∑

i=1

‖xi ·w − yi‖2.

By defining a p × m matrix X whose rows are the vectors x1, . . . ,xp and a
column vector y whose elements are the scalars y1, . . . , yp, the learning task
reduces to the minimization of

E = ‖Xw− y‖2

= (Xw − y)T(Xw − y)

= wT(XTX)w − 2yTXw + yTy.

Since this is a quadratic function, the minimum can be found using gradient
descent.

The quadratic function E can be thought of as a paraboloid in m-
dimensional space. The lengths of its principal axes are determined by the
magnitude of the eigenvalues of the correlation matrix XTX. Gradient de-
scent is most effective when the principal axes of the quadratic form are all of
the same length. In this case the gradient vector points directly towards the
minimum of the error function. When the axes of the paraboloid are of very
different sizes, the gradient direction can lead to oscillations in the iteration
process as shown in Figure 8.1.

Let us consider the simple case of the quadratic function ax2 + by2. Gra-
dient descent with momentum yields the iteration rule

∆x(i) = −2γax+ α∆x(i − 1)

in the x direction and

∆y(i) = −2γbx+ α∆y(i− 1)

in the y direction. An optimal parameter combination in the x direction is
γ = 1/2a and α = 0. In the y direction the optimal combination is γ = 1/2b
and α = 0. Since iteration proceeds with a single γ value, we have to find
a compromise between these two options. Intuitively, if the momentum term
is zero, an intermediate γ should do best. Figure 8.3 shows the number of
iterations needed to find the minimum of the error function to a given precision
as a function of γ, when a = 0.9 and b = 0.5. The optimal value for γ is the
one found at the intersection of the two curves and is γ = 0.7. The global
optimal γ is larger than the optimal γ in the x direction and smaller than the
optimal γ in the y direction. This means that there will be some oscillations

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

8.1 Introduction – classical backpropagation 189

best common
gamma

number
of iterations

γγ
1 2

x dimension

y dimension

Fig. 8.3. Optimal γ in the two-dimensional case

in the y direction and slow convergence in the x direction, but this is the best
possible compromise. It is obvious that in the n-dimensional case we could
have oscillations in some of the principal directions and slow convergence in
others. A simple strategy used by some fast learning algorithms to avoid these
problems consists of using a different learning rate for each weight, that is, a
different γ for each direction in weight space [217].

Minimizing oscillations

Since the lengths of the principal axes of the error function are given by the
eigenvalues of the correlation matrix XTX, and since one of these eigenvalues
could be much larger than the others, the range of possible values for γ reduces
accordingly. Nevertheless, a very small γ and the oscillations it produces can
be neutralized by increasing the momentum rate. We proceed to a detailed
discussion of the one-dimensional case, which provides us with the necessary
insight for the more complex multidimensional case.

In the one-dimensional case, that is, when minimizing functions of type
kx2, the optimal learning rate is given by γ = 1/2k. The rate γ = 1/k pro-
duces an oscillation between the initial point x0 and −x0. Any γ greater
than 2/k leads to an “explosion” of the iteration process. Figure 8.4 shows
the main regions for parameter combinations of γ and the momentum rate
α. These regions were determined by iterating in the one-dimensional case
and integrating the length of the iteration path. Parameter combinations in
the divergence region lead to divergence of the iteration process. Parameter
combinations in the boundary between regions lead to stable oscillations.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

190 8 Fast Learning Algorithms

divergence

zone

convergence

zone

optimal combinations

of alpha and gamma

divergence

zone

0 10,5

Momentum rate

Learning

rate

1

2k

1

k

3

2k

2

k

Fig. 8.4. Convergence zone for combinations of γ and α

Figure 8.4 shows some interesting facts. Any value of γ greater than four
times the constant 1/2k cannot be balanced with any value of α. Values of
α greater than 1 are prohibited since they lead to a geometric explosion of
the iteration process. Any value of γ between the explosion threshold 1/k and
2/k can lead to convergence if a large enough α is selected. For any given γ
between 1/k and 2/k there are two points at which the iteration process falls
in a stable oscillation, namely at the boundaries between regions. For values
of γ under the optimal value 1/2k, the convergence speed is optimal for a
unique α. The optimal combinations of α and γ are the ones represented by
the jagged line in the diagram.

The more interesting message we get from Figure 8.4 is the following:
in the case where in some direction in weight space the principal axis of
the error function is very small compared to another axis, we should try to
achieve a compromise by adjusting the momentum rate in such a way that
the directions in which the algorithm oscillates become less oscillating and the
directions with slow convergence improve their convergence speed. Obviously
when dealing with n axes in weight space, this compromise could be dominated
by a single direction.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

8.1 Introduction – classical backpropagation 191

Critical parameter combinations

Backpropagation is used in those cases in which we do not have an analytic
expression of the error function to be optimized. A learning rate γ has to be
chosen without any previous knowledge of the correlation matrix of the input.
In on-line learning the training patterns are not always defined in advance,
and are generated one by one. A conservative approach is to minimize the risk
by choosing a very small learning rate. In this case backpropagation can be
trapped in a local minimum of a nonlinear error function. The learning rate
should then be increased.

Fig. 8.5. Paths in weight space for backpropagation learning (linear associators).
The minimum of the error function is located at the origin.

In the case of a correlation matrix XTX with some very large eigenval-
ues, a given choice of γ could lead to divergence in the associated direction
in weight space (assuming for simplicity that the principal directions of the
quadratic form are aligned with the coordinate axis). Let us assume that the
selected γ is near to the explosion point 2/k found in the one-dimensional case
and shown in Figure 8.4. In this case only values of the momentum rate near
to one can guarantee convergence, but oscillations in some of the directions
in weight space can become synchronized. The result is oscillating paths in
weight space, reminiscent of Lissajou’s figures. Figure 8.5 shows some paths
in a two-dimensional weight space for several linear associators trained with

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

192 8 Fast Learning Algorithms

momentum rates close to one and different γ values. In some cases the tra-
jectories lead to convergence after several thousand iterations. In others a
momentum rate equal to one precludes convergence of the iteration process.

Adjustment of the learning and momentum rate in the nonlinear case is
even more difficult than in the linear case, because there is no fast explosion
of the iteration process. In the quadratic case, whenever the learning rate
is excessively large, the iteration process leads rapidly to an overflow which
alerts the programmer to the fact that the step size should be reduced. In the
nonlinear case the output of the network and the error function are bounded
and no overflow occurs. In regions far from local minima the gradient of the
error function becomes almost zero as do the weight adjustments. The diver-
gence regions of the quadratic case can now become oscillatory regions. In
this case, even as step sizes increase, the iteration returns to the convex part
of the error function.

0.25

0.0

error

weight
updates

iterations

Fig. 8.6. Bounded nonlinear error function and the result of several iterations

Figure 8.6 shows the possible shape of the error function for a linear as-
sociator with sigmoidal output and the associated oscillation process for this
kind of error function in the one-dimensional case. The jagged form of the
iteration curve is reminiscent of the kind of learning curves shown in many
papers about learning in nonlinear neural networks. Although in the quadratic
case only large momentum rates lead to oscillations, in the nonlinear case an
excessively large γ can also produce oscillations even when no momentum rate
is present.

Researchers in the field of neural networks should be concerned not only
with the possibility of getting stuck in local minima of the error function when
learning rates are too small, but also with the possibility of falling into the os-
cillatory traps of backpropagation when the learning rate is too big. Learning
algorithms should try to balance the speedup they are attempting to obtain
with the risk of divergence involved in doing so. Two different kinds of remedy
are available: a) adaptive learning rates and b) statistical preprocessing of the
learning set which is done to decorrelate the input patterns, thus avoiding the
negative effect of excessively large eigenvalues of the correlation matrix.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

8.1 Introduction – classical backpropagation 193

8.1.2 The fractal geometry of backpropagation

It is empirically known that standard backpropagation is very sensitive to
the initial learning rate chosen for a given learning task. In this section we
examine the shape of the iteration path for the training of a linear associator
using on-line backpropagation. We show that the path is a fractal in weight
space. The specific form depends on the learning rate chosen, but there is
a threshold value for which the attractor of the iteration path is dense in a
region of weight space around a local minimum of the error function. This
result also yields a deeper insight into the mechanics of the iteration process
in the nonlinear case.

The Gauss–Jacobi and Gauss–Seidel methods and backpropagation

Backpropagation can be performed in batch or on-line mode, that is, by updat-
ing the network weights once after each presentation of the complete training
set or immediately after each pattern presentation. In general, on-line back-
propagation does not converge to a single point in weight space, but oscillates
around the minimum of the error function. The expected value of the devia-
tion from the minimum depends on the size of the learning step being used. In
this section we show that although the iteration process can fail to converge
for some choices of learning rate, the iteration path for on-line learning is not
just random noise, but possesses some structure and is indeed a fractal. This
is rather surprising, because if the training patterns are selected randomly,
one would expect a random iteration path. As we will see in what follows, it
is easy to show that on-line backpropagation, in the case of linear associators,
defines an Iterated Function System of the same type as the ones popular-
ized by Barnsley [42]. This is sufficient proof that the iteration path has a
fractal structure. To illustrate this fact we provide some computer-generated
graphics.

First of all we need a visualization of the way off-line and on-line back-
propagation approach the minimum of the error function. To simplify the
discussion consider a linear associator with just two input lines (and thus two
weights w1 and w2). Assume that three input-output patterns are given so
that the equations to be satisfied are:

x1
1w1 + x1

2w2 = y1 (8.1)

x2
1w1 + x2

2w2 = y2 (8.2)

x3
1w1 + x3

2w2 = y3 (8.3)

These three equations define three lines in weight space and we look for the
combination of w1 and w2 which satisfies all three simultaneously. If the three
lines intersect at the same point, we can compute the solution using Gauss
elimination. If the three lines do not intersect, no exact solution exists but
we can ask for the combination of w1 and w2 which minimizes the quadratic

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

194 8 Fast Learning Algorithms

error. This is the point inside the triangle shown in Figure 8.7, which has the
minimal cumulative quadratic distance to the three sides of the triangle.

P

Fig. 8.7. Three linear constraints in weight space

Now for the interesting part: the point of intersection of linear equations
can be found by linear algebraic methods such as the Gauss–Jacobi or the
Gauss–Seidel method. Figure 8.8 shows how they work. If we are looking for
the intersection of two lines, the Gauss–Jacobi method starts at some point in
search space and projects this point in the directions of the axes on to the two
lines considered in the example. The x-coordinate of the horizontal projection
and the y-coordinate of the vertical projection define the next iteration point.
It is not difficult to see that in the example this method converges to the
point of intersection of the two lines. The Gauss–Seidel method deals with
each linear equation individually. It first projects in the x direction, then in
the y direction. Each projection is the new iteration point. This algorithm
usually converges faster than the Gauss–Jacobi method [444].

Gauss-Jacobi iterations Gauss-Seidel iterations

Fig. 8.8. The Gauss–Jacobi and Gauss–Seidel methods

Off-line and on-line backpropagation are in a certain sense equivalent to
the Gauss–Jacobi and Gauss–Seidel methods. When on-line backpropagation

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

8.1 Introduction – classical backpropagation 195

is used, the negative gradient of the error function is followed and this corre-
sponds to following a line perpendicular to each one of the equations (8.1) to
(8.3). In the case of the first input-output pattern, the error function is

1

2
(x1

1w1 + x1
2w2 − y1)2

and the gradient (with respect to w1 and w2) is the vector

(x1, x2)

which is normal to the line defined by equation (8.1). By randomly alternating
the selection of each pattern, on-line backpropagation iterates, always moving
in the direction normal to the linear constraints. Figure 8.9 shows that this
method can be used to find the solution to linear equations. If the directions
of the axis and the linear constraints coincide, on-line backpropagation is the
Gauss–Seidel method with a learning constant.

off-line backpropagation on-line backpropagation

Fig. 8.9. Off-line and on-line backpropagation

Off-line backpropagation iterates by adding the corrections for each pat-
tern. This means that the corrections in the direction normal to each linear
constraint are calculated and the new iteration point is obtained by combining
them. Figure 8.9 shows that this method is very similar to the Gauss–Jacobi
method of linear algebra if we are looking for the solution to linear equations.
Note that in both cases the size of the learning constant determines whether
the iteration stops short of reaching the linear constraint or goes beyond it.
This also depends on the curvature of the error function for each linear con-
straint (not shown in Figure 8.9).

In the nonlinear case, when a sigmoid is added as the activation function to
the computing unit, the same kind of iteration process is used, but the sigmoid
weights each one of the correction directions. On-line backpropagation always
moves in the direction normal to the constraints, but the length of the search
step is multiplied by the derivative of the sigmoid. Figure 8.10 shows the path
of some iterations in the case of three input-output patterns and two weights.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

196 8 Fast Learning Algorithms

Fig. 8.10. On-line backpropagation iterations for sigmoidal units

Iterated Function Systems

Barnsley has shown that a set of affine transformations in a metric space
can produce fractal structures when applied repetitively to a compact subset
of points and its subsequent images. More specifically: an Iterated Function
System (IFS) consists of a space of points X , a metric d defined in this space,
and a set of affine contraction mappings hi : X → X, i = 1, . . . , N . Given a
nonvoid compact subset A0 of points of X , new image subsets are computed
successively according to the recursive formula

An+1 =

N⋃

j=1

hj(An), for n = 1, 2,

A theorem guarantees that the sequence {An} converges to a fixed point,
which is called the attractor of the IFS. Moreover, the Collage Theorem guar-
antees that given any nonvoid compact subset of X we can always find an
IFS whose associated attractor can arbitrarily approximate the given subset
under a suitable metric.

For the case of an n-dimensional space X , an affine transformation applied
to a point x = (x1, x2, . . . , xn) is defined by a matrix M and a vector t. The
transformation is given by

x→Mx + t.

and is contractive if the determinant of M is smaller than one.
It is easy to show that the attractor of the IFS can be approximated

by taking any point ao which belongs to the attractor and computing the
sequence an, whereby

an+1 = hk(an),

and the affine transformation hk is selected randomly from the IFS. The infi-
nite sequence {an} is a dense subset of the attractor. This means that we can
produce a good graphical approximation of the attractor of the IFS with this
simple randomized method. Since it is easy to approximate a point belonging
to the attractor (by starting from the origin and iterating with the IFS a fixed
number of times), this provides us with the necessary initial point.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

8.1 Introduction – classical backpropagation 197

We now proceed to show that on-line backpropagation, in the case of a
linear associator, defines a set of affine transformations which are applied in
the course of the learning process either randomly or in a fixed sequence. The
iteration path of the initial point is thus a fractal.

On-line Backpropagation and IFS

Consider a linear associator and the p n-dimensional patterns x1,x2, . . . ,xp.
The symbol xj

i denotes the i-th coordinate of the j-th pattern. The targets for
training are the p real values y1, y2, . . . , yp. We denote by w1, w2, . . . , wn the
weights of the linear associator. In on-line backpropagation the error function
is determined for each individual pattern. For pattern j the error is

Ej =
1

2
(w1x

j
1 + w2x

j
2 + · · ·+ wnx

j
n − yj)2.

The correction for each weight wi, i = 1, . . . , n, is given by

wi → wi − γxj
i (w1x

j
1 + w2x

j
2 + · · ·+ wnx

j
n − yj),

where γ is the learning constant being used. This can be also written as

wi → wi − γ(w1x
j
ix

j
1 + w2x

j
ix

j
2 + · · ·+ wnx

j
ix

j
n)− γxj

iy
j . (8.4)

Let Mj be the matrix with elements mik = xj
ix

j
k for i, k = 1, . . . , n. Equa-

tion (8.4) can be rewritten in matrix form (considering all values of i) as

w→ Iw − γMjw− tj ,

where tj is the column vector with components xj
iy

j for i = 1, . . . , n and I is
the identity matrix. We can rewrite the above expression as

w→ (I− γMj)w − tj .

This is an affine transformation, which maps the current point in weight space
into a new one. Note that each pattern in the training set defines a different
affine transformation of the current point (w1, w2, . . . , wn).

In on-line backpropagation with a random selection of input patterns,
the initial point in weight space is successively transformed in just the way
prescribed by a randomized IFS algorithm. This means that the sequence of
updated weights approximates the attractor of the IFS defined by the input
patterns, i.e., the iteration path in weight space is a fractal.

This result can be visualized in the following manner: given a point
(w′

1, w
′
2, . . . , w

′
n) in weight space, the square of the distance ` to the hyperplane

defined by the equation

w1x
j
1 + w2x

j
2 + · · ·+ wnx

j
n = yj

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

198 8 Fast Learning Algorithms

Fig. 8.11. Iteration paths in weight space for different learning rates

is given by

`2 =
(w′

1x
j
1 + w′

2x
j
2 + · · ·+ w′

nx
j
n − yj)2

(xj
1)

2 + · · ·+ (xj
n)2

.

Comparing this expression with the updating step performed by on-line
backpropagation, we see that each backpropagation step amounts to displac-
ing the current point in weight space in the direction normal to the hyperplane
defined by the input and target patterns. A learning rate γ with value

γ =
1

(xj
1)

2 + · · ·+ (xj
n)2

(8.5)

produces exact learning of the j-th pattern, that is, the point in weight space
is brought up to the hyperplane defined by the pattern. Any value of γ below
this threshold displaces the iteration path just a fraction of the distance to
the hyperplane. The iteration path thus remains trapped in a certain region
of weight space near to the optimum.

Figure 8.11 shows a simple example in which three input-output patterns
define three lines in a two-dimensional plane. Backpropagation for a linear
associator will find the point in the middle as the solution with the minimal
error for this task. Some combinations of learning rate, however, keep the
iteration path a significant distance away from this point. The fractal structure
of the iteration path is visible in the first three graphics. With γ = 0.25
the fractal structure is obliterated by a dense approximation to the whole
triangular region. For values of γ under 0.25 the iteration path repeatedly
comes arbitrarily near to the local minimum of the error function.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

8.2 Some simple improvements to backpropagation 199

It is clear that on-line backpropagation with random selection of the input
patterns yields iteration dynamics equivalent to those of IFS. When the learn-
ing constant is such that the affine transformations overlap, the iteration path
densely covers a certain region of weight space around the local minimum of
the error function. Practitioners know that they have to systematically re-
duce the size of the learning step, because otherwise the error function begins
oscillating. In the case of linear associators and on-line backpropagation this
means that the iteration path has gone fractal. Chaotic behavior of recurrent
neural networks has been observed before [281], but in our case we are dealing
with very simple feed-forward networks which fall into a similar dynamic.

In the case of sigmoid units at the output, the error correction step is
no longer equivalent to an affine transformation, but the updating step is
very similar. It can be shown that the error function for sigmoid units can
approximate a quadratic function for suitable parameter combinations. In this
case the iteration dynamics will not differ appreciably from those discussed in
this chapter. Nonlinear updating steps should also produce fractal iteration
paths of a more complex nature.

8.2 Some simple improvements to backpropagation

Since learning in neural networks is an NP-complete problem and since tradi-
tional gradient descent methods are rather slow, many alternatives have been
tried in order to accelerate convergence. Some of the proposed methods are
mutually compatible and a combination of them normally works better than
each method alone [340]. But apart from the learning algorithm, the basic
point to consider before training a neural network is where to start the itera-
tive learning process. This has led to an analysis of the best possible weight
initialization strategies and their effect on the convergence speed of learning
[328].

8.2.1 Initial weight selection

A well-known initialization heuristic for a feed-forward network with sigmoidal
units is to select its weights with uniform probability from an interval [−α, α].
The zero mean of the weights leads to an expected zero value of the total input
to each node in the network. Since the derivative of the sigmoid at each node
reaches its maximum value of 1/4 with exactly this input, this should lead
in principle to a larger backpropagated error and to more significant weight
updates when training starts. However, if the weights in the networks are
very small (or all zero) the backpropagated error from the output to the
hidden layer is also very small (or zero) and practically no weight adjustment
takes place between input and hidden layer. Very small values of α paralyze
learning, whereas very large values can lead to saturation of the nodes in the
network and to flat zones of the error function in which, again, learning is very

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

200 8 Fast Learning Algorithms

slow. Learning then stops at a suboptimal local minimum [277]. Therefore it
is natural to ask what is the best range of values for α in terms of the learning
speed of the network.

Some authors have conducted empirical comparisons of the values for α
and have found a range in which convergence is best [445]. The main problem
with these results is that they were obtained from a limited set of exam-
ples and the relation between learning step and weight initialization was not
considered. Others have studied the percentage of nodes in a network which
become paralyzed during training and have sought to minimize it with the
“best” α [113]. Their empirical results show, nevertheless, that there is not a
single α which works best, but a very broad range of values with basically the
same convergence efficiency.

Maximizing the derivatives at the nodes

Let us first consider the case of an output node. If n different edges with asso-
ciated weights w1, w2, . . . , wn point to this node, then after selecting weights
with uniform probability from the interval [−α, α], the expected total input
to the node is 〈

n∑

i=1

wixi

〉

= 0

where x1, x2, . . . , xn are the input values transported through each edge. We
have assumed that these inputs and the initial weights are not correlated. By
the law of large numbers we can also assume that the total input to the node
has a Gaussian distribution Numerical integration shows that the expected
value of the derivative is a decreasing function of the standard deviation σ.
The expected value falls slowly with an increase of the variance. For σ = 0
the expected value is 0.25 and for σ = 4 it is still 0.12, that is, almost half as
big.

The variance of the total input to a node is

σ2 = E((
n∑

i=1

wixi)
2)− E((

n∑

i=1

wixi))
2 =

n∑

i=1

E(w2
i)E(x2

i),

since inputs and weights are uncorrelated. For binary vectors we have E(x2
i) =

1/3 and the above equation simplifies to

σ =
1

3

√
nα.

If n = 100, selecting weights randomly from the interval [−1.2, 1.2] leads to a
variance of 4 at the input of a node with 100 connections and to an expected
value of the derivative equal to 0.12.

Therefore in small networks, in which the maximum input to each node
comes from fewer than 100 edges, the expected value of the derivative is not
very sensitive to the width α of the random interval, when α is small enough.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

8.2 Some simple improvements to backpropagation 201

Maximizing the backpropagated error

In order to make corrections to the weights in the first block of weights (those
between input and hidden layer) easier, the backpropagated error should be as
large as possible. Very small weights between hidden and output nodes lead to
a very small backpropagated error, and this in turn to insufficient corrections
to the weights. In a network with m nodes in the hidden layer and k nodes
in the output layer, each hidden node h receives a backpropagated input δh
from the k output nodes, equal to

δh =

k∑

i=1

whis
′
iδ

0
i ,

where the weights whi, i = 1, . . . , k, are the ones associated with the edges
from hidden node h to output node i, s′i is the sigmoid’s derivative at the
output node i, and δ0i is the difference between output and target also at this
node.

alpha
0.0

0.25

derivative's magnitude

backpropagated error

geometric mean

Fig. 8.12. Expected values of the backpropagated error and the sigmoid’s derivative

After initialization of the network’s weights the expected value of δh is zero.
In the first phase of learning we are interested in breaking the symmetry of the
hidden nodes. They should specialize in the recognition of different features
of the input. By making the variance of the backpropagated error larger, each
hidden node gets a greater chance of pulling apart from its neighbors. The
above equation shows that by making the initialization interval [−α, α] wider,
two contradictory forces come into play. On the one hand, the variance of
the weights becomes larger, but on the other hand, the expected value of the
derivative s′k becomes lower. We would like to make δh as large as possible,
but without making s′i too low, since weight corrections in the second block
of weights are proportional to s′i. Figure 8.12 shows the expected values of
the derivative at the output nodes, the expected value of the backpropagated

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

202 8 Fast Learning Algorithms

error for the hidden nodes as a function of α, and the geometric mean of both
values. The data in the figure was obtained from Monte Carlo trials, assuming
a constant expected value of δ0i . Forty hidden and one output unit were used.

The figure shows, again, that the expected value of the sigmoid’s derivative
falls slowly with an increasing α, but the value of the backpropagated error
is sensitive to small values of α. In the case shown in the figure, any possible
choice of α between 0.5 and 1.5 should lead to virtually the same performance.
This explains the flat region of possible values for α found in the experiments
published in [113] and [445]. Consequently, the best values for α depend on the
exact number of input, hidden, and output units, but the learning algorithm
should not be very sensitive to the exact α chosen from a certain range of
values.

8.2.2 Clipped derivatives and offset term

One of the factors which leads to slow convergence of gradient descent methods
is the small absolute value of the partial derivatives of the error function
computed by backpropagation. The derivatives of the sigmoid stored at the
computing units can easily approach values near to zero and since several
of them can be multiplied in the backpropagation step, the length of the
gradient can become too small. A solution to this problem is clipping the
derivative of the sigmoid, so that it can never become smaller than a predefined
value. We could demand, for example, that s′(x) ≥ 0.01. In this case the
“derivatives” stored in the computing units do not correspond exactly to the
actual derivative of the sigmoid (except in the regions where the derivative is
not too small). However, the partial derivatives have the correct sign and the
gradient direction is not significantly affected.

It is also possible to add a small constant ε to the derivative and use
s′(x)+ε for the backpropagation step. The net effect of an offset value for the
sigmoid’s derivative is to pull the iteration process out of flat regions of the
error function. Once this has happened, backpropagation continues iterating
with the exact gradient direction. It has been shown in many different learning
experiments that this kind of heuristic, proposed by Fahlman [130], among
others, can contribute significantly to accelerate several different variants of
the standard backpropagation method [340]. Note that the offset term can be
implemented very easily when the sigmoid is not computed at the nodes but
only read from a table of function values. The table of derivatives can combine
clipping of the sigmoid values with the addition of an offset term, to enhance
the values used in the backpropagation step.

8.2.3 Reducing the number of floating-point operations

Backpropagation is an expensive algorithm because a straightforward imple-
mentation is based on floating-point operations. Since all values between 0
and 1 are used, problems of precision and stability arise which are normally

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

8.2 Some simple improvements to backpropagation 203

avoided by using 32-bit or 64-bit floating-point arithmetic. There are several
possibilities to reduce the number of floating-point operations needed.

Avoiding the computation of the squashing function

If the nonlinear function used at each unit is a sigmoid or the hyperbolic
tangent, then an exponential function has to be computed and this requires a
sequence of floating-point operations. However, computation of the nonlinear-
ity can be avoided by using tables stored at each unit, in which for an interval
[xi, xi+1] in the real line the corresponding approximation to the sigmoid is
stored. A piecewise linear approximation can be used as shown in Figure 8.13,
so that the output of the unit is y = ai +ai+1(x−xi) when xi ≤ x < xi+1 and
where a1 = s(xi) and ai+1 = s(xi+1). Computation of the nonlinear function
is reduced in this way to a comparison, a table lookup, and an interpolation.
Another table holding some values of the sigmoid’s derivative can be stored at
each unit for the backpropagation step. A piecewise linear approximation can
also be used in this case. This strategy is used in chips for neural computation
in order to avoid using many logic gates.

-4 -2 0 2 4
x

1

Fig. 8.13. Piecewise linear approximation to the sigmoid

Avoiding the nonlinear function at the output

In some cases the sigmoid at the output of the network can be eliminated.
If the output vectors in the training set are m-dimensional vectors of the
form (t1, . . . , tm) with 0 < ti < 1 for i = 1, . . . ,m, then a new training set
can be defined with the same input vectors and output vectors of the form
(s−1(y1), . . . , s

−1(ym)), where the function s−1 is the inverse of the sigmoid.
The sigmoid is eliminated from the output units and the network is trained
with standard backpropagation. This strategy will save some operations but
its applicability depends on the problem, since the sigmoid is equivalent to a
kind of weighting of the output error. The inputs 100 or 1000 produce almost
the same sigmoid output, but the two numbers are very different when com-
pared directly. Only more knowledge about the specific application can help

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

204 8 Fast Learning Algorithms

to decide if the nonlinearity at the output can be eliminated (see Sect. 9.1.3
on logistic regression).

Fixed-point arithmetic

Since integer operations can be executed in many processors faster than
floating-point operations, and since the outputs of the computing units are
values in the interval (0, 1) or (−1, 1), it is possible to adopt a fixed-point rep-
resentation and perform all necessary operations with integers. By convention
we can define the last 12 bits of a number as its fractional part and the three
previous bits as its integer part. Using a sign bit it is possible to represent
numbers in the interval (−8, 8) with a precision of 2−12 ≈ 0.00025. Care has to
be taken to re-encode the input and output vectors, to define the tables for the
sigmoid and its derivatives and to implement the correct arithmetic (which
requires a shift after multiplications and tests to avoid overflow). Most of the
more popular neural chips implement some form of fixed-point arithmetic (see
Chap. 16).

Some experiments show that in many applications it is enough to reserve
16 bits for the weights and 8 for the coding of the outputs, without affecting
the convergence of the learning algorithm [31]. Holt and Baker compared the
results produced by networks with floating-point and fixed-point parameters
using the Carnegie-Mellon benchmarks [197]. Their results confirmed that a
combination of 16-bit and 8-bit coding produces good results. In four of five
benchmarks the result of the comparison was “excellent” for fixed-point arith-
metic and in the other case “good”. Based on these results, groups developing
neural computers like the CNAPS of Adaptive Solutions [175] and SPERT in
Berkeley [32] decided to stick to 16-bit and 8-bit representations.

Reyneri and Filippi [364] did more extensive experimentation on this prob-
lem and arrived at the conclusion that the necessary word length of the rep-
resentation depends on the learning constant and the kind of learning algo-
rithm used. This was essentially confirmed by the experiments done by Pfister
on a fixed-point neurocomputer [341]. Standard backpropagation can diverge
in some cases when the fixed-point representation includes less than 16 bits.
However, modifying the learning algorithm and adapting the learning constant
reduced the necessary word length to 14 bits. With the modified algorithm 16
bits were more than enough.

8.2.4 Data decorrelation

We have already mentioned that if the principal axes of the quadratic ap-
proximation of the error function are too dissimilar, gradient descent can be
slowed down arbitrarily. The solution lies in decorrelating the data set and
there is now ample evidence that this preconditioning step is beneficial for the
learning algorithm [404, 340].

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

8.2 Some simple improvements to backpropagation 205

One simple decorrelation strategy consists in using bipolar vectors. We
showed in Chap. 6 that the solution regions defined by bipolar data for percep-
trons are more symmetrically distributed than when binary vectors are used.
The same holds for multilayer networks. Pfister showed that convergence of
the standard backpropagation algorithm can be improved and that a speedup
between 1.91 and 3.53 can be achieved when training networks for several
small benchmarks (parity and clustering problems) [341]. The exception to
this general result are encode-decode problems in which the data consists of
sparse vectors (n-dimensional vectors with a single 1 in a component). In this
case binary coding helps to focus on the corrections needed for the relevant
weights. But if the data consists of non-sparse vectors, bipolar coding usually
works better. If the input data consists of N real vectors x1,x2, . . . ,xN it is
usually helpful to center the data around the origin by subtracting the cen-
troid x̂ of the distribution, in such a way that the new input data consists of
the vectors xi − x̂.

PCA and adaptive decorrelation

Centering the input and output data is just the first step in more sophisti-
cated preconditioning methods. One of them is principal component analysis,
already discussed in Chap. 5. Using PCA it is possible to reduce the number
of vector components (when there is redundancy) and to order the remaining
ones according to their importance.

x

x

transformed data

1

2
x

2

x1

original data

Fig. 8.14. Data distribution before and after preconditioning

Assume that the data distribution is the one shown on the left side of
Figure 8.14. Any of the points in the ellipsoid can be a future input vector to
the network. Two vectors selected randomly from the distribution have a large
probability of not being orthogonal (since their components are correlated).
After a rotation of the axes and a scaling step the data distribution becomes
the one shown to the right in Figure 8.14. Note that the transformation is one-
to-one and therefore invertible. But now, any two vectors selected randomly

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

206 8 Fast Learning Algorithms

from the new distribution (a sphere in n-dimensional space) have a greater
probability of being orthogonal. The transformation of the data is linear (a
rotation followed by scaling) and can be applied to new data as it is provided.

Note that we do not know the exact form of the data distribution. All we
have is a training set (the dots in Figure 8.14) from which we can compute
the optimal transformation. Principal component analysis is performed on the
available data. This gives us a new encoding for the data set and also a linear
transformation for new data. The scaling factors are the reciprocal of the
variances of each component (see Exercise 2). PCA preconditioning speeds
up backpropagation in most cases, except when the data consists of sparse
vectors.

Silva and Almeida have proposed another data decorrelation technique,
called Adaptive Data Decorrelation, which they use to precondition data [404].
A linear layer is used to transform the input vectors, and another to trans-
form the outputs of the hidden units. The linear layer consists of as many
output as input units, that is, it only applies a linear transformation to the
vectors. Consider an n-dimensional input vector x = (x1, x2, . . . , xn). Denote
the output of the linear layer by (y1, y2, . . . , yn). The objective is to make the
expected value of the correlation coefficient rij of the i-th and j-th output
units equal to Kronecker’s delta δij , i.e.,

rij =< yiyj >= δij .

The expected value is computed over all vectors in the data set. The algorithm
proposed by Silva and Almeida is very simple: it consists in pulling the weight
vector of the i-th unit away from the weight vector of the j-th unit, whenever
rij > 0 and in the direction of wj when rij < 0. The precise formula is

wk+1
i = wk

i − β
n∑

j 6=i

rijw
k
j ,

where wp
m denotes the weight vector of the m-th unit at the p-th iteration

and β is a constant. Data normalization is achieved by including a positive or
negative term according to whether rii is smaller or greater than 1:

wk+1
i = (1 + β)wk

i − β
n∑

j=1

rijw
k
j .

The proof that the algorithm converges (under certain assumptions) can
be found in [404]. Adaptive Decorrelation can accelerate the convergence of
backpropagation almost as well as principal component analysis, but is some-
what sensitive to the choice of the constant β and the data selection process
[341].

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

8.3 Adaptive step algorithms 207

Active data selection

For large training sets, redundancy in the data can make prohibitive the use
of off-line backpropagation techniques. On-line backpropagation can still per-
form well under these conditions if the training pairs are selected randomly.
Since some of the fastest variations of backpropagation work off-line, there is
a strong motivation to explore methods of reducing the size of the effective
training set.

Some authors have proposed training a network with a subset of the train-
ing set, adding iteratively the rest of the training pairs [261]. This can be
done by testing the untrained pairs. If the error exceeds a certain threshold
(for example if it is one standard deviation larger than the average error on
the effective training set), the pair is added to the effective training set and
the network is retrained when more than a certain number of pairs have been
recruited [369].

8.3 Adaptive step algorithms

The class of adaptive step algorithms uses a very similar basic strategy: the
step size is increased whenever the algorithm proceeds down the error function
over several iterations. The step size is decreased when the algorithm jumps
over a valley of the error function. The algorithms differ according to the kind
of information used to modify the step size.

In learning algorithms with a global learning rate, this is used to update all
weights in the network. The learning rate is made bigger or smaller according
to the iterations made so far.

P
1

P
2

P
3

Fig. 8.15. Optimization of the error function with updates in the directions of the
axes

In algorithms with a local learning constant a different constant is used for
each weight. Whereas in standard backpropagation a single constant γ is used

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

208 8 Fast Learning Algorithms

to compute the weight corrections, in four of the algorithms considered below
each weight wi has an associated learning constant γi so that the updates are
given by

∆wi = −γi
∂E

∂wi
.

The motivation behind the use of different learning constants for each weight
is to try to “correct” the direction of the negative gradient to make it point
directly to the minimum of the error function. In the case of a degenerate error
function, the gradient direction can lead to many oscillations. An adequate
scaling of the gradient components can help to reach the minimum in fewer
steps.

Figure 8.15 shows how the optimization of the error function proceeds
when only one-dimensional optimization steps are used (from point P1 to
P2, and then to P3). If the lengths of the principal axes of the quadratic
approximation are very different, the algorithm can be slowed by an arbitrary
factor.

8.3.1 Silva and Almeida’s algorithm

The method proposed by Silva and Almeida works with different learning
rates for each weight in a network [403]. Assume that the network con-
sists of n weights w1, w2, . . . , wn and denote the individual learning rates by
γ1, γ2, . . . , γn. We can better understand how the algorithm works by look-
ing at Figure 8.16. The left side of the figure shows the level curves of a
quadratic approximation to the error function. Starting the iteration process
as described before and as illustrated with Figure 8.15, we can see that the al-
gorithm performs several optimization steps in the horizontal direction. Since
horizontal cuts to a quadratic function are quadratic, what we are trying to
minimize at each step is one of the several parabolas shown on the right side
of Figure 8.16. A quadratic function of n variable weights has the general form

c21w
2
1 + c22w

2
2 + · · ·+ c2nw

2
n +

∑

i6=j

dijwiwj + C,

where c1, . . . , cn, the dij and C are constants. If the i-th direction is chosen
for a one-dimensional minimization step the function to be minimized has the
form

c2iw
2
i + k1wi + k2,

where k1 and k2 are constants which depend on the values of the ‘frozen’
variables at the current iteration point. This equation defines a family of
parabolas. Since the curvature of each parabola is given by c2i , they differ
just by a translation in the plane, as shown in Figure 8.16. Consequently, it
makes sense to try to find the optimal learning rate for this direction, which is
equal to 1/2c2i , as discussed in Sect. 8.1.1. If we have a different learning rate,
optimization proceeds as shown on the left of Figure 8.16: the first parabola

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

8.3 Adaptive step algorithms 209

is considered and the negative gradient direction is followed. The iteration
steps in the other dimensions change the family of parabolas which we have
to consider in the next step, but in this case the negative gradient direction
is also followed. The family of parabolas changes again and so on. With this
quadratic approximation in mind the question then becomes, what are the
optimal values for γ1 to γn? We arrive at an additional optimization problem!

one-dimensional cuts

successive one-dimensional
optimizations

Fig. 8.16. One-dimensional cuts: family of parabolas

The heuristic proposed by Almeida is very simple: accelerate if, in two
successive iterations, the sign of the partial derivative has not changed, and
decelerate if the sign changes. Let ∇iE

(k) denote the partial derivative of
the error function with respect to weight wi at the k-th iteration. The initial

learning rates γ
(0)
i for i = 1, . . . , n are initialized to a small positive value.

At the k-th iteration the value of the learning constant for the next step is
recomputed for each weight according to

γ
(k+1)
i =

{

γ
(k)
i u if ∇iE

(k) · ∇iE
(k−1) ≥ 0

γ
(k)
i d if ∇iE

(k) · ∇iE
(k−1) < 0

The constants u (up) and d (down) are set by hand with u > 1 and d < 1.
The weight updates are made according to

∆(k)wi = −γ(k)
i ∇iE

(k) .

Note that due to the constants u and d the learning rates grow and decrease
exponentially. This can become a problem if too many acceleration steps are
performed successively. Obviously this algorithm does not follow the gradient
direction exactly. If the level curves of the quadratic approximation of the error
function are perfect circles, successive one-dimensional optimizations lead to
the minimum after n steps. If the quadratic approximation has semi-axes of

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

210 8 Fast Learning Algorithms

very different lengths, the iteration process can be arbitrarily slowed. To avoid
this, the updates can include a momentum term with rate α. Nevertheless,
both kinds of corrections together are somewhat contradictory: the individual
learning rates can only be optimized if the optimization updates are strictly
one-dimensional. Tuning the constant α can therefore become quite problem-
specific. The alternative is to preprocess the original data to achieve a more
regular error function. This can have a dramatic effect on the convergence
speed of algorithms which perform one-dimensional optimization steps.

8.3.2 Delta-bar-delta

The algorithm proposed by Jacobs is similar to Silva and Almeida’s, the main
difference being that acceleration of the learning rates is made with more
caution than deceleration. The algorithm is started with individual learning
rates γ1, . . . , γn all set to a small value, and at the k-th iteration the new
learning rates are set to

γ
(k+1)
i =

γ
(k)
i + u if ∇iE

(k) · δ(k−1)
i > 0

γ
(k)
i d if ∇iE

(k) · δ(k−1)
i < 0

γ
(k)
i otherwise,

where u and d are constants and δ
(k)
i is an exponentially averaged partial

derivative in the direction of weight wi:

δ
(k)
i = (1 − φ)∇iE

(k) + φδ
(k−1)
i .

The constant φ determines what weight is given to the last averaged term.
The weight updates are performed without a momentum term:

∆(k)wi = −γ(k)
i ∇iE

(k).

The motivation for using an averaged gradient is to avoid excessive oscillations
of the basic algorithm. The problem with this approach, however, is that
a new constant has to be set again by the user and its value can also be
highly problem-dependent. If the error function has regions which allow a
good quadratic approximation, then φ = 0 is optimal and we are essentially
back to Silva and Almeida’s algorithm.

8.3.3 Rprop

A variant of Silva and Almeida’s algorithm is Rprop, first proposed by Ried-
miller and Braun [366]. The main idea of the algorithm is to update the net-
work weights using just the learning rate and the sign of the partial derivative
of the error function with respect to each weight. This accelerates learning
mainly in flat regions of the error function as well as when the iteration has

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

8.3 Adaptive step algorithms 211

arrived close to a local minimum. To avoid accelerating or decelerating too
much, a minimum value for the learning rates γmin and a maximum value γmax

is enforced. The algorithm covers all of weight space with an n-dimensional
grid of side γmin and an n-dimensional grid of side length γmax. The individ-
ual one-dimensional optimization steps can move on all possible intermediate
grids. The learning rates are updated in the k-th iteration according to

γ
(k+1)
i =

min(γ
(k)
i u, γmax) if ∇iE

(k) · ∇iE
(k−1) > 0

max(γ
(k)
i d, γmin) if ∇iE

(k) · ∇iE
(k−1) < 0

γ
(k)
i otherwise,

where the constants u and d satisfy u > 1 and d < 1, as usual. When ∇iE
(k) ·

∇iE
(k−1) ≥ 0 the weight updates are given by

∆(k)wi = −γ(k)
i sgn(∇iE

(k)),

otherwise ∆(k)wi and ∇iE
(k) are set to zero. In the above equation sgn(·)

denotes the sign function with the peculiarity that sgn(0) = 0.

cut of the error function
in one direction

Rprop approximation of the
error function

Fig. 8.17. Local approximation of Rprop

Figure 8.17 shows the kind of one-dimensional approximation of the error
function used by Rprop. It may seem a very imprecise approach, but it works
very well in the flat regions of the error function. Schiffmann, Joost, and
Werner tested several algorithms using a medical data set and Rprop produced
the best results, being surpassed only by the constructive algorithm called
cascade correlation [391] (see Chap. 14).

Table 8.1 shows the results obtained by Pfister on some of the Carnegie
Mellon Benchmarks [341]. The training was done on a CNAPS neurocom-
puter. Backpropagation was coded using some optimizations (bipolar vectors,
offset term, etc.). The table shows that BP did well for most benchmarks but
failed to converge in two of them. Rprop converged almost always (98% of

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

212 8 Fast Learning Algorithms

Table 8.1. Comparison of Rprop and batch backpropagation

benchmark generations time

BPRprop BP Rprop

sonar signals 109.7 82.0 8.6 s 6.9 s

vowels –1532.9 –593.6 s

vowels (decorrelated) 331.4 319.1 127.8 s123.6 s

NETtalk (200 words) 268.9 108.7 961.5 s389.6 s

protein structure 347.5 139.2 670.1 s269.1 s

digits – 159.5 –344.7 s

the time) and was faster by up to a factor of about 2.5 with respect to batch
backpropagation.

It should be pointed out that the vowels recognition task was presented
in two versions, one without and one with decorrelated inputs. In the latter
case, backpropagation did converge and was almost as efficient as Rprop. This
shows how important the preprocessing of the input data can be. Note that
the overall speedup obtained is limited because the version of backpropagation
used for the comparison was rather efficient.

8.3.4 The Dynamic Adaption algorithm

We close our discussion of adaptive step methods with an algorithm based
on a global learning rate [386]. The idea of the method is to use the negative
gradient direction to generate two new points instead of one. The point with
the lowest error is used for the next iteration. If it is the farthest away the
algorithm accelerates, by making the learning constant bigger. If it is the
nearest one, the learning constant γ is reduced.

The k-th iteration of the algorithm consists of the following three steps:

• Compute

w(k1) = w(k) −∇E(w(k))γ(k−1) · ξ
w(k2) = w(k) −∇E(w(k))γ(k−1)/ξ

where ξ is a small constant (for example ξ = 1.7).
• Update the learning rate:

γ(k) =

{
γ(k−1) · ξ if E(w(k1)) ≤ E(w(k2))

γ(k−1)/ξ otherwise.

• Update the weights:

w(k+1) =

{
w(k1) if E(w(k1)) ≤ E(w(k2))

w(k2) otherwise.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

8.4 Second-order algorithms 213

The algorithm is not as good as the adaptive step methods with a local
learning constant, but is very easy to implement. The overhead involved is an
extra feed-forward step.

8.4 Second-order algorithms

The family of second-order algorithms considers more information about the
shape of the error function than the mere value of the gradient. A better iter-
ation can be performed if the curvature of the error function is also considered
at each step. In second-order methods a quadratic approximation of the error
function is used [43]. Denote all weights of a network by the vector w. Denote
the error function by E(w). The truncated Taylor series which approximates
the error function E is given by

E(w + h) ≈ E(w) +∇E(w)Th +
1

2
hT∇2E(w)h, (8.6)

where ∇2E(w) is the n×n Hessian matrix of second-order partial derivatives:

∇2E(w) =

∂2E(w)
∂w2

1

∂2E(w)
∂w1∂w2

· · · ∂
2E(w)

∂w1∂wn

∂2E(w)
∂w2∂w1

∂2E(w)
∂w2

2
· · · ∂

2E(w)
∂w2∂wn

...
. . .

...

∂2E(w)
∂wn∂w1

∂2E(w)
∂wn∂w2

· · · ∂
2E(w)
∂w2

n

.

The gradient of the error function can be computed by differentiating (8.6):

∇E(w + h)T ≈ ∇E(w)T + hT∇2E(w).

Equating to zero (since we are looking for the minimum of E) and solving, we
get

h = −(∇2E(w))−1∇E(w), (8.7)

that is, the minimization problem can be solved in a single step if we have
previously computed the Hessian matrix and the gradient, of course under the
assumption of a quadratic error function.

Newton’s method works by using equation (8.7) iteratively. If we denote
now the weight vector at the k-th iteration by w(k), the new weight vector
w(k+1) is given by

w(k+1) = w(k) − (∇2E(w))−1∇E(w). (8.8)

Under the quadratic approximation, this will be a position where the gradient
has reduced its magnitude. Iterating several times we can get to the minimum
of the error function.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

214 8 Fast Learning Algorithms

However, computing the Hessian can become quite a difficult task. More-
over, what is needed is the inverse of the Hessian. In neural networks we
have to repeat this computation on each new iteration. Consequently, many
techniques have been proposed to approximate the second-order information
contained in the Hessian using certain heuristics.

Pseudo-Newton methods are variants of Newton’s method that work with
a simplified form of the Hessian matrix [48]. The non-diagonal elements are all
set to zero and only the diagonal elements are computed, that is, the second
derivatives of the form ∂2E(w)/∂w2

i . In that case equation (8.8) simplifies
(for each component of the weight vector) to

w
(k+1)
i = w

(k)
i − ∇iE(w)

∂2E(w)/∂w2
i

. (8.9)

No matrix inversion is necessary and the computational effort involved in
finding the required second partial derivatives is limited. In Sect. 8.4.3 we
show how to perform this computation efficiently.

Pseudo-Newton methods work well when the error function has a nice
quadratic form, otherwise care should be exercised with the corrections, since
a small second-order partial derivative can lead to extremely large corrections.

8.4.1 Quickprop

In this section we consider an algorithm which tries to take second-order
information into account but follows a rather simple approach: only one-
dimensional minimization steps are taken and information about the curvature
of the error function in the update directions is obtained from the current and
the last partial derivative of the error function in this direction.

cut of the error function
in one direction

Quickprop approximation of the
error function

Fig. 8.18. Local approximation of Quickprop

Quickprop is based on independent optimization steps for each weight. A
quadratic one-dimensional approximation of the error function is used. The

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

8.4 Second-order algorithms 215

update term for each weight at the k-th step is given by

∆(k)wi = ∆(k−1)wi

(∇iE
(k)

∇iE(k−1) −∇iE(k)

)

, (8.10)

where it is assumed that the error function has been computed at steps (k−1)
and k using the weight difference ∆(k−1)wi, obtained from a previous Quick-
prop or an standard gradient descent step.

Note that if we rewrite (8.10) as

∆(k)wi = − ∇iE
(k−1)

(∇iE(k) −∇iE(k))/∆(k−1)wi
(8.11)

then the weight update in (8.11) is of the same form as the weight update in
(8.9). The denominator is just a discrete approximation to the second-order
derivative ∂2E(w)/∂w2

i . Quickprop is therefore a discrete pseudo-Newton
method that uses so-called secant steps.

According to the value of the derivatives, Quickprop updates may become
very large. This is avoided by limiting ∆(k)wi to a constant times ∆(k−1). See
[130] for more details on the algorithm and the handling of different prob-
lematic situations. Since the assumptions on which Quickprop is based are
more far-fetched than the assumptions used by, for example, Rprop, it is not
surprising that Quickprop has some convergence problems with certain tasks
and requires careful handling of the weight updates [341].

8.4.2 QRprop

Pfister and Rojas proposed an algorithm that adaptively switches between the
Manhattan method used by Rprop and local one-dimensional secant steps like
those used by Quickprop [340, 341]. Since the resulting algorithm is a hybrid
of Rprop and Quickprop it was called QRprop.

QRprop uses the individual learning rate strategy of Rprop if two consecu-
tive error function gradient components ∇iE

(k) and ∇iE
(k−1) have the same

sign or one of these components equals zero. This produces a fast approach to
a region of minimum error. If the sign of the gradient changes, we know that
we have overshot a local minimum in this specific weight direction, so now a
second-order step (a Quickprop step) is taken. If we assume that in this direc-
tion the error function is independent from all the other weights, a step based
on a quadratic approximation will be far more accurate than just stepping
half way back as it is (indirectly) done by Rprop. Since the error function
depends on all weights and since the quadratic approximation will be better
the closer the two investigated points lie together, QRprop constrains the size
of the secant step to avoid large oscillations of the weights. In summary:

i) As long as∇iE
(k)·∇iE

(k−1) > 0 holds, Rprop steps are performed because
we assume that a local minimum lies ahead.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

216 8 Fast Learning Algorithms

ii) If ∇iE
(k) · ∇iE

(k−1) < 0, which suggests that a local minimum has been
overshot, then, unlike Rprop, neither the individual learning rate γi nor
the weight wi are changed. A “marker” is defined by setting ∇iE

(k) := 0
and the secant step is performed in the subsequent iteration.

iii) If ∇iE
(k) · ∇iE

(k−1) = 0, this means that either a marker was set in
the previous step, or one of the gradient components is zero because a
local minimum has been directly hit. In both cases we are near a local
minimum and the algorithm performs a second-order step. The secant
approximation is done using the gradient information provided by ∇iE

(k)

and∇iE
(k−2). The second-order approximation is used even when∇iE

(k) ·
∇iE

(k−2) > 0. Since we know that we are near a local minimum (and very
likely we have already overshot it in the previous step), the second-order
approximation is still a better choice than just stepping halfway back.

iv) In the secant step the quadratic approximation

qi := |∇iE
(k))/(∇iE

(k) −∇iE
(k−2))|

is constrained to a certain interval to avoid very large or very small up-
dates.

Therefore, the k-th iteration of the algorithm consists of the following steps:

Step 1: Update the individual learning rates

if (∇iE
(k) · ∇iE

(k−1) = 0) then
if (∇iE

(k) 6= (∇iE
(k−2)) then

qi = max
(

d,min
(

1/u,
∣
∣
∣

∇iE
(k)

∇iE(k)−∇iE(k−2)

∣
∣
∣

))

else
qi = 1/u

endif
endif

γ
(k)
i =

min(u · γ(k−1)
i , γmax) ∇iE

(k) · ∇iE
(k−1) > 0

γ
(k−1)
i if ∇iE

(k) · ∇iE
(k−1) < 0

max(qi · γ(k−1)
i , γmin) ∇iE

(k) · ∇iE
(k−1) = 0

Step 2: Update the weights

w
(k+1)
i =

w
(k)
i − γ(k)

i · sgn(∇iE
(k)) if ∇iE

(k) · ∇iE
(k−1) ≥ 0

w
(k)
i otherwise

If (∇iE
(k) · ∇iE

(k−1) < 0) set ∇iE
(k) := 0.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

8.4 Second-order algorithms 217

The constants d, u, γmin, and γmax must be chosen in advance as for other
adaptive steps methods. QRprop has shown to be an efficient algorithm that
can outperform both of its original algorithmic components. Table 8.2 shows
the speedup obtained with QRprop relative to Rprop for the Carnegie Mellon
benchmarks [341].

Table 8.2. Speedup of QRprop relative to Rprop

benchmark speedup

sonar signals 1.01

vowels 1.33

vowels (decorrelated) 1.30

NETtalk (200 words) 1.02

protein structure 1.14

digits 1.29

average 1.18

8.4.3 Second-order backpropagation

In this section we introduce second-order backpropagation, a method to effi-
ciently compute the Hessian of a linear network of one-dimensional functions.
This technique can be used to get explicit symbolic expressions or numerical
approximations of the Hessian and could be used in parallel computers to
improve second-order learning algorithms for neural networks. Methods for
the determination of the Hessian matrix in the case of multilayered networks
have been studied recently [58].

We show how to efficiently compute the elements of the Hessian matrix
using a graphical approach, which reduces the whole problem to a computation
by inspection. Our method is more general than the one developed in [58]
because arbitrary topologies can be handled. The only restriction we impose
on the network is that it should contain no cycles, i.e., it should be of the
feed-forward type. The method is of interest when we do not want to derive
analytically the Hessian matrix each time the network topology changes.

Second-order derivatives

We investigate the case of second-order derivatives, that is, expressions of the
form ∂2F/∂wi∂wj , where F is the network function as before and wi and wj

are network’s weights. We can think of each weight as a small potentiometer
and we want to find out what happens to the network function when the
resistance of both potentiometers is varied.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

218 8 Fast Learning Algorithms

F(x)

x

s =

node q
F (x)

1l q

F (x)
2l q

F (x)
ml q

F (x)
ml qF (x)

1l q

g(s)

+ ... +

network

Fig. 8.19. Second-order computation

Figure 8.19 shows the general case. Let us assume, without loss of general-
ity, that the input to the network is the one-dimensional value x. The network
function F is computed at the output node with label q (shown shaded) for
the given input value. We can also think of the inputs to the output node
as network functions computed by subnetworks of the original network. Let
us call these functions F`1q, F`2q, . . . , F`mq. If the one-dimensional function at
the output node is g, the network function is the composition

F (x) = g(F`1q(x) + F`2q(x) + . . .+ F`mq(x)).

We are interested in computing ∂2F (x)/∂wi∂wj for two given network weights
wi and wj . Simple differential calculus tells us that

∂2F (x)

∂wi∂wj
= g′′(s)

∂s

∂wi

∂s

∂wj

+ g′(s)

(
∂2F`1q(x)

∂wi∂wj
+ · · ·+ ∂2F`mq(x)

∂wi∂wj

)

,

where s = F`1q(x) + F`2q(x) + . . . + F`mq(x). This means that the desired
second-order partial derivative consists of two terms: the first is the second
derivative of g evaluated at its input multiplied by the partial derivatives of the
sum of them subnetwork functions F`1q, . . . , F`mq, once with respect to wi and
once with respect to wj . The second term is the first derivative of g multiplied
by the sum of the second-order partial derivatives of each subnetwork function
with respect to wi and wj . We call this term the second-order correction. The
recursive structure of the problem is immediately obvious. We already have an
algorithm to compute the first partial derivatives of any network function with

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

8.4 Second-order algorithms 219

respect to a weight. We just need to use the above expression in a recursive
manner to obtain the second-order derivatives we want.

We thus extend the feed-forward labeling phase of the backpropagation
algorithm in the following manner: at each node which computes a one-
dimensional function f we will store three values: f(x), f ′(x) and f ′′(x), where
x represents the input to this node. When looking for the second-order deriva-
tives we apply the recursive strategy given above. Figure 8.20 shows the main
idea:

wi

wj

backpropagation path

for

backpropagation path

for

wi

wj

Fig. 8.20. Intersecting paths to a node

• Perform the feed-forward labeling step in the usual manner, but store
additionally at each node the second derivative of the node’s function
evaluated at its input

• Select two weights wi and wj and an output node whose associated network
function we want to derive. The second-order partial derivative of the
network function with respect to these weights is the product of the stored
g′′ value with the backpropagation path value from the output node up to
weight wi and with the backpropagation path value from the output node
up to weight wj . If the backpropagation paths for wi and wj intersect,
a second-order correction is needed which is equal to the stored value of
g′ multiplied by the sum of the second-order derivative with respect to
wi and wj of all subnetwork function inputs to the node which belong to
intersecting paths.

This looks like an intricate rule, but it is again the chain rule for second-
order derivatives expressed in a recursive manner. Consider the multilayer
perceptron shown in Figure 8.21. A weight wih in the first layer of weights
and a weight wjm in the second layer can only interact at the output node
m. The second derivative of Fm with respect to wih and wjm is just the
stored value f ′′ multiplied by the stored output of the hidden unit j and the
backpropagation path up to wih, that is, whmh

′xi. Since the backpropagation
paths for wih and wjm do not intersect, this is the required expression. This
is also the expression found analytically by Bishop [1993].

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

220 8 Fast Learning Algorithms

w

w

ih

jm

Backpropagation path

for w

Backpropagation path

for w

ih

jm

ff '

f ''

x
i

h
h'

h''

input

layer

hidden

layer

Fm

w
hm

Fig. 8.21. Multilayer perceptron

In the case where one weight lies in the backpropagation path of another,
a simple adjustment has to be made. Let us assume that weight wik lies in
the backpropagation path of weight wj . The second-order backpropagation
algorithm is performed as usual and the backward computation proceeds up
to the point where weight wik transports an input to a node k for which
a second-order correction is needed. Figure 8.22 shows the situation. The
information transported through the edge with weight wik is the subnetwork
function Fik. The second-order correction for the node with primitive function
g is

g′
∂2Fik

∂wik∂wj
= g′

∂2wikFi

∂wik∂wj
,

but this is simply

g′
∂Fi

∂wj
,

since the subnetwork function Fi does not depend on wik. Thus, the second-
order backpropagation method must be complemented by the following rule:

• If the second-order correction to a node k with activation function g in-
volves a weight wik (that is, a weight directly affecting node k) and a node
wj , the second-order correction is just g′ multiplied by the backpropaga-
tion path value of the subnetwork function Fi with respect to wj .

Explicit calculation of the Hessian

For the benefit of the reader, we put together all the pieces of what we call
second-order backpropagation in this section. We consider the case of a single
input pattern into the network, since the more general case is easy to handle.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

8.4 Second-order algorithms 221

f g
wikf '

f ''

g'

g''
F

jw

x

x

x

1

2

n

Fi

Fig. 8.22. The special case

Algorithm 8.4.1 Second-order backpropagation

i) Extend the neural network by adding nodes which compute the squared
difference of each component of the output and the expected target val-
ues. Collect all these differences at a single node whose output is the
error function of the network. The activation function of this node is the
identity.

ii) Label all nodes in the feed-forward phase with the result of computing
f(x), f ′(x), and f ′′(x), where x represents the global input to each node
and f its associated activation function.

iii) Starting from the error function node in the extended network, compute
the second-order derivative of E with respect to two weights wi and wj ,
by proceeding recursively in the following way:

iii.1) The second-order derivative of the output of a node G with activa-
tion function g with respect to two weights wi and wj is the product
of the stored g′′ value with the backpropagation path values between
wi and the node G and between wj and the node G. A second-order
correction is needed if both backpropagation paths intersect.

iii.2) The second-order correction is equal to the product of the stored g′

value with the sum of the second-order derivative (with respect to
wi and wj) of each node whose output goes directly to G and which
belongs to the intersection of the backpropagation paths of wi and
wj .

iii.3) In the special case that one of the weights, for example, wi, connects
node h directly to node G, the second-order correction is just g′

multiplied by the backpropagation path value of the subnetwork
function Fh with respect to wj .

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

222 8 Fast Learning Algorithms

Example of second-order backpropagation

Consider the network shown in Figure 8.23, commonly used to compute the
XOR function. The left node is labeled 1, the right node 2. The input values x
and y are kept fixed and we are interested in the second-order partial derivative
of the network function F2(x, y) with respect to the weights w1 and w2.

x

y

f g

w
1

w
2

w
3

w 5

w
4

f '

f ''

g'

g''
F

2

F
1

node 1 node 2

Fig. 8.23. A two unit network

By mere inspection and using the recursive method mentioned above, we
see that the first term of ∂2F2/∂w1∂w2 is the expression

g′′(w3x+ w5y + w4f(w1x+ w2y))(w4f
′(w1x+ w2y)x)(w4f

′(w1x+ w2y)y).

In this expression (w4f
′(w1x+w2y)x) is the backpropagation path value from

the output of the node which computes the function f , including multiplica-
tion by the weight w4 (that is the subnetwork function w4F1), up to the weight
w1. The term (w4f

′(w1x+w2y)y) is the result of backpropagation for w4F1 up
to w2. The second-order correction needed for computation of ∂2F2/∂w1∂w2

is

g′(w3x+ w5y + w4f(w1x+ w2y))
∂2w4F1

∂w1∂w2
.

Since it is obvious that

∂2w4F1

∂w1∂w2
= w4

∂2F1

∂w1∂w2
= w4f

′′(w1x+ w2y)xy

we finally get

∂2F2

∂w1∂w2
= g′′(w3x+ w5y + w4f(w1x+ w2y))

× (w4f
′(w1x+ w2y)x)(w4f

′(w1x+ w2y)y)

+ g′(w3x+ w5y + w4f(w1x+ w2y))w4f
′′(w1x+ w2y)xy.

The reader can visually check the following expression:

∂2F2

∂w1∂w5
= g′′(w3x+ w5y + w4f(w1x+ w2y))(w4f

′(w1x+ w2y)x)y.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

8.4 Second-order algorithms 223

In this case no second-order correction is needed, since the backpropagation
paths up to w1 and w5 do not intersect.

A final example is the calculation of the whole Hessian matrix for the
network shown above (Figure 8.23). We omit the error function expansion and
compute the Hessian of the network function F2 with respect to the network’s
five weights. The labelings of the nodes are f , f ′, and f ′′ computed over the
input w1x + w2y, and g, g′, g′′ computed over the input w4f(w1x + w2y) +
w3x+w5y. Under these assumptions the components of the upper triangular
part of the Hessian are the following:

H11 = g′′w2
4f

′2x2 + g′w4f
′′x2

H22 = g′′w2
4f

′2y2 + g′w4f
′′y2

H33 = g′′x2

H44 = g′′f2

H55 = g′′y2

H12 = g′′w2
4f

′2xy + g′w4f
′′xy

H13 = g′′w4f
′x2

H14 = g′′w4f
′xf + g′f ′x

H15 = g′′w4f
′xy

H23 = g′′w4f
′yx

H24 = g′′w4f
′yf + g′f ′y

H25 = g′′w4f
′y2

H34 = g′′xf

H35 = g′′xy

H45 = g′′yf

All these results were obtained by simple inspection of the network shown
in Figure 8.23. Note that the method is totally general in the sense that each
node can compute a different activation function.

Some conclusions

With some experience it is easy to compute the Hessian matrix even for con-
voluted feed-forward topologies. This can be done either symbolically or nu-
merically. The importance of this result is that once the recursive strategy
has been defined it is easy to implement in a computer. It is the same kind of
difference as the one existing between the chain rule and the backpropagation
algorithm. The first one gives us the same result as the second, but backprop-
agation tries to organize the data in such a way that redundant computations
are avoided. This can also be done for the method described here. Calculation
of the Hessian matrix involves repeated computation of the same terms. In

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

224 8 Fast Learning Algorithms

this case the network itself provides us with a data structure in which we can
store partial results and with which we can organize the computation. This
explains why standard and second-order backpropagation are also of interest
for computer algebra systems. It is not very difficult to program the method
described here in a way that minimizes the number of arithmetic operations
needed. The key observation is that the backpropagation path values can be
stored to be used repetitively and that the nodes in which the backpropaga-
tion paths of different weights intersect need to be calculated only once. It is
then possible to optimize computation of the Hessian using graph traversing
algorithms.

A final observation is that computing the diagonal of the Hessian matrix
involves only local communication in a neural network. Since the backprop-
agation path to a weight intersects itself in its whole length, computation of
the second partial derivative of the associated network function of an output
unit with respect to a given weight can be organized as a recursive backward
computation over this path. Pseudo-Newton methods [48] can profit from this
computational locality.

8.5 Relaxation methods

The class of relaxation methods includes all those techniques in which the
network weights are perturbed and the new network error is compared directly
to the previous one. Depending on their relative magnitudes a decision is taken
regarding the subsequent iteration steps.

8.5.1 Weight and node perturbation

Weight perturbation is a learning strategy which has been proposed to avoid
calculating the gradient of the error function at each step. A discrete approx-
imation to the gradient is made at each iteration by taking the initial weight
vector w in weight space and the value E(w) of the error function for this
combination of parameters. A small perturbation β is added to the weight wi.
The error E(w′) at the new point w′ in weight space is computed and the
weight wi is updated using the increment

∆wi = −γE(w′)− E(w)

β
.

This step is repeated iteratively, randomly selecting the weight to be updated.
The discrete approximation to the gradient is especially important for VLSI
chips in which the learning algorithm is implemented with minimal hardware
additional to that needed for the feed-forward phase [216].

Another alternative which can provide faster convergence is perturbing not
a weight, but the output oi of the i-th node by ∆oi. The difference E −E′ in

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

8.5 Relaxation methods 225

the error function is computed and if it is positive, the new error E′ could be
achieved with the output oi+∆oi for the i-th node. If the activation function is
a sigmoid, the desired weighted input to node i is

∑m
k=1 w

′
kxk = s−1(oi+∆oi).

If the previous weighted input was
∑m

k=1 wkxk, then the new weights are given
by

w′
k = wk

s−1(oi +∆oi)
∑m

k=1 wkxk
for k = 1, . . . ,m.

The weights are updated in proportion to their relative size. To avoid always
keeping the same proportions, a stochastic factor can be introduced or a node
perturbation step can be alternated with a weight perturbation step.

8.5.2 Symmetric and asymmetric relaxation

According to the analysis we made in Sect. 7.3.3 of two layered networks
trained with backpropagation, the backpropagated error up to the output
layer can be written as

δ(2) = D2e,

where e is the column vector whose components are the derivatives of the
corresponding components of the quadratic error, and D2 is a diagonal matrix
as defined in Chap. 7. We can try to reduce the magnitude of the error e to
zero by adjusting the matrix W2 in a single step. Since the desired target
vector is t, the necessary weighted input at the output nodes is s−1(t). This
means that we want the equation

o(1)W2 = s−1(t)

to hold for all the p possible input patterns. If we arrange all vectors o(1) as
the rows of a p × k matrix O1 and all targets as the rows of a p×m matrix
T, we are looking for the matrix W2 for which

O1W2 = s−1(T) (8.12)

holds. In general this matrix equation may have no solution for W2, but we
can compute the matrix which minimizes the quadratic error for this equality.
We show in Sects. 9.2.4 and ?? that if O+

1 is the so-called pseudoinverse of
O1, then W2 is given by

W2 = O+
1 s

−1(T).

After computing W2 we can ask what is the matrix O1 which minimizes the
quadratic deviation from equality in (8.12). We compute intermediate targets
for the hidden units, which are given by the rows of the matrix

O′
1 = s(−1)(T)W+

2 .

The new intermediate targets can now be used to obtain an update for the
matrix W1 of weights between input sites and hidden units. The pseudoinverse
can be computed with the method discussed in Sect. 9.2.4.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

226 8 Fast Learning Algorithms

Note that this method is computationally intensive for every “pseudoin-
verse” step. The weight corrections are certainly much more accurate than in
other algorithms but these high-powered iterations demand many computa-
tions for each of the two matrices. If the error function can be approximated
nicely with a quadratic function, the algorithm converges very fast. If the input
data is highly redundant, then the pseudoinverse step can be very inefficient
when compared to on-line backpropagation, for example.

The algorithm described is an example of symmetric relaxation, since both
the targets T and the outputs of the hidden units are determined in a back
and forth kind of approach.

8.5.3 A final thought on taxonomy

The contents of this chapter can be summarized using Figure 8.24. The fast
variations of backpropagation have been divided into two columns: gradient
descent and relaxation methods. Algorithms in the first column use informa-
tion about the error function’s partial derivatives. Algorithms in the second
column try to adjust the weights to fit the problem in a stochastic way or
solving a linear subproblem.

The three rows in Figure 8.24 show the kinds of derivative used. First-order
algorithms work with the first partial derivatives, second-order algorithms
with the second partial derivatives. In between we have adaptive first-order
methods that from first-order information extract an approximation to parts
of the Hessian matrix.

Standard backpropagation is a first-order gradient descent method. How-
ever, since on-line backpropagation does not exactly follow the gradient’s di-
rection, it also partially qualifies as a relaxation method. The adaptive step
methods (DBD, Rprop, etc.) are also a combination of gradient descent and
relaxation. Quickprop is an algorithm which approximates second-order infor-
mation but which updates the weights separately using a kind of relaxation
approach.

The adaptive first-order methods can be also divided in two groups: in
the first a single global learning rate is used, in the second there is a learning
rate for each weight. The conjugate gradient methods of numerical analysis
rely also on a first-order approximation of second-order features of the error
function.

8.6 Historical and bibliographical remarks

This survey of fast learning algorithms is by no means complete. We have
disregarded constructive algorithms of the type reviewed in Chap. 14. We
have only given a quick overview of some of the main ideas that have been
developed in the last decade. There is a large amount of literature on nonlinear
optimization that should be reviewed by anyone wishing to improve current

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

8.6 Historical and bibliographical remarks 227

gradient descent relaxation

first

order

second

order

adaptive

first

order

backpropagation

off-line

momentum

weight

perturbation

symmetric

relaxation

(pseudoinverse)Newton's method

Pseudo-Newton

global

adaptive

learning

constant

local

adaptive

learning

constant

CG

methods

asymmetric

relaxation

on-line

QuickProp
QRprop

Almeida's

DBD

Rprop

Fig. 8.24. Taxonomy of learning algorithms

learning methods for multilayer networks. Classical CG algorithms and some
variants developed specially for neural networks are interesting in this respect
[315].

A different approach has been followed by Karayiannis and Venetsanopou-
los who use a type of what is called a continuation method [235]. The network
is trained to minimize a given measure of error, which is iteratively changed
during the computation. One can start solving a linear regression problem and
introduce the nonlinearities slowly. The method could possibly be combined
with some of the other fast learning methods.

A factor which has traditionally hampered direct comparisons of learning
algorithms is the wide variety of benchmarks used. Only in a few cases have
large learning problems taken from public domain databases been used. Some
efforts to build a more comprehensive set of benchmarks have been announced.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

228 8 Fast Learning Algorithms

Exercises

1. Prove that the value of the learning constant given by equation (8.5) in
fact produces exact learning of the j input pattern to a linear associator.
Derive the expression for `2.

2. Show how to construct the linear transformation that maps an ellipsoidal
data distribution to a sphere. Assume that the training set consists of N
points (Sect. 8.2.4).

3. Compare Rprop and Quickprop using a small benchmark (for example the
8-bit parity problem).

4. Train a neural network using: a) Backpropagation and a piecewise linear
approximation of the sigmoid; b) A table of values of the sigmoid and its
derivative.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

9

Statistics and Neural Networks

9.1 Linear and nonlinear regression

Feed-forward networks are used to find the best functional fit for a set of
input-output examples. Changes to the network weights allow fine-tuning of
the network function in order to detect the optimal configuration. However,
two complementary motivations determine our perception of what optimal
means in this context. On the one hand we expect the network to map the
known inputs as exactly as possible to the known outputs. But on the other
hand the network must be capable of generalizing, that is, unknown inputs
are to be compared to the known ones and the output produced is a kind
of interpolation of learned values. However, good generalization and minimal
reproduction error of the learned input-output pairs can become contradictory
objectives.

9.1.1 The problem of good generalization

Figure 9.1 shows the problem from another perspective. The dots in the
graphic represent the training set. We are looking for a function capable of
mapping the known inputs into the known outputs. If linear approximation
is used, as in the figure, the error is not excessive and new unknown values of
the input x are mapped to the regression line.

Figure 9.2 shows another kind of functional approximation using linear
splines which can reproduce the training set without error. However, when the
training set consists of experimental points, normally there is some noise in the
data. Reproducing the training set exactly is not the best strategy, because the
noise will also be reproduced. A linear approximation as in Figure 9.1 could be
a better alternative than the exact fit of the training data shown in Figure 9.2.
This simple example illustrates the two contradictory objectives of functional
approximation: minimization of the training error but also minimization of
the error of yet unknown inputs. Whether or not the training set can be

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

230 9 Statistics and Neural Networks

inputs

interpolated

output

input

outputs

Fig. 9.1. Linear approximation of the training set

learned exactly depends on the number of degrees of freedom available to the
network (number of weights) and the structure of the manifold from which the
empirical data is extracted. The number of degrees of freedom determines the
plasticity of the system, that is, its capability of approximating the training
set. Increasing the plasticity helps to reduce the training error but can increase
the error on the test set. Decreasing the plasticity excessively can lead to a
large training and test error.

input

output

Fig. 9.2. Approximation of the training set with linear splines

There is no universal method to determine the optimal number of parame-
ters for a network. It all depends on the structure of the problem at hand. The
best results can be obtained when the network topology is selected taking into
account the known interrelations between input and output (see Chap. 14).
In the example above, if a theoretical analysis leads us to conjecture a linear
correspondence between input and output, the linear approximation would be
the best although the polylinear approximation has a smaller training error.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

9.1 Linear and nonlinear regression 231

This kind of functional approximation to a given training set has been
studied by statisticians working in the field of linear and nonlinear regression.
The backpropagation algorithm is in some sense only a numerical method for
statistical approximation. Analysis of the linear case can improve our under-
standing of this connection.

9.1.2 Linear regression

Linear associators were introduced in Chap. 5: they are computing units which
just add their weighted inputs. We can also think of them as the integration
part of nonlinear units. For the n-dimensional input (x1, x2, . . . , xn) the output
of a linear associator with weight vector (w1, w2, . . . , wn) is y = w1x1 + · · ·+
wnxn. The output function represents a hyperplane in (n + 1)-dimensional
space. Figure 9.3 shows the output function of a linear associator with two
inputs. The learning problem for such a linear associator is to reproduce the
output of the input vectors in the training set. The points corresponding
to the training set are shown in black in Figure 9.3. The parameters of the
hyperplane must be selected to minimize the error, that is, the distance from
the training set to the hyperplane. The backpropagation algorithm can be
used to find them.

F

x1

x2

Fig. 9.3. Learning problem for a linear associator

Consider a training set T = {(x1, a1), . . . , (x
m, am)} for a linear associa-

tor, where the inputs x1, . . . ,xm are n-dimensional vectors and the outputs
a1, . . . , am real numbers. We are looking for the weight vector (w1, . . . , wn)
which minimizes the quadratic error

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

232 9 Statistics and Neural Networks

E =
1

2

(

a1 −
n∑

i=1

wix
1
i

)2

+ · · ·+
(

am −
n∑

i=1

wix
m
i

)2

 (9.1)

where xj
i denotes the i-th component of the j-th input vector. The components

of the gradient of the error function are

∂E

∂wj
= −

(

a1 −
n∑

i=1

wix
1
i

)

x1
j − · · · −

(

am −
n∑

i=1

wix
m
i

)

xm
j (9.2)

for j = 1, 2, . . . , n. The minimum of the error function can be found analyti-
cally by setting ∇E = 0 or iteratively using gradient descent. Since the error
function is purely quadratic the global minimum can be found starting from
randomly selected weights and making the correction ∆wj = −γ∂E/∂wj at
each step.

Figure 9.4 shows the B-diagram for a linear associator. The training
vector x1 has been used to compute the error E1. The partial derivatives
∂E/∂w1, . . . , ∂E/∂wn can be computed using a backpropagation step.

+1

w1

w2

wn

x1
1

x 2

x n

E1

1

2
(a1 − wixi

i =1

n

Σ)
2

n

− (a1 − wix i

i=1

Σ)
.
.
.

1

1

1 1

Fig. 9.4. Backpropagation network for the linear associator

The problem of finding optimal weights for a linear associator and for a
given training set T is known in statistics as multiple linear regression. We are
looking for constants w0, w1, . . . , wn such that the y values can be computed
from the x values:

yi = w0 + w1x
i
1 + w2x

i
2 + · · ·+ wnx

i
n + εi ,

where εi represents the approximation error (note that we now include the
constant w0 in the approximation). The constants selected should minimize
the total quadratic error

∑n
i=1 ε

2
i . This problem can be solved using algebraic

methods. Let X denote the following m× (n+ 1) matrix:

X =

1 x1
1 · · · x1

n

1 x2
1 · · · x2

n
...

...
. . .

...
1 xm

1 · · · xm
n

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

9.1 Linear and nonlinear regression 233

The rows of the matrix consist of the extended input vectors. Let a, w and ε
denote the following vectors:

a =

a1

a2

...
am

w =

w0

w1

...
wn

ε =

ε1
ε2
...
εm

The vector w must satisfy the equation a = Xw + ε, where the norm of the
vector ε must be minimized. Since

‖ε‖2 = (a−Xw)T(a−Xw)

the minimum of the norm can be found by equating the derivative of this
expression with respect to w to zero:

∂

∂w
(a−Xw)T(a−Xw) = −2XTa + 2XTXw = 0.

It follows that XTXw = XTa and if the matrix XTX is invertible, the solution
to the problem is given by

w =
(
XTX

)−1
XTa.

9.1.3 Nonlinear units

Introducing the sigmoid as the activation function changes the form of the
functional approximation produced by a network. In Chap. 7 we saw that
the form of the functions computed by the sigmoidal units corresponds to a
smooth step function. As an example in Figure 9.5 we show the continuous
output of two small networks of sigmoidal units. The first graphic corresponds
to the network in Figure 6.2 which can compute an approximation to the
XOR function when sigmoidal units are used. The output of the network is
approximately 1 for the inputs (1, 0) and (0, 1) and approximately 0 for the
inputs (0, 0) and (1, 1). The second graph corresponds to the computation of
the NAND function with three sigmoidal units distributed in two layers.

Much more complicated functions can be produced with networks which
are not too elaborate. Figure 9.8 shows the functions produced by a network
with three and four hidden units and a single output unit. Small variations
of the network parameters can produce widely differing shapes and this leads
us to suspect that any continuous function could be approximated in this
manner, if only enough hidden units are available. The number of foldings of
the functions corresponds to the number of hidden units. In this case we have
a situation similar to when polynomials are used to approximate experimen-
tal data—the degree of the polynomial determines the number of degrees of
freedom of the functional approximation.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

234 9 Statistics and Neural Networks

0

1

x1

0

1

x2

1

s

0

1

x1

0

1

x2

1

s

0

1

x1

0

1

x2

1

F

0

1

x1

0

1

x2

1

F

Fig. 9.5. Output of networks for the computation of XOR (left) and NAND (right)

Logistic regression

Backpropagation applied to a linear association problem finds the parameters
of the optimal linear regression. If a sigmoid is computed at the output of the
linear associator, we are dealing with the conventional units of feed-forward
networks.

There is a type of nonlinear regression which has been applied in biology
and economics for many years called logistic regression. Let the training set T
be {(x1, a1), (x

2, a2), . . . , (x
m, am)}, where the vectors xi are n-dimensional.

A sigmoidal unit is to be trained with this set. We are looking for the n-
dimensional weight vector w which minimizes the quadratic error

E =
m∑

i=1

(ai − s(w · xi))2 ,

where s denotes the sigmoid function. Backpropagation solves the problem
directly by minimizing E. An approximation can be found using the tools
of linear regression by inverting the sigmoid and minimizing the new error
function

E′ =

m∑

i=1

(s−1(ai)−w · xi)2.

Since the ai are constants this step can be done at the beginning so that a
linear associator has to approximate the outputs

a′i = s−1(ai) = ln

(
ai

1− ai

)

, for i = 1, . . . ,m. (9.3)

All the standard machinery of linear regression can be used to solve the prob-
lem. Equation (9.3) is called the logit transformation [34]. It simplifies the

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

9.1 Linear and nonlinear regression 235

approximation problem but at a cost. The logit transformation modifies the
weight given to the individual deviations. If the target value is 0.999 and the
sigmoid output is 0.990, the approximation error is 0.009. If the logit trans-
formation is used, the approximation error for the same combination is 2.3
and can play a larger role in the computation of the optimal fit. Consequently,
backpropagation is a type of nonlinear regression [323] which solves the ap-
proximation problem in the original domain and is therefore more precise.

9.1.4 Computing the prediction error

The main issue concerning the kind of functional approximation which can
be computed with neural networks is to obtain an estimate of the prediction
error when new values are presented to the network. The case of linear re-
gression has been studied intensively and there are closed-form formulas for
the expected error and its variance. In the case of nonlinear regression of the
kind which neural networks implement, it is very difficult, if not impossible,
to produce such analytic formulas. This difficulty also arises when certain
kinds of statistics are extracted from empirical data. It has therefore been a
much-studied problem. In this subsection we show how to apply some of these
statistical methods to the computation of the expected generalization error of
a network.

One might be inclined to think that the expected generalization error of
a network is just the square root of the mean squared training error. If the
training set consists of N data points and E is the total quadratic error of
the network over the training set, the generalization error Ẽ could be set to

Ẽ =
√

E/N.

This computation, however, would tend to underestimate the true general-
ization error because the parameters of the network have been adjusted to
deal with exactly this data set and could be biased in favor of its elements.
If many additional input-output pairs that do not belong to the training set
are available, the generalization error can be computed directly. New input
vectors are fed into the network and the mean quadratic deviation is averaged
over many trials. Normally, this is not the case and we want to use all of the
available data to train the network and to predict the generalization error.

The bootstrap method, proposed by Efron in 1979, deals with exactly this
type of statistical problem [127]. The key observation is that existent data
can be used to adjust a predictor (such as a regression line), yet it also tells
us something about the distribution of the future expected inputs. In the
real world we would perform linear regression and compute the generalization
error using new data not included in the training set. In the bootstrap world
we try to imitate this situation by sampling randomly from the existing data
to create different training sets.

Here is how the bootstrap method works: assume that a data set X =
{x1, x2, . . . , xn} is given and that we compute a certain statistic θ̂ with this

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

236 9 Statistics and Neural Networks

data. This number is an estimate of the true value θ of the statistic over the
whole population. We would like to know how reliable is θ̂ by computing its
standard deviation. The data is produced by an unknown probability distribu-
tion F . The bootstrap assumption is that we can approximate this distribution
by randomly sampling from the set X with replacement. We generate a new
data set X∗ in this way and compute the new value of the statistics which we
call θ̂∗. This procedure can be repeated many times with many randomly gen-
erated data sets. The standard deviation of θ̂ is approximated by the standard
deviation of θ̂∗.

1

2

Fig. 9.6. Distribution of data in input space

Figure 9.6 graphically shows the idea behind the bootstrap method. The
experimental data comes from a certain input space. If we want to compute
some function over the whole input space (for example if we want to find
the centroid of the complete input domain), we cannot because we only have
some data points, but we can produce an estimate assuming that the distri-
bution of the data is a good enough approximation to the actual probability
distribution. The figure shows several regions where the data density is differ-
ent. We approximate this varying data density by sampling with replacement
from the known data. Region 2 in the figure will then be represented twice
as often as region 1 in the generated samples. Thus our computations use
not the unknown probability distribution F , but an approximation F̂ . This
is the “plug-in principle”: the empirical distribution F̂ is an estimate of the
true distribution F . If the approximation is good enough we can derive more
information from the data, such as the standard deviation of function values
computed over the empirical data set.

Algorithm 9.1.1 Bootstrap algorithm

i) Select N independent bootstrap samples x∗1,x∗2, . . . ,x∗N each consisting
of n data values selected with replacement from X .

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

9.1 Linear and nonlinear regression 237

ii) Evaluate the desired statistic S corresponding to each bootstrap sample,

θ̂∗(b) = S(x∗b) b = 1, 2, . . . , N.

iii) Estimate the standard error ŝN by the sample standard deviation of the
N replications

ŝN =

(
N∑

b=1

[θ̂∗(b)− θ̃]2/(N − 1)

)1/2

where θ̃ =
∑N

b=1 θ̂
∗(b)/N .

In the case of functional approximation the bootstrap method can be ap-
plied in two different ways, but the simpler approach is the following. Assume
that a neural network has been trained to approximate the function ϕ asso-
ciated with the training set T = {(x1, t1), . . . , (xm, tm)} of m input-output
pairs. We can compute a better estimate of the expected mean error by gen-
erating N different bootstrap training sets. Each bootstrap training set is
generated by selecting m input-output pairs from the original training set
randomly and with replacement. The neural network is trained always using
the same algorithm and stop criterion. For each network trained we compute:

• The mean squared error Q∗
i for the i-th bootstrap training set,

• The mean squared error for the original data, which we call Q0
i .

The standard deviation of the Q∗
i values is an approximation to the true

standard deviation of our function fit.
In general, Q∗

i will be lower than Q0
i , because the training algorithm ad-

justs the parameters optimally for the training set at hand. The optimism in
the computation of the expected error is defined as

O =
1

B

B∑

i=1

(Q0
i −Q∗

i).

The idea of this definition is that the original data set is a fair representative
of the whole input space and the unknown sample distribution F , whereas the
bootstrap data set is a fair representative of a generic training set extracted
from input space. The optimism O gives a measure of the degree of underes-
timation present in the mean squared error originally computed for a training
set.

There is a complication in this method which does not normally arise
when the statistic of interest is a generic function. Normally, neural networks
training is nondeterministic because the error function contains several global
minima which can be reached when gradient descent learning is used. Re-
training of networks with different data sets could lead to several completely

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

238 9 Statistics and Neural Networks

different solutions in terms of the weights involved. This in turn can lead to
disparate estimates of the mean quadratic deviation for each bootstrap data
set. However, if we want to analyze what will happen in general when the
given network is trained with data coming from the given input space, this
is precisely the right thing to do because we never know at which local min-
ima training stopped. If we want to analyze just one local minimum we must
ensure that training always converges to similar local minima of the error
function (only similar because the shape of the error function depends on the
training set used and different training sets have different local minima). One
way to do this was proposed by Moody and Utans, who trained a neural net-
work using the original data set and then used the weights found as initial
weights for the training of the bootstrap data sets [319]. We expect gradi-
ent descent to converge to nearby solutions for each of the bootstrap data
sets. Especially important is that with the bootstrap method we can compute
confidence intervals for the neural approximation [127].

9.1.5 The jackknife and cross-validation

A relatively old statistical technique which can be considered a predecessor of
the bootstrap method is the jackknife. As in the bootstrap, new data samples
are generated from the original data, but in a much simpler manner. If n data
points are given, one is left out, the statistic of interest is computed with the
remaining n− 1 points and the end result is the average over the n different
data sets. Figure 9.7 shows a simple example comparing the bootstrap with
the jackknife for the case of three data points, where the desired statistic
is the centroid position of the data set. In the case of the bootstrap there
are 10 possible bootstrap sets which lead to 10 different computed centroids
(shown in the figure as circles with their respective probabilities). For the
jackknife there are 3 different data sets (shown as ellipses) and centroids. The
average of the bootstrap and jackknife “populations” coincide in this simple
example. The d-jackknife is a refinement of the standard method: instead of
leaving one point out of the data set, d different points are left out and the
statistic of interest is computed with the remaining data points. Mean values
and standard deviations are then computed as in the bootstrap.

In the case of neural networks cross-validation has been in use for many
years. For a given training set T some of the input-output pairs are reserved
and are not used to train the neural network (typically 5% or 10% of the data).
The trained network is tested with these reserved input-output pairs and the
observed average error is taken as an approximation of the true mean squared
error over the input space. This estimated error is a good approximation if
both training and test set fully reflect the probability distribution of the data
in input space. To improve the results k-fold cross-validation can be used. The
data set is divided into k random subsets of the same size. The network is
trained k times, each time leaving one of the k subsets out of the training set
and testing the mean error with the subset which was left out. The average of

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

9.1 Linear and nonlinear regression 239

1/10

1/10

1/10

1/10

1/10

1/10 1/10

1/10

1/10 1/10

jackknife sets

bootstrap
centroids

data points (black)

Fig. 9.7. Comparison of the bootstrap and jackknife sampling points for n = 3

the k computed mean quadratic errors is our estimate of the expected mean
quadratic error over the whole of input space. As in the case of the bootstrap,
the initial values of the weights for each of the k training sets can be taken
from previous results using the complete data set, a technique called nonlinear
cross-validation by Moody and Utans [319], or each network can be trained
with random initial weights. The latter technique will lead to an estimation
of the mean quadratic deviation over different possible solutions of the given
task.

The bootstrap, jackknife, and cross-validation are all methods in which
raw computer power allows us to compute confidence intervals for statistics
of interest. When applied to neural networks, these methods are even more
computationally intensive because training the network repetitively consumes
an inordinate amount of time. Even so, if adequate parallel hardware is avail-
able the bootstrap or cross-validation provides us with an assessment of the
reliability of the network results.

9.1.6 Committees of networks

The methods for the determination of the mean quadratic error discussed in
the previous section rely on training several networks with the same basic
structure. If so much computing power is available, the approximation ca-
pabilities of an ensemble of networks is much better than just using one of
the trained networks. The combination of the outputs of a group of neural
networks has received several different names in the literature, but the most
suggestive denomination is undoubtedly committees [339].

Assume that a training set of m input-output pairs (x1, t1), . . . , (x
m, tm)

is given and that N networks are trained using this data. For simplicity we
consider n-dimensional input vectors and a single output unit. Denote by fi

the network function computed by the i-th network, for i = 1, . . . , N . The
network function f produced by the committee of networks is defined as

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

240 9 Statistics and Neural Networks

f =
1

N

N∑

i=1

fi.

The rationale for this averaging over the network functions is that if each
one of the approximations is biased with respect to some part of input space,
an average over the ensemble of networks can reduce the prediction error
significantly. For each network function fi we can compute an m-dimensional
vector ei whose components are the approximation error of the function fi for
each input-output pair. The quadratic approximation error Q of the ensemble
function f is

Q =
m∑

i=1

ti −
1

N

N∑

j=1

fj(x
i)

2

.

This can be written in matrix form by defining a matrix E whose N rows are
the m components of each error vector ei:

E =

e11 e12 · · · e1m
...

...
. . .

...
eN
1 eN

2 · · · eN
m

The quadratic error of the ensemble is then

Q =

∣
∣
∣
∣

1

N
(1, 1, . . . , 1)E

∣
∣
∣
∣

2

=
1

N2
(1, 1, . . . , 1)EET(1, 1, . . . , 1)T (9.4)

The matrix EET is the correlation matrix of the error residuals. If each func-
tion approximation produces uncorrelated error vectors, the matrix EET is
diagonal and the i-th diagonal element Qi is the sum of quadratic deviations
for each functional approximation, i.e., Qi = ‖ei‖2. In this case

Q =
1

N

(
1

N
(Q1 + · · ·+QN)

)

,

and this means that the total quadratic error of the ensemble is smaller by a
factor 1/N than the average of the quadratic errors of the computed functional
approximations. Of course this impressive result holds only if the assumption
of uncorrelated error residuals is true. This happens mostly when N is not too
large. In some cases even N = 2 or N = 3 can lead to significant improvement
of the approximation capabilities of the combined network [339].

If the quadratic errors are not uncorrelated, that is if EET is not symmet-
ric, a weighted combination of the N functions fi can be used. Denote the
i-th weight by wi. The ensemble functional approximation f is now

f =
N∑

i=1

wifi.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

9.1 Linear and nonlinear regression 241

The weights wi must be computed in such a way as to minimize the expected
quadratic deviation of the function f for the given training set. With the same
definitions as before and with the constraint w1 + · · · + wN = 1 it is easy to
see that equation (9.4) transforms to

Q =
1

N2
(w1, w2, . . . , wN)EET(w1, w2, . . . , wN)T.

The minimum of this expression can be found by differentiating with respect to
the weight vector (w1, w2, . . . , wN) and setting the result to zero. But because
of the constraint w1 + · · ·+wN = 1 a Lagrange multiplier λ has to be included
so that the function to be minimized is

Q′ =
1

N2
wEETwT + λ(1, 1, . . . , 1)wT

=
1

N2
wEETwT + λ1wT

where 1 is a row vector with all its N components equal to 1. The partial
derivative of Q′ with respect to w is set to zero and this leads to

1

N2
wEET + λ1 = 0 .

If the matrix EET is invertible this leads to

w = −λN21(EET)−1.

From the constraint w1T = 1 we deduce

w1T = −λN21(EET)−11T = 1 ,

and therefore

λ = − 1

N21(EET)−11T
.

The final optimal set of weights is

w =
1(EET)−1

1(EET)−11T
,

assuming that the denominator does not vanish. Notice that the constraint
w1T is introduced only to simplify the analysis of the quadratic error.

This method can become prohibitive if the matrix EET is ill-conditioned
or if its computation requires too many operations. In that case an adaptive
method can be used. Note that the vector of weights can be learned using a
Lagrange network of the type discussed in Chap. 7.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

242 9 Statistics and Neural Networks

9.2 Multiple regression

Backpropagation networks are a powerful tool for function approximation.
Figure 9.8 shows the graphs of the output function produced by four networks.
The graph on the lower right was produced using four hidden units, the other
using three. It can be seen that such a small variation in the topology of the
network leads to an increase in the plasticity of the network function. The
number of degrees of freedom of a backpropagation network, and therefore
its plasticity, depends on the number of weights, which in turn are a function
of the number of hidden units. How many of them should be used to solve
a given problem? The answer is problem-dependent: in the ideal case, the
network function should not have more degrees of freedom than the data
itself, because otherwise there is a danger of overtraining the network.

Fig. 9.8. Network functions of networks with one hidden layer

In this section we look at the role of the hidden layer, considering the
interplay between layers in a network, but first of all we develop a useful
visualization of the multiple regression problem.

9.2.1 Visualization of the solution regions

Consider a training set T = {(x1, a1), (x
2, a2), . . . , (x

m, am)} consisting of
n-dimensional inputs and scalar outputs. We are looking for the best approx-
imate solution to the system of equations

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

9.2 Multiple regression 243

s(xi ·w) = ai, for i = 1, 2, . . . ,m, (9.5)

where s denotes, as usual, the sigmoid and w is the weight vector for a linear
associator. If the outputs ai are real and lie in the interval (0, 1), equation
(9.5) can be rewritten as

xi ·w = s−1(ai), for i = 1, 2, . . . ,m. (9.6)

The m equations in (9.6) define m hyperplanes in weight space. If all hy-
perplanes meet at a common point w0, then this weight vector is the exact
solution of the regression problem and the approximation error is zero. If
there is no common intersection, there is no exact solution to the problem.
When m > n, that is, when the number of training pairs is higher than the
dimension of weight space, the hyperplanes may not meet at a single common
point. In this case we must settle for an approximate solution of the regression
problem.

Consider now the polytopes defined in weight space by the system of equa-
tions (9.6). First consider the case of a linear associator (eliminating the sig-
moid and its inverse). The training equations are in this case

xi ·w = ai, for i = 1, 2, . . . ,m. (9.7)

If there is no common intersection of the m hyperplanes, we look for the
weight vector w′ which minimizes the quadratic norms ε2i , where

εi = xi ·w′ − ai, for i = 1, 2, . . . ,m. (9.8)

A two-dimensional example can serve to illustrate the problem. Consider the
three lines `1, `2 and `3 shown in Figure 9.9. The three do not intersect at
a common point but the point with the minimum total distance to the three
lines is α. This is also the site in weight space which can be found by using
linear regression.

Important for the solution of the regression problem is that the square of
the distance of α to each line is a quadratic function. The sum of quadratic
functions is also quadratic and its minimization presents no special numerical
problem. The point α in Figure 9.9 lies at a global minimum (in this case
unique) of the error function.

The systems of equations (9.6) and (9.7) are very similar, but when the
sigmoid is introduced the approximation error is given by

E =

m∑

i=1

(
s(xi ·w)− ai

)2
, (9.9)

which is not a quadratic function of w. Suboptimal local minima can now
appear.

Figure 9.10 shows the form of the error function for the same example
of Figure 9.9 when the sigmoid is introduced. The error function now has
three different local minima and the magnitude of the error can be different
in any of them. Gradient descent would find one of the three minima, but not
necessarily the best.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

244 9 Statistics and Neural Networks

l1 l2

l3

α

w1

w2

Fig. 9.9. Point of minimal distance to three lines

0
0.2

0.4

0.6

0

0.2

0.4

0.6

0

0.7
error

0
0.2

0.4

0.6

0

0.2

0.4

0.6

0

0.7
error

Fig. 9.10. Local minima of the error function

9.2.2 Linear equations and the pseudoinverse

Up to this point we have only considered the regression problem for individ-
ual linear associators. Consider now a network with two layers of weights,
as shown in Figure 9.11. Assume that the training set consists of the n-
dimensional input vectors x1,x2, . . . ,xm and the k-dimensional output vec-
tors y1,y2, . . . ,ym. Let W1 be the weight matrix between the input sites
and the hidden layer (with the same conventions as in Chap. 7, but without
bias terms). Let W2 be the weight matrix between hidden and output layer.
If all units in the network are linear associators, the output for the input x
is xW1W2. The weight matrix W = W1W2 could be used in a network
without a hidden layer and the output would be the same. The hidden layer
plays a role only if the hidden units introduce some kind of nonlinearity in
the computation.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

9.2 Multiple regression 245

n

 input sites

k

 output units

 hidden units

W1 W 2

l

... ...

...

Fig. 9.11. Multilayer network

Assume that the hidden layer consists of ` units. Let Y denote the m× k
matrix whose rows are the row vectors yi, for i = 1, . . . ,m. Let Z denote the
m× ` matrix whose rows are each one of the vectors produced by the hidden
layer for the inputs x1,x2, . . . ,xm. The output of the network can be written
as

Y = ZW2 .

It is interesting to point out that this condition is always fulfilled if the m
rows of the matrix Z are linearly independent. In that case there exists a
matrix called the pseudoinverse Z+ such that ZZ+ = I, where I denotes the
m × m identity matrix (we will discuss the properties of the pseudoinverse
in Chap. ??). Setting W2 = Z+Y we get Y = ZW2 because ZZ+Y = Y
[349]. If the input vectors can be mapped to linearly independent vectors
in the hidden layer the learning problem has a solution. This requires that
m ≤ `. This loose upper bound on the number of hidden units is not better
than when each hidden unit acts as a feature detector for each input vector.
Genuine learning problems can usually be solved with smaller networks.

9.2.3 The hidden layer

We can give the nonlinearity in the hidden layer a geometric interpretation.
The computation between input sites and hidden layer corresponds to a linear
transformation followed by a nonlinear “compression”, that is, the evaluation
of a squashing function at the hidden units. Let us first consider units with a
step function as nonlinearity, that is, perceptrons. Assume that a unit in the
hidden layer has the associated weight vector w1. All vectors in input space
close enough to vector w1 are mapped to the same vector in feature space, for
example the vector (0,1) in a network with two hidden units. A cone around
vector w1 acts as its basin of attraction. Figure 9.12 also shows the basin of
attraction of vector w2. Vectors close to w2 are mapped to the vector (1, 0)
in feature space.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

246 9 Statistics and Neural Networks

x1

x2

x3

w1

w2

x
1

(1, 0)

(0,1)

feature space

input space

Fig. 9.12. Mapping input space into feature space

If all computed vectors in feature space are linearly independent, it is
possible to find a matrix W2 that produces any desired output. If not a
step function but a sigmoid is used as nonlinearity, the form of the basins of
attraction changes and the vectors in feature space can be a combination of
the basis vectors.

We can summarize the functioning of a network with a hidden layer in
the following way: the hidden layer defines basins of attraction in input space
so that the input vectors are mapped to vectors in feature space. Then, it
is necessary to solve a linear regression problem between hidden and output
layer in order to minimize the quadratic error over the training set.

9.2.4 Computation of the pseudoinverse

Ifm input vectors are mapped tom `-dimensional linearly independent vectors
z1, z2, . . . , zm in feature space, the backpropagation algorithm can be used to
find the `×m matrix Z+ for which ZZ+ = I holds. In the special case m = `
we are looking for the inverse of the square matrix Z. This can be done using
gradient descent. We will come back to this problem in Chap. ??. Here we
only show how the linear regression problem can be solved.

The network in Figure 9.13 can be used to compute the inverse of Z. The
training input consists of the m vectors z1, z2, . . . , zm and the training output
of the m rows of the m×m identity matrix (the elements of the identity matrix
are represented by Kronecker’s delta, and the j-th component of the network
output for the i-th training vector by oi

j). When the input vectors are linearly
independent the error function has a unique global minimum, which can be
found using the backpropagation algorithm. The weight matrix W converges
to Z−1.

If them input vectors are not linearly independent, backpropagation never-
theless finds a minimum of the error function. This corresponds to the problem
in which we do not look for the common intersection of hyperplanes but for
the point with the minimal cumulative distance to all of them (Figure 9.9). If
the minimum is unique the network finds the pseudoinverse Z+ of the matrix

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

9.3 Classification networks 247

+

+

+

+

+ Ei

(o1
i − δ i1)

2

(om
i − δ im)

2

z1
i

z2
i

zm
i

weight matrix W

Fig. 9.13. Network for the computation of the inverse

Z. If the minimum is not unique (this can happen when m < `) it is necessary
to minimize the norm of the weight matrix in order to find the pseudoinverse
[14]. This can be done by adding a decay term to the backpropagation weight
updates. The modified updates are given by

∆wij = −γ ∂E

∂wij
− κwij ,

where κ and γ denote constants. The decay term tends to lower the magnitude
of each weight—it corresponds to the negative partial derivative of w2

ij with
respect to wij .

9.3 Classification networks

Multilayered neural networks have become a popular tool for a growing spec-
trum of applications. They are being applied in robotics, in speech or pattern
recognition tasks, in coding problems, etc. It has been said that certain prob-
lems are theory-driven whereas others are data-driven. In the first class of
problems theory predominates, in the latter there is much data but less the-
oretical understanding. Neural networks can discover statistical regularities
and keep adjusting parameters even in a changing environment. It is interest-
ing to look more closely at some applications where the statistical properties
of neural networks become especially valuable.

There are many applications in which a certain input has to be classified
as belonging to one of k different classes. The input is a certain measurement
which we want to label in a predetermined way. This kind of problem can be
solved by a classification network with k output units. Given a certain input
vector x we expect the network to set the output line associated with the
correct classification of x to 1 and the others to 0. In this section we discuss
how to train such networks and then we look more closely at the range of
output values being produced.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

248 9 Statistics and Neural Networks

9.3.1 An application: NETtalk

Speech synthesis systems have been commercially available for quite a number
of years now. They transform a string of characters into a string of phonemes
by applying some linguistic transformation rules. The number of such rules is
rather large and their interaction is not trivial [196].

In the 1980s Sejnowski and Rosenberg developed a backpropagation net-
work that was able to synthesize speech of good quality without applying
explicit linguistic transformations [396]. The authors used a backpropagation
network composed of seven groups of 29 input sites, 80 hidden and 26 output
units. The text to be pronounced by the system is scanned using a sliding
window of seven characters. Each one of the characters is coded as one of 29
possible letters (one input line is set to 1 the other 28 to 0). Consequently
there are 7 × 29 = 203 input sites. The network must produce the correct
phoneme for the pronunciation of the character in the middle of the window,
taking into account the three characters of context to the left and to the
right. The network was connected to an electronic speech synthesizer capa-
ble of synthesizing 26 phonemes (later variants of NETtalk have used more
phonemes). The network contains around 18,000 weights which must be found
by the learning algorithm. We expect the network to be able to extract the
statistical regularities from the training set by itself.

h e l l o _ w

phonemes

80 hidden units

26 output units

7 groups of

29 input sites

...

...

...

Fig. 9.14. The NETtalk architecture

The training set consists of a corpus of several hundred words, together
with their phonetic transcription. The network is trained to produce a 1 at the
output unit corresponding to the right phoneme. After training, an unknown
text is scanned and the output units are monitored. At each time step only
the unit with the maximum output level is selected. Surprisingly, the speech
generated is of comparable quality to that produced by much more intricate
rule-based systems.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

9.3 Classification networks 249

Sejnowski and Rosenberg also looked at the proficiency of the network at
different learning stages. At the beginning of learning the network made some
of the same errors as children do when they learn to speak. Damaging some of
the weights produced some specific deficiencies. Analyzing the code produced
by the hidden units, the authors determined that some of them had implicitly
learned some of the known linguistic rules.

NETtalk does not produce exactly ones or zeros, and the pronounced
phoneme is determined by computing the maximum of all output values. It is
interesting to ask what the produced output values stand for. One possibility
is that it indeed represents the probability that each phoneme could be the
correct one. However, the network is trained with binary values only, so that
the question to be answered is: how do classifier networks learn probabilities?

9.3.2 The Bayes property of classifier networks

It is now well known that neural networks trained to classify an n-dimensional
input x in one out of M classes can actually learn to compute the a posteriori
probabilities that the input x belongs to each class. Several proofs of this fact,
differing only in the details, have been published [65, 365], but they can be
simplified. In this section we offer a shorter proof of the probability property
of classifier neural networks proposed by Rojas [377].

y(v)

Error = (1 – y(v))
2

if input in class A

Error = y(v)
2

if input not in class A

(a) (b)

F1 = p(v) (1 – y(v))

F2 = (1 – p(v)) y(v)

Fig. 9.15. The output y(v) in a differential volume

Part (a) of Figure 9.15 shows the main idea of the proof. Points in an
input space are classified as belonging to a class A or its complement. This is
the first simplification: we do not have to deal with more than one class. In
classifier networks, there is one output line for each class Ci, i = 1, . . . ,M .
Each output Ci is trained to produce a 1 when the input belongs to class i,
and otherwise a 0. Since the expected total error is the sum of the expected
individual errors of each output, we can minimize the expected individual

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

250 9 Statistics and Neural Networks

errors independently. This means that we need to consider only one output
line and whether it should produce a 1 or a 0.

Proposition 13. A classifier neural network perfectly trained and with
enough plasticity can learn the a posteriori probability of an empirical data
set.

Proof. Assume that input space is divided into a lattice of differential volumes
of size dv, each one centered at the n-dimensional point v. If at the output
representing class A the network computes the value y(v) ∈ [0, 1] for any
point x in the differential volume V (v) centered at v, and denoting by p(v)
the probability p(A|x ∈ V (v)), then the total expected quadratic error is

EA =
∑

V

{p(v)(1− y(v))2 + (1− p(v))y(v)2}dv,

where the sum runs over all differential volumes in the lattice. Assume that
the values y(v) can be computed independently for each differential volume.
This means that we can independently minimize each of the terms of the sum.
This is done by differentiating each term with respect to the output y(v) and
equating the result to zero:

−2p(v)(1− y(v)) + 2(1− p(v))y(v) = 0.

From this expression we deduce p(v) = y(v), that is, the output y(v) which
minimizes the error in the differential region centered at v is the a posteriori
probability p(v). In this case the expected error is

p(v)(1 − p(v))2 + (1− p(v))p(v)2 = p(v)(1 − p(v))

and EA becomes the expected variance of the output line for class A. 2

Note that extending the above analysis to other kinds of error functions
is straightforward. For example, if the error at the output is measured by
log(1 − y(v)) when the desired output is 1, and log(y(v)) when it is 0, then
the terms in the sum of expected differential errors have the form

p(v) log(1− y(v)) + (1− p(v)) log(y(v)).

Differentiating and equating to zero we again find y(v) = p(v).
This short proof also strongly underlines the two conditions needed for

neural networks to produce a posteriori probabilities, namely perfect training
and enough plasticity of the network, so as to be able to approximate the patch
of probabilities given by the lattice of differential volumes and the values y(v)
which we optimize independently of each other.

It is still possible to offer a simpler visual proof “without words” of the
Bayesian property of classifier networks, as is done in part (b) of Figure 9.15.
When training to produce 1 for the class A and 0 for Ac, we subject the

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

9.3 Classification networks 251

function produced by the network to an “upward force” proportional to the
derivative of the error function, i.e., (1− y(v)), and the probability p(v), and
a downward force proportional to y(v) and the probability (1 − p(v)). Both
forces are in equilibrium when p(v) = y(v).

This result can be visualized with the help of Figure 9.16. Several non-
disjoint clusters represent different classes defined on an input space. The
correspondence of each input vector to a class is given only probabilistically.
Such an input space could consist for example of n-dimensional vectors, in
which each component is the numerical value assigned to each of n possible
symptoms. The classes defined over this input space are the different illnesses.
A vector of symptoms corresponds to an affliction with some probability. This
is illustrated in Figure 9.16 with the help of Gaussian-shaped probability
distributions. The clusters overlap, because sometimes the same symptoms
can correspond to different ailments. Such an overlap could only be suppressed
by acquiring more information.

feature space

class 1

class 2

class 3

Fig. 9.16. Probability distribution of several classes in feature space

This is a nice example of the kind of application that such classification
networks can have, namely in medical diagnosis. The existing data banks
can be used as training sets for a network and to compute the margin of error
associated with the classifications. The network can compute a first diagnosis,
which is then given to a physician who decides whether or not to take this
information into account.

9.3.3 Connectionist speech recognition

In automatic speech recognition we deal with the inverse problem of NETtalk:
given a sequence of acoustic signals, transcribe them into text. Speech recog-
nition is much more difficult than speech synthesis because cognitive factors
play a decisive role. The recognition process is extremely sensitive to context
in such a way that, if some phonemes are canceled in recorded speech, test
subjects do not notice any difference. We are capable of separating speech

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

252 9 Statistics and Neural Networks

signals from background noise (the so-called cocktail party effect) without
any special effort, whereas this separation is a major computational problem
for existing speech recognition systems. This leads to the suspicion that in
this case deterministic rules would do much worse than a statistical system
working with probabilities and likelihoods.

Building computers capable of automatically recognizing speech has been
an old dream of both the field of electronics and computer science. Initial
experiments were conducted as early as the 1950s, and in the 1960s some sys-
tems were already capable of recognizing vowels uttered by different speakers
[12]. But until now all expectations have not been fully met. We all know of
several small-scale commercial applications of speech technology for consumer
electronics or for office automation. Most of these systems work with a limited
vocabulary or are speaker-dependent in some way. Yet current research has as
its goal the development of large-vocabulary speaker-independent continuous
speech recognition. This long chain of adjectives already underlines the diffi-
culties which still hamper the large-scale commercial application of automatic
speech recognition: We would like the user to speak without artificial pauses,
we would like that the system could understand anybody, and this without
necessarily knowing the context of a conversation or monologue.

Artificial neural networks have been proposed as one of the building blocks
for speech recognizers. Their function is to provide a statistical model capable
of associating a vector of speech features with the probability that the vector
could represent any of a given number of phonemes. Neural networks have
here the function of statistical machines. Nevertheless we will see that our
knowledge of the speech recognition process is still very limited so that fully
connectionist models are normally not used. Researchers have become rather
pragmatic and combine the best features of neural modeling with traditional
algorithms or with other statistical approaches, like Hidden Markov Models,
which we will briefly review. Current state-of-the-art systems combine differ-
ent approaches and are therefore called hybrid speech recognition systems.

Feature extraction

The first problem for any automatic speech recognizer is finding an appro-
priate representation of the speech signal. Assume that the speech is sam-
pled at constant intervals and denote the amplitude of the speech signal by
x(0), x(2), . . . , x(n − 1). For good recognition the time between consecutive
measurements should be kept small. The microphone signal is thus a more
or less adequate representation of speech but contains a lot of redundancy.
It would be preferable to reduce the number of data points in such a way
as to preserve most of the information: this is the task of all feature extrac-
tion methods. Choosing an appropriate method implies considering the speech
production process and what kind of information is encoded in the acoustic
signal.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

9.3 Classification networks 253

"a"

"u"

"u"

"u

time

frequency

Fig. 9.17. Temporal variation of the spectrum of the speech signal

Speech is produced in the vocal tract, which can be modeled as a tube
of varying diameter extending from the vocal chords to the lips. The vocal
chords produce a periodic pressure wave which travels along the vocal tract
until the energy it contains is released through the mouth and nose. The vocal
tract behaves as a resonator in which some frequencies are amplified whereas
others are eliminated from the final speech signal. Different configurations of
the vocal organs produce different resonating frequencies, so that it is safe to
assume that detecting the mixture of frequencies present in the speech signal
can provide us with information about the particular configuration of the
vocal tract, and from this configuration we can try to deduce what phoneme
has been produced.

Figure 9.17 shows a temporal sequence of stylized spectra. The first spec-
trum, for example, corresponds to the vowel “a”. There are four fairly distinct
resonance maxima. They are called the formants of the speech signal. Each
phoneme has a distinctive formant signature and if we could identify the se-
quence of formant mixtures we could, in principle, decode the speech signal.

Many methods have been proposed to deal with the task of spectral analy-
sis of speech. Some of them have a psychophysical foundation, that is, they are
based on physiological research on human hearing [353]. Others have arisen in
other fields of engineering but have proved to be adequate for this task. Cer-
tainly one of the simplest, but also more powerful, approaches is computing
a short-term Fourier spectrum of the speech signal.

Fourier analysis

Given a data set x = (x(0), x(2), . . . , x(n−1)) it is the task of Fourier analysis
to reveal its periodic structure. We can think of the data set as function X

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

254 9 Statistics and Neural Networks

evaluated at the points 0, 2, . . . , n − 1. The function X can be written as a
linear combination of the basis functions

f0(t) =
1√
n

(

cos

(

2πt
0

n

)

− i sin
(

2πt
0

n

))

=
1√
n

(ω∗
n)0·t

f1(t) =
1√
n

(

cos

(

2πt
1

n

)

− i sin
(

2πt
1

n

))

=
1√
n

(ω∗
n)1·t

...
...

fn−1(t) =
1√
n

(

cos

(

2πt
n− 1

n

)

− i sin
(

2πt
n− 1

n

))

=
1√
n

(ω∗
n)(n−1)·t

where ωn denotes the n-th complex root of unity ωn = exp(2πi/n) and ω∗
n

its complex conjugate. Writing the data set as a linear combination of these
functions amounts to finding which of the given frequencies are present in the
data. Denote by F∗

n the n× n matrix whose columns are the basis functions
evaluated at t = 0, 1, . . . , n − 1, that is, the element at row i and column j
of F∗

n is (ω∗
n)ij/

√
n, for i, j = 0, . . . , n − 1. We are looking for a vector a of

amplitudes such that
F∗

na = x.

The n-dimensional vector a is the spectrum of the speech signal. The matrix
Fn defined as

Fn =
1√
n

ω0
n ω

0
n · · · ω0

n

ω0
n ω

1
n · · · ωn−1

n

ω0
n ω

2
n · · · ω2n−2

n
...

. . .
...

ω0
n ω

n−1
n · · · ω(n−1)(n−1)

n

is the transpose conjugate of the matrix F∗
n. Since the basis functions

f0, . . . , fn−1 are mutually orthogonal, this means that F∗
n is unitary and in

this case
FnF∗

na = Fnx ⇒ a = Fnx.

The expression Fnx is the discrete Fourier transform of the vector x. The
inverse Fourier transform is given of course by

F∗
nFnx = F∗

na ⇒ x = F∗
na.

The speech signal is analyzed as follows: a window of length n (n data
samples) is used to select the data. Such a window can cover, for example, 10
milliseconds of speech. The Fourier transform is computed and the magnitudes
of the spectral amplitudes (the absolute values of the elements of the vector
a) are stored. The window is displaced to cover the next set of n data points
and the new Fourier transform is computed. In this way we get a sequence
of short-term spectra of the speech signal as a function of time, as shown in
Figure 9.17. Since each articulation has a characteristic spectrum, our speech
recognition algorithms should recover from this kind of information the correct
sequence of phonemes.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

9.3 Classification networks 255

Fast transformations

Since we are interested in analyzing the speech signal in real time it is impor-
tant to reduce the number of numerical operations needed. A Fourier trans-
form computed as a matrix-vector multiplication requires around O(n3) mul-
tiplications. A better alternative is the Fast Fourier transform, which is just
a rearrangement of the matrix-vector multiplication. The left graphic in Fig-
ure 9.18 shows the real part of the elements of the Fourier matrix Fn (the
shading is proportional to the numerical value). The recursive structure of
the matrix is not immediately evident, but if the even columns are permuted
to the left side of the matrix and the odd columns to the right, the new ma-
trix structure is the one shown on the right graphic in Figure 9.18. Now the
recursive structure is visible. The matrix Fn consists of four submatrices of
dimension n/2× n/2, which are related to the matrix Fn/2 through a simple
formula. In order for the reduction process to work, n must be a power of two.

Fig. 9.18. The Fourier matrix and the permuted Fourier matrix

This rearrangement of the Fourier matrix is the basis of the Fast Fourier
Transform (FFT) (See Exercise 3).

Many speech recognition systems use some kind of variation of the Fourier
coefficients. The problem with short-term spectra is that the base frequency
of the speaker should be separated from the medium-term information about
the shape of the vocal tract. Two popular alternatives are cepstral coefficients
and linear predictive coding (LPC) [353, 106].

Training of the classifier

Neural networks are used as classifier networks to compute the probability
that any of a given set of phonemes could correspond to a given spectrum and
the context of the spectrum. The speech signal is divided into frames of, for
example, 10ms length. For each frame the short-term spectrum or cepstrum
is computed and quantized using 18 coefficients. We can train a network to

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

256 9 Statistics and Neural Networks

associate spectra with the probability that each phoneme is present in a speech
segment. A classifier network like the one shown in Figure 9.20 is used. The
coefficients of the six previous and also of the six following frames are used
together with the coefficients of the frame we are evaluating. The dimension
of the input vector is thus 234. If we consider 61 possible phonemes we end
up with the network of Figure 9.20, which is in fact very similar to NETtalk.

training window

central frame

13 speech frames

18
frequency
bands

Fig. 9.19. Training window for the neural network

The network is trained with labeled speech data. There are several data
bases which can be used for this purpose, but also semiautomatic methods for
speech labeling can be used [65]. Once the network has been trained it can be
used to compute the emission probabilities of phonemes.

x
1

x

x

x

2

3

234

phoneme 1

phoneme 2

phoneme 61...

.

.

.

Fig. 9.20. Classification network for 61 phonemes

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

9.3 Classification networks 257

Hidden Markov Models

In speech recognition researchers postulate that the vocal tract shapes can be
quantized into a discrete set of states roughly associated with the phonemes
that compose speech. But when speech is recorded the exact transitions in the
vocal tract cannot be observed and only the produced sound can be measured
at some predefined time intervals. These are the emissions, and the states
of the system are the quantized configurations of the vocal tract. From the
measurements we want to infer the sequence of states of the vocal tract, i.e.,
the sequence of utterances which gave rise to the recorded sounds. In order to
make this problem manageable, the set of states and the set of possible sound
parameters are quantized.

A first-order Markov model is any system capable of assuming one of n
different states at time t. The system does not change its state at each time
step deterministically but according to a stochastic dynamic. The probability
of transition from the i-th to the j-th state at each step is given by 0 ≤ pij ≤ 1
and does not depend on the previous history of transitions. We also assume
that at each step the model emits one of m possible output values. We call
the probability of emitting the k-th output value x while in the i-th state
bik = P (xk|si). Starting from a definite state at time t = 0, the system is
allowed to run for T time units and the generated outputs are recorded. Each
new run of the system produces in general a different sequence of output
values.

P(x | s)P(x | s)P(x | s)

p p

p p p

p p
01 12 23 34

s s s s
0

1

2 3

11 22 33

2 3

1not visible

visible

Fig. 9.21. A Hidden Markov Model

A Hidden Markov Model has the structure shown in Figure 9.21. The state
transitions remain invisible for the observer (we cannot see the configuration
of the vocal tract). The only data provided are the emissions (i.e., the spec-
trum of the signal) at some points in time. Figure 9.21 represents a model
with four states, linked in such a way that we have sequential transitions.
This model could represent the vocalization of a word. Each of the states si

is a phoneme. Note that there is a probability pii that a phoneme state is re-

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

258 9 Statistics and Neural Networks

peated. This represents the case in which a speaker pronounces a word more
slowly. In general, the word models constructed are more complicated than
this. Especially in the case of very common words, we need more structure
in the Markov model, as shown in Figure 9.22 which is a HMM for the word
“and” [461]. The labeling of the nodes corresponds to the standard phonetic
denomination of the relevant phonemes for this example.

start

ix

ng

nx

q

end

eh

ax pau q

hh ae

n

jh

dcl

d

Fig. 9.22. Markov chain for the word “and”

The general problem we have when confronted with the recorded sequence
of output values of a HMM is to compute the most probable sequence of state
transitions which could have produced them. But first of all, we have to train
the model, that is, compute the transition and emission probabilities. We
discussed in Sect. 7.4.2 how this can be done applying the backpropagation
algorithm.

Computation of the most probable path

Once a set of emission probabilities has been computed for several time frames
1, 2 . . . ,m it is necessary to compute the most probable path of transitions of
the vocal tract and emissions. This can be done using dynamic programming
methods of the same type as those generically known as time warping.

The general method is the following: the trained classifier network is ap-
plied to the speech data and for every time frame we obtain from the network
the a posteriori probability of 61 phonemes. Figure 9.23 shows, for example,

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

9.3 Classification networks 259

that for t = 1, that is for the first frame, the probability of having detected
phoneme 1 is 0.1, for phoneme 2 it is 0.7, etc. For the second frame (t = 2)
we get another set of 61 a posteriori probabilities and so on. We are looking
for the path connecting the true sequence of produced sounds (the shaded
portions of the table). The probability of any path is given by the product of
the a posteriori probabilities of the phoneme sequence and the probability of

transitions between phonemes. Denote by p
(t)
a the a posteriori probability of

phoneme a at time t and by ai,j the transition probability from phoneme i to
phoneme j. Given any sequence of phonemes k1, k2, . . . , km the probability P
of this special sequence is given by

P = p
(1)
k1
ak1,k2p

(2)
k2
ak2,k3 · · · p

(m)
km

.

The transition probabilities are taken from the trained HMM for a word (in
this case we are doing isolated word recognition). We pick the sequence of
transitions with the greatest probability P and record it. The same procedure
is repeated for all words in the vocabulary and the word with the greatest
associated probability is selected as result of the recognition process.

0,1

0,7

0,0

0,0

0,0

0,0

0,1

0,8

0,1

0,0

0,0

0,9

0,0

0,1

0,6

0,3

0,0

0,0

0,0

0,0

.

.

.

.

.

.

.

.

.

...

0,1

0,5

0,0

t = 1 2 3 n

phoneme 1

phoneme 2

phoneme 3

phoneme 61

transition
probabilities

0,1

0,6

0,0

0,0

0,1

Fig. 9.23. Determination of the most probable path

The method used for the computation of the optimal path is dynamic
programming [12]. Nevertheless it should be mentioned that one problem with
this approach is that the long products of probabilities sometimes produce
very small values which are difficult to discriminate. See [65] for an in-depth
discussion of the pitfalls associated with speech recognition based on neural
models.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

260 9 Statistics and Neural Networks

9.3.4 Autoregressive models for time series analysis

It has been always an important issue to develop good forecasting techniques
for time series in economics and statistics. A stochastic variable X produces a
sequence of observations x1, x2, . . . , xt at t different points in time that can be
used to forecast the value of the variable at time t+ 1. If there is a functional
relation between the successive values of the stochastic variable, we can try
to formulate a linear or nonlinear model of the time series. Usually, linear
models have been favored because of the accumulated experience and existing
literature.

The general approach used in the neural networks field is to use historical
values of the time series to train the network and test it with new values.
Assume that the network has 8 input sites and one output. We can use the
values x1, x2, . . . , x8 to forecast the value x9. Sliding the training window one
step at a time we can extract n− 8 training examples from a time series with
n data points. The network learns to forecast xt using xt−8, . . . , xt−1 as input.
After several training steps we can measure how well the network has learned
to forecast the future [291, 446].

forecast

F

x1 ... x8

Fig. 9.24. Time series and a training window

This technique corresponds to the autoregression models popular among
statisticians [86]. The desired approximation is of the type

xt = α0 + α1xt−1 + α2xt−2 + · · ·+ αpxt−p + Zt

where α1, . . . , αp are constants and Zt a stochastic variable. This is a linear
model of the kind considered before. Note that in this case we are predicting
only one value into the future.

If we want to predict more than one step into the future, we can use the
schema

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

9.4 Historical and bibliographical remarks 261

xt+q = α0 + (β0xt + · · ·+ βq−1xt+q−1) + (α1xt−1 + · · ·+ αpxt−p),

where we use the result of previous predictions (xt to xt+q−1) in the forecast
generated for step t+q. The system has now a built-in feedback which compli-
cates the numerical solution. The well-known ARMA models (autoregressive
moving average) have this structure.

Since nonlinear models are more general than the linear ones, we could
expect that neural networks should lead to better forecasts. However, finan-
cial or other complicated time series are seldom easy to handle. Normally
several statistical tests and different preprocessing techniques have to be ap-
plied before deciding on the best statistical forecasting method. In the case
of economic time series, the number of degrees of freedom of the system is so
large that search space has to be constrained in a decisive manner. In many
cases, it is also almost impossible to base a forecast on the time series alone.
If we want to forecast stock market prices, we have to consider other factors
such as interest and inflation rates, foreign exchange situation, etc. It is not
surprising that naive experiments where only a few parameters are considered
cannot lead to successful forecasts [467].

The best results have been obtained with econometric models that relate
several variables and functional dependencies. Some authors have coupled neu-
ral networks with expert systems in order to remove some of the uncertainties
associated with simple-minded autoregressive models [53].

9.4 Historical and bibliographical remarks

The connection between neural networks and statistical models has spawned
an active research community. Many new studies in this direction have been
made since the pioneering investigations of the PDP group [421], but much
work remains to be done. It should always be emphasized that feed-forward
networks are a method of function approximation that must be applied care-
fully and with the necessary expertise from the problem domain. There are
many negative examples of the kind of forecasting errors that poorly applied
neural methods can produce [99]

The bootstrap was introduced by Efron [125], but similar ideas had already
been proposed several years earlier in the Monte Carlo literature of hypothesis
testing and by researchers trying to compute better confidence intervals. The
method received its name because it models an unknown probability distribu-
tion by pulling on its own bootstraps, i.e., by resampling the given data set.
A good introduction to the bootstrap method and some of its applications is
[126]. Tukey [434] studied the properties of the jackknife method and gave it
its name. Cross-validation has been used in many different contexts since the
1970s and some authors have investigated its usefulness in model selection.

There are now so many applications of backpropagation networks that even
just mentioning the more significant would take too much space. NETtalk

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

262 9 Statistics and Neural Networks

was one of the first examples of how a connectionist system could reach the
proficiency of a rule-based system with much less effort and fewer assumptions.
Other systems similar to NETtalk have been built to deal with cognitive
problems like the association of visual and semantic cues. By damaging part of
the network disorders such as dyslexia can be modeled. Plaut and Shallice have
called this the “neurophysiology” of neural networks [345]. Another classical
application is Neurogammon, a program that can play backgammon at the
master’s level. This program was the first learning system that could win a
computer tournament. This was significant because the self-organizing neural
network was able to defeat rule-based systems with a large amount of invested
design work. The new version of the program, called TD-Gammon, is even
better [426]. It is trained using the method of temporal differences, which is
an especially powerful approach for nondeterministic games.

It has been an old dream of a fraction of the neural network community
to apply neural networks for the forecasting of financial futures. Some banks
have started projects to compare the new with the traditional methods. The
published results are somewhat contradictory, because in many cases the ex-
periments are performed off-line, that is without actual trading. Under such
circumstances a high-risk approach can sometimes produce impressive results
which would otherwise be forbidden under realistic conditions [245]. More dis-
turbing is the fact that if a good forecasting technique finds its way into the
real market, the whole exercise can become self-defeating. If everybody, or at
least a significant part of the market actors, can predict the future and try to
cash on this knowledge, the market will move to a new equilibrium where no-
body can profit from the others. This makes the neural system of Odom and
Sharda [330] the more interesting, since it can predict future bankruptcies,
maybe even of one’s own company. More interesting results were obtained by
the networks submitted to the time series competition hosted by the Santa Fe
Institute during 1992 [441]. Some neural systems were able to provide good
forecasts for a wide range of time series taken from synthetic and real-world
problems.

Exercises

1. Show that the mean x̄ of n real numbers x1, x2, . . . , xn is also the expected
value of the mean of N bootstrap samples.

2. Train a feed-forward network to approximate a polynomial using boot-
strap samples of the training set. Make a graph of the different network
functions. Can you compute the confidence intervals of the functional ap-
proximation?

3. The non-symmetric discrete Fourier transform is defined using the matrix

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

9.4 Historical and bibliographical remarks 263

Fn =

ω0
n ω

0
n · · · ω0

n

ω0
n ω

1
n · · · ωn−1

n

ω0
n ω

2
n · · · ω2n−2

n
...

. . .
...

ω0
n ω

n−1
n · · · ω(n−1)(n−1)

n

where ωn denotes the n-th complex root of unity (n a power of two). Show
that Fn can be written as

Fn =

(
Fn/2 DFn/2

Fn/2 −DFn/2

)

where D is a diagonal matrix. Derive from this result the FFT algorithm.
4. Train a network that can make a one-step prediction of a synthetic time

series. Generate the data using a sum of several sinusoidal functions with
different frequencies, phases, and amplitudes.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

10

The Complexity of Learning

10.1 Network functions

In the previous chapters we extensively discussed the properties of multilayer
neural networks and some learning algorithms. Although it is now clear that
backpropagation is a statistical method for function approximation, two ques-
tions remain open: firstly, what kind of functions can be approximated using
multilayer neural networks, and secondly, what is the expected computational
complexity of the learning problem. We deal with both issues in this chapter.

10.1.1 Learning algorithms for multilayer networks

The backpropagation algorithm has the disadvantage that it becomes very
slow in flat regions of the error function. In that case the algorithm should
use a larger iteration step. However, this is precluded by the length of the
gradient, which is too small in these problematic regions. Gradient descent
can be slowed arbitrarily in these cases.

We may think that this kind of problem could be solved by switching the
learning algorithm. Maybe there is a learning method capable of finding a
solution in a number of steps that is polynomial in the number of weights
in the network. But this is not so. We show in this chapter that finding the
appropriate weights for a learning problem consisting of just one input-output
pair is computationally hard. This means that this task belongs to the class
of NP-complete problems, for which no polynomial time algorithm is known,
because it probably does not exist.

10.1.2 Hilbert’s problem and computability

The renowned mathematician David Hilbert indirectly provided the problem
whose solution will bring us to the core of the function approximation issue.
During his keynote speech in 1900 at the International Congress of Mathemati-
cians in Paris, he formulated 23 problems which he identified as those whose

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

266 10 The Complexity of Learning

solution would bring mathematical research forward in the 20th Century [19].
The thirteenth problem dealt with the old question of solving algebraic equa-
tions. Hilbert’s hypothesis was: “It is probable that the root of an equation
of seventh degree is such a function of its coefficients that it does not belong
to the class of functions representable with nomographic methods, that is, it
cannot be represented by a finite composition of functions of two arguments.
To decide this, it should be proved that the equation

f7 + xf3 + yf2 + zf + 1 = 0

of seventh degree cannot be solved using functions of two arguments”.
This abstract formulation can be better understood by comparing it to

similar simpler problems. Analytic formulas to solve equations of the second,
third, and fourth degree, which make use exclusively of elementary arithmetic
operations and of the square root function, have been known for a long time
[67]. A finite number of steps is needed to get a solution. The roots of the
quadratic equation ax2 + bx + c = 0, for example, can be computed using a
finite composition of algebraic operations, as shown in Figure 10.1.

b ac

*
– 4

+

2

/

–1

+

*

2

result

Fig. 10.1. Network for the computation of the roots of quadratic equations

Abel showed that for algebraic equations of degree higher than five, there
is no such finite composition of algebraic operations that could compute its
roots. Therefore there is no algebraic formula to find them and no finite net-
work of algebraic nodes can be built to compute them either. However, the
roots of the algebraic equation of seventh degree can be represented as a fi-
nite composition of other non-algebraic functions. A method which was very
popular before the advent of computers was nomography, which works with
graphical representations of functions. Figure 10.2 shows an example. The

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

10.1 Network functions 267

vertical projection of the point where the two curves u = 2 and v = 1.5 meet
gives the value of F (2, 1.5), where F is the function to be computed using
the nomographic method. There are many functions that can be represented
in this way. The composition of functions of two arguments can be computed
nomographically by connecting two graphical representations using special
techniques [129]. With nomography it is possible to find an approximate so-
lution for a given equation. However, if Hilbert’s hypothesis was correct, this
would mean that for equations of degree higher than seven, we cannot find any
finite composition of functions of two arguments to compute their roots, and
therefore no nomographical composition of the kind discussed above would
lead to the solution. This would be a generalization of Abel’s result and would
restrict the applicability of nomographic methods.

u = 0
u = 1

u = 2

u = 3

v = 0.5
v = 1

v = 1.5
v = 2

F(u,v)

Fig. 10.2. Nomographic representation of the function F (u, v)

10.1.3 Kolmogorov’s theorem

In 1957, the Russian mathematician Kolmogorov showed that Hilbert’s con-
jecture does not hold. He proved that continuous functions of n arguments
can always be represented using a finite composition of functions of a single
argument, and addition. The theorem is certainly surprising, since it implicitly
says that addition is the only function of more than one argument needed to
represent continuous functions with any number of arguments. Multiplication,
for example, can be rewritten as a composition of functions of one argument
and additions, since xy = exp(lnx+ ln y).

A modern variant of Kolmogorov’s theorem, whose proof can be found in
[411], states:

Proposition 14. Let f : [0, 1]n → [0, 1] be a continuous function. There exist
functions of one argument g and φq for q = 1, . . . , 2n + 1 and constants λp,
for p = 1, . . . , n such that

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

268 10 The Complexity of Learning

f(x1, x2, . . . , xn) =
2n+1∑
q=1

g

(
n∑

p=1

λpφq(xp)

)
.

From the perspective of networks of functions, Kolmogorov’s theorem can
be interpreted as stating that any continuous function of n variables can
be represented by a finite network of functions of a single argument, where
addition is used as the only function of several arguments. Figure 10.3 shows
the kind of network needed to represent f(x1, x2, . . . , xn).

g g g

+

... ...

x1 x2 xnxn−1

φ1 φ1 φ2n + 1 φ2n +1

λ1 λ1λn λn
... ...

f (x1, x2,..., xn)

+ + +

Fig. 10.3. Network for computing the continuous function f

The network is similar to those we have been using. The non-trivial func-
tions φq can be preselected, so that only the function g and the constants
λ1, . . . , λn have to be found. These Kolmogorov networks have been compared
to those that have been in use in control theory for many years [90].

Some authors have recently relaxed some of the restrictions imposed by
Kolmogorov’s theorem on the functions to be approximated and have studied
the approximation of Lebesgue integrable functions. Irie and Miyake showed
that if the hidden layer contains an unbounded number of elements, a network
composed of units with fixed primitive functions at the nodes can be trained
by adjusting the network weights [213]. Gallant and White have produced
similar results using networks which compute Fourier series [150]. A necessary

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

10.2 Function approximation 269

condition is that the units implement some form of squashing function, that
is, a sigmoid or any other function of the same general type. Hornik et al.
have obtained results for a broader class of primitive functions [203]. If we
accept units capable of computing integral powers of the input, then we can
implement polynomial approximations of a given function and Weierstrass
and Stone’s classical result guarantees that any real continuous function can
be approximated with arbitrary precision using a finite number of computing
units.

10.2 Function approximation

Kolmogorov’s theorem is important in the neural networks field because it
states that any continuous function can be reproduced exactly by a finite net-
work of computing units, whereby the necessary primitive functions for each
node exist. However, there is a second possibility if we want to approximate
functions – we do not demand exact reproducibility but a bounded approx-
imation error. In that case we look for the best possible approximation to a
given function f . This is exactly the approach we take with backpropagation
networks and any other kind of mapping networks.

10.2.1 The one-dimensional case

What kind of functions can be approximated by neural networks? To answer
this question we will discuss first a more special issue. It can be shown that
continuous functions f : [0, 1] → [0, 1] can be approximated with arbitrary
precision. The next proposition deals with this fact, which will be extended
in the following section to functions of several arguments.

Proposition 15. A continuous real function f : [0, 1]→ [0, 1] can be approx-
imated using a network of threshold elements in such a way that the total
approximation error E is lower than any given real ε > 0, that is,

E =
∫ 1

0

|f(x)− f̃(x)|dx < ε,

where f̃ denotes the network function.

Proof. Divide the interval [0, 1] into N equal segments selecting the points
x0, x1, . . . , xN ∈ [0, 1] with x0 = 0 and xN = 1. Define a function ϕN as
follows:

ϕN (x) = min{f(x′)|x′ ∈ [xi, xi+1] for xi ≤ x ≤ xi+1}.
This function consists of N steps as shown in Figure 10.4. Now, consider ϕN

an approximation of f so that the approximation error is given by

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

270 10 The Complexity of Learning

EN =
∫ 1

0

|f(x)− ϕN (x)|dx.

Since f(x) ≥ ϕN (x) for all x ∈ [0, 1] the above integral can be written as

EN =
∫ 1

0

f(x)dx −
∫ 1

0

ϕN (x)dx.

The second integral is nothing other than the lower sum of the function f in
the interval [0, 1] with the segmentation produced by x0, x1, . . . , xN , as is done
to define the Riemann integral. Since continuous functions are integrable, the
lower sum of f converges in the limit N → ∞ to the integral of f in the
interval [0, 1]. It thus holds that EN → 0 when N → ∞. For any given real
number ε > 0 there exists an M such that EN < ε for all N ≥ M . The
function ϕN is therefore the desired approximation of f . We must now show
that ϕN can be computed by a neural network.

...

α 1

α 2

αN

f (x)

ϕN (x)

x0 x1 x2 xN

...

Fig. 10.4. Approximation of f with ϕN

Figure 10.4 shows the graph of ϕN for the interval [0, 1]. The function is
composed of N steps with respective heights α1, α2, . . . , αN . The N segments
of the interval [0, 1] are of the form [x0, x1), [x1, x2), . . . , [xN−1, xN).

The network shown in Figure 10.5 can compute the step-wise function
ϕN . The single input to the network is x. Each pair of units with the weights
xi and xi+1 guarantees that the unit with threshold xi will only fire when
xi ≤ x < xi+1. In that case the output 1 is multiplied by the weight αi+1.
The output unit (a linear element) adds all outputs of the upper layer of units
and produces their sum as result. The unit with threshold xN + δ, where δ is
positive and small, is used to recognize the case xN−1 ≤ x ≤ xN .

The network shown in Figure 10.5 therefore computes the function ϕN ,
which approximates the function f with the desired maximal error. �

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

10.2 Function approximation 271

ϕN (x)

x

+

. . .
x0

x1

x1

α1 α2 αN

xN −1

xN

+δ
−1 − 1 −1x2

. . .

Fig. 10.5. Network for the computation of ϕN (x)

Corollary 1. Proposition 15 is valid also for functions f : [0, 1]→ (0, 1) with
sigmoidal activation.

Proof. The image of the function f has been limited to the interval (0, 1) in
order to simplify the proof, since the sigmoid covers only this interval.

The function f can be approximated using the network in Figure 10.6. The
activation of the units with threshold xi (which is now the bias term −xi) is
given by sc(x− xi), where

sc(x− xi) =
1

1 + e−c(x−xi)
.

Different values of c produce more or less steep sigmoids. Threshold functions
can be approximated with any desired precision and the network of Figure 10.6
can estimate the function ϕN with an approximation error lower than any
desired positive bound.

Note that the weights for the edges connecting the first layer of units to
the output unit have been set in such a way that the sigmoid produces the
desired αi values as results. It should only be guaranteed that every input x
produces a single 1 from the first layer to the output unit. The first layer of
the network just finds out to which of the N segments of the interval [0, 1] the
input x belongs. �

We can now generalize this results considering the case in which the func-
tion to be approximated has multiple arguments.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

272 10 The Complexity of Learning

ϕ
N (x)

x

. . .
x0

x1

x1
xN − 1

xN

+δ
− 1 − 1 − 1x 2

. . .

s

s −1(α1)

s −1(α 2)

s −1(αN)

Fig. 10.6. Network for the computation of ϕN (x) (sigmoidal units)

10.2.2 The multidimensional case

In the multidimensional case we are looking for a network capable of approx-
imating the function f : [0, 1]n → (0, 1). The network can be constructed
using the same general idea as in the previous section. The approximation is
computed using “blocks” as shown in Figure 10.7 for the function cos(x2+y2).

Fig. 10.7. Piecewise approximation of the function cos(x2 + y2)

Figure 10.8 shows the necessary network extensions for a two-dimensional
function. In the one-dimensional case each interval in the definition domain
was recognized by two coupled units. In the two-dimensional case, it is nec-

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

10.3 Complexity of learning problems 273

essary to recognize intervals in the x and y domains. This is done by using
a conjunction of the outputs of the two connections as shown in Figure 10.8.
The two units to the left are used to test x0 ≤ x < x1. The two units to the
right are used to test y1 ≤ y < y2. The unit with threshold 1.5 recognizes
the conjunction of both conditions. The output connection has the weight
s−1
0 (α12), so that a unit with the sigmoid as output unit (connected after-

wards) can produce the value α12. This number corresponds to the desired
approximation to the function f in the interval [x0, x1)× [y1, y2).

s−1(α12)

x

. . .

y

1.5

x0

x1

y1

y2− 1 − 1

Fig. 10.8. Extension of the network for the two-dimensional case

The two-dimensional network can be completed using this scheme. Other
networks for multidimensional cases (n > 2) can be crafted using a similar
strategy. An arbitrary continuous function can be approximated using this
approach but the price that has to be paid is the large number of computing
units in the network. In the chapters covering self-organizing networks, we
will deal with some algorithms that take care of minimizing the number of
computing units needed for a good approximation.

10.3 Complexity of learning problems

Kolmogorov’s theorem and Proposition 15 describe the approximation proper-
ties of networks used for the representation of functions. In the case of neural
networks not only the network architecture is important but also the defini-
tion of a learning algorithm. The proof of Kolmogorov’s theorem does not give
any hint about the possible choice of the primitive functions for a given task,
since it is non-constructive. Proposition 15 is different in this respect. Unsu-
pervised learning can recreate something similar to the constructive approach
used in the proof of the theorem.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

274 10 The Complexity of Learning

The general learning problem for a neural network consists in finding the
unknown elements of a given architecture. All components of the network
can be partially or totally unknown, for example, the activation function of
the individual units or the weights associated with the edges. However, the
learning problem is usually constrained in such a way that the activation
functions are chosen from a finite set of functions or some of the network
weights are fixed in advance.

The size of the learning problem depends on the number of unknown
variables which have to be determined by the learning algorithm. A network
with 100 unknown weights is a much harder computational problem than a
network with 10 unknown weights, and indeed much harder than the factor
1:10 would suggest. It would be helpful if the learning time could be bounded
by a polynomial function in the number of variables, but this is not so.

It has been proved that the general learning problem for neural networks
is intractable, that is, it cannot be solved efficiently for all possible instances.
No algorithm is known which could solve the learning problem in polynomial
time depending on the number of unknown variables. Moreover, it is very
improbable that such an algorithm exists. In the terminology of complexity
theory we say that the general learning problem for neural networks is NP-
complete.

10.3.1 Complexity classes

Before introducing the main results concerning the complexity of learning
problems, we will explain in a few pages how to interpret these results and
how complexity classes are defined.

When a computational problem can be solved using a certain algorithm,
the very next issue, after solvability, is the time and space complexity of
the solution method. By space complexity we denote the memory required
for the algorithmic solution once a computational model has been adopted.
The time complexity refers to the number of algorithmic steps executed by the
computational model. We are interested in the behavior of the algorithm when
applied to larger and larger problems. If the index for the size of the problem
is n and the number of execution steps grows asymptotically according to n2,
we speak of a quadratic time complexity of the algorithm.

Normally, space complexity is not considered a primary issue, since the
computational models are provided with an infinitely large memory. What is
most interesting for applications is time complexity and therefore, when we
simply speak of complexity of an algorithm, we are actually referring to its
time complexity.

Computational problems can be classified in a hierarchical way according
to the complexity of all possible algorithms for their solution. A very common
approach is to use a Turing machine as the computational model in order to
help us analyze algorithms. The size n of a problem is defined as the length
of the input for such a machine, when an adequate coding method has been

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

10.3 Complexity of learning problems 275

adopted [156]. If an algorithm exists that is capable of solving any instance
I of a problem X of size n in p(n) steps, where p(n) denotes a polynomial
on the variable n, then X is a member of the set P of problems solvable in
polynomial time. However if the solution of I requires an exponential number
of steps, then X is a member of the class E of problems solvable only in
exponential time. A simple example is the decoding of a binary number m as
a string of m ones. Since at each step at most a single 1 can be produced as
output, the number of execution steps grows exponentially with the size of
the problem, which is in this case the number of bits in the binary coding for
m.

However, there are some problems for which it is still unknown whether or
not they belong to the class P . It has not been possible to find a polynomial
time algorithm to solve any of their instances and it has also not been possible
to prove that such an algorithm does not exist (which would in fact put them
out of the class P). Such problems are considered intractable, that is, there is
an inherent difficulty in dealing with them which cannot be avoided using the
most ingenious methods.

The class NP (nondeterministic polynomial) has a broader definition than
the class P . It contains all problems for whose solution no polynomial algo-
rithm is known, but for which a guessed solution can be checked in polynomial
time. We can explain the difference between both possibilities taking the Trav-
eling Salesman Decision Problem (TSDP) as our benchmark. For a set of n
cities in the Euclidian plane whose relative distances are known, we want to
know if there is a path which visits all cities, whose total length is smaller
than a given constant L. No one has been able to design an algorithm capable
of solving every instance of this problem in polynomial time in the number
of cities. However a proposed path can be checked in linear time: its total
length is computed and we check if all cities have been visited. If more than
n cities are given in the path we can reject it as invalid without additional
computations. This fact, that a solution can be checked in polynomial time
whereas for the problem itself no polynomial time algorithm is known, is what
we mean when we say that the TSDP is a member of the class NP.

The class of NP problems derives its name from the computational model
which is used for theoretical arguments and which consists of a nondeter-
ministic computation performed in polynomial time. If a Turing machine is
provided with an oracle, which is just an entity capable of guessing answers
for a given problem, then all we need is to check the solution proposed by the
oracle. The oracle works nondeterministically, in the sense that it selects one
solution out of the many possible (when they exist) in a random manner. If
the checking can be done in polynomial time, the problem is a member of the
class NP. One can also think of an oracle as a parallel Turing machine which
inspects all possible solutions simultaneously, eventually selecting one of the
successful ones [11].

The most important open problem in complexity theory is whether the
classes P and NP are identical or different. Theoreticians expect that it will

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

276 10 The Complexity of Learning

NPc

P

NP

Fig. 10.9. Schematic representation of the classes NP, P , and NPc

eventually be possible to prove that P �= NP , because otherwise a single
Turing machine would be in some sense computationally equivalent to the
model with an unlimited number of Turing machines. There has been some
speculation that although true, the inequality P �= NP could be shown to be
not provable. It has in fact been shown that in some subsets of arithmetic this
is actually the case.

Obviously it is true that P ⊆ NP . If a problem can be solved in polynomial
time, then a nondeterministic solution can also be checked in polynomial time.
Just simulate the nondeterministic check by finding a solution in polynomial
time. It is not known if there are some problems which belong to the class
NP but not to the class P . Possible candidates come from the class NPc of
so-called NP-complete problems.

A problemX is NP-complete if any other problem in NP can be reduced to
an instance of X in polynomial time. This means that a Turing machine can
be provided with a description of the original problem on its tape so that it is
transformed into a description of an instance of X which is equivalent to the
original problem. This reduction must be performed in polynomial time. The
class NPc is important because if an algorithm with polynomial complexity
could be found that could solve any of the problems in the class NPc, then
any other problem in the class NP would be also solvable in polynomial time.
It would suffice to use two Turing machines. The first one would transform the
NP problem into an instance of the NPc problem with a known polynomial
algorithm. The second would solve the transformed problem in polynomial
time. In this sense the class NPc contains the most difficult problems in the
class NP. Figure 10.9 shows a diagram of the class NP assuming thatNP �= P .
The arrows in the diagram illustrate the fact that any problem in the class
NP can be transformed into a problem in the class NPc in polynomial time.

Theoreticians have been able to prove that many common problems are
members of the class NPc. One example is the Traveling Salesman Decision
Problem, already mentioned, another the Satisfiability Problem, which will be

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

10.3 Complexity of learning problems 277

discussed in the next section. The usual method used to prove that a problem
A belongs to the class NPc is to find a polynomial transformation of a well-
known problem B in NPc into an instance of the new problem A. This makes
it possible to transform any problem in NP into an instance of A in polynomial
time (going of course through B), which qualifies A as a member of the class
NPc.

Proving that a problem belongs to the class NPc amounts to showing
that the problem is computationally difficult. Theoreticians expect that no
polynomial time algorithm will ever be found for those problems, that is, they
expect that someday it will be possible to prove that the inequality P �= NP
holds. One such computationally hard task is the general learning problem.

10.3.2 NP-complete learning problems

It can be shown with the help of the satisfiability problem that an NP-
complete problem can be reduced to an instance of a learning problem for
neural networks in polynomial time. The satisfiability problem is defined in
the following way.

Definition 10. Let V be a set of n logical variables, and let F be a logical
expression in conjunctive normal form (conjunction of disjunctions of literals)
which contains only variables from V . The satisfiability problem consists in
assigning truth values to the variables in V in such a way that the expression
F becomes true.

A classical result from Cook guarantees that the satisfiability problem is
a member of the class NPc [88]. This result also holds for such expressions F
with at most three literals in each disjunction (this problem is called 3SAT
in the literature). We will transform 3SAT into a learning problem for neural
networks using the network shown in Figure 10.10. We give a simpler proof
than Judd but keep the general outline of his method [229].

The activation of the individual units will be computed using threshold
functions. An expression F in conjunctive normal form, which includes only
the n variables x1, x2, . . . , xn is given. The disjunctions in the normal form
contain at most three literals. We want to find the truth values of the variables
that make F true.

The network in Figure 10.10 has been constructed reserving for each vari-
able xi, a weight wi and a computing unit with threshold 0.5. The output of
the i-th unit in the first layer is interpreted as the truth value assigned to the
variable xi. The units with threshold −0.5 are used to negate the truth value
of the variables xi. The output of each of these units can be interpreted as
¬xi. The third layer of units (counting from top to bottom) implements the
disjunction of the outputs of the units connected to them (the clauses in the
normal form). If any connection arriving to a unit in the third layer transports
the value 1, the unit fires a 1. The connections in Figure 10.10 correspond to

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

278 10 The Complexity of Learning

–0.5
1

1

–0.5
1

1

–0.5
1

1

–0.5
1

1

. . .

0.5 0.5

m

1 1 1

F

x

0.5 0.5 0.5 0.5

m clauses
(disjunctions)

conjunction

−1 − 1 − 1 − 1

w1 w2 w3 wn

x1 x1 x2 x2 x3 x3 xn xn

Fig. 10.10. Equivalent network for the 3SAT problem

the following two clauses: x1 ∨ ¬x2 ∨ ¬x3 and x2 ∨ x3 ∨ ¬xn. The last unit
implements the conjunction of the disjunctions which have been hard-wired
in the network. We assume that the expression F contains m clauses. The
value m is used as the threshold of the single unit in the output layer. The
expression F is true only if all disjunctions are true.

After this introductory explanation we can proceed to prove the following
result:

Proposition 16. The general learning problem for networks of threshold
functions is NP-complete.

Proof. A logical expression F in conjunctive normal form which contains n
variables can be transformed in polynomial time in the description of a net-
work of the type shown in Figure 10.10. For each variable xi a weight wi is
defined and the connections to the units in the third layer are fixed accord-
ing to the conjunctive normal form we are dealing with. This can be done in
polynomial time (using a suitable coding) because it holds for the number m
of different possible disjunctions in a 3SAT formula that m ≤ (2n)3.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

10.3 Complexity of learning problems 279

After the transformation, the following learning problem is to be solved:
an input x = 1 must produce the output F = 1. Only the weights in the
network are to be found.

If an instantiation A with logical values of the variables xi exists, such
that F becomes true, then there exist weights w1, w2, . . . , wn that solve the
learning problem. It is only necessary to set wi = 1 if xi = 1. If xi = 0 we set
wi = 0, that is, in both cases wi = xi. The converse is also true: if there exist
weights w1, w2, . . . , wn that solve the learning problem, then the instantiation
xi = 1, if wi ≥ 0.5, and xi = 0 otherwise, is a valid instantiation that makes
F true.

This proves that the satisfiability of logical expressions can be transformed
into a learning problem for neural networks. We must now show that the
learning problem belongs in the class NP, that is, that a solution can be
checked in polynomial time.

If the weights w1, w2, . . . , wn are given, then a single run of the network
can be used to check if the output F is equal to 1. The number of computation
steps is directly proportional to the number n of variables and to the number
m of disjunctive clauses, which is bounded by a polynomial in n. The time
required to check an instantiation is therefore bounded by a polynomial in n.
This means that the given learning problem belongs to the class NP. �

It could be argued that the learning problem stated above is more difficult
to solve than in the typical case, because many of the network weights have
been selected and fixed in advance. Usually all weights and thresholds are
considered as variables. One could think that if all weights are set free to
vary, this opens more regions of weight space for exploration by the learning
algorithm and that this could reduce the time complexity of the learning
problem. However this is not so. Proposition 16 is still valid even when all
weights are set free to be modified. The same is true if the threshold function
is substituted by a sigmoid [229]. It has even been shown that the training of
a three-unit network can be NP-complete for a certain training set [324].

10.3.3 Complexity of learning with AND-OR networks

Since the general learning problem is NP-complete, we can try to analyze
some kinds of restricted architectures to find out if they can be trained in
polynomial time.

As a second example we consider networks of units which can only compute
the AND or the OR function. This restriction limits the number of available
combinations and we could speculate that this helps to avoid any combina-
torial explosion. However, this is not the case, and it can be shown that the
learning problem for this kind of network remains NP-complete.

In the proof of Proposition 16 we constructed a network which mirrored
closely the satisfiability problem for logical expressions. The main idea was
to produce two complementary output values for each logical variable, which

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

280 10 The Complexity of Learning

were identified as xi and ¬xi. These outputs were connected to disjunction
units, and the output of the disjunctions was connected to the output unit
(which computed the AND function). Any logical expression can be hardwired
in such way. For the proof of the following proposition we will use the same
approach, but each unit will be more flexible than before.

Proposition 17. The learning problem for neural network architectures
whose units can only compute the AND or the OR function is NP-complete.

Proof. Just as we did in the proof of Proposition 16, we will show that a poly-
nomial time learning algorithm for the networks considered could also solve
the 3SAT problem in polynomial time. A logical expression F in conjunctive
normal form, with at most three literals in each disjunction, will be computed
by the network shown in Figure 10.11.

. . .

F

x yf c

clauses

x1 x1 x2 x2 x3 x3 xn xn

u1 v1

Fig. 10.11. Equivalent network for the 3SAT problem with AND-OR units

The arrangement is similar to the one in Figure 10.10, but with some dif-
ferences. There are now four inputs f, c, x, y. The values x and y are connected
to each column of units in the network (to avoid cluttering the diagram we
show only one module for each variable). The shaded module is present n
times in the network, that is, once for each logical variable in the expression
F . The outputs of each module (xi and ¬xi) are shown in the diagram.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

10.3 Complexity of learning problems 281

The weights of the network are unknown, as are the thresholds of each unit
(whose activation function is a simple threshold function). Only those com-
binations of weights and thresholds are allowed that lead to the computation
of the functions AND and OR at the nodes. The learning problem for the
network is given by the following table, which consists of three input-output
pairs:

x y f c F u1 v1 u2 v2 · · · un vn

(a) 0 0 1 1 1 0 0 0 0 · · · 0 0
(b) 0 0 1 0 0 0 0 0 0 · · · 0 0
(c) 0 1 1 1 1 0 1 0 1 · · · 0 1

Since the individual units only compute AND or OR functions, this means
that the input x = y = 0 makes all output lines x1,¬x1, x2,¬x2, . . . , xn,¬xn

equal to 0. From row (b) of the training set table, we know that F = 0. Since
the only input to the output unit are the disjunctions of the literals (which
are all equal to 0) and f = 1, this means that the output unit must compute
the AND function. Row (b) therefore determines the kind of output unit that
we can use.

Row (a) of the learning problem tells us that the “clause” units, to which
the values xi and ¬xi are hard-wired, must compute the OR function. This
is so because in row (a) F = 1 and c = 1. Note that c is connected to all the
clause units and that all literals are zero (since, again, x = y = 0). The only
possibility to get F = 1 is for all clause units to produce a 1, so that the AND
output unit can also produce a 1. This can only happen if the clause units are
disjunctions.

Rows (a) and (b) together force the network to compute a conjunctive
normal form. Since we have taken care to connect the literals xi and ¬xi in
the order required by expression F , we have a similar situation to the one we
had in Figure 10.10.

Row (c) of the learning problem provides us with the final argument to
close the proof. Now we have x = 0 and y = 1. Since we want the values of ui

and vi to be complementary, as row (c) demands, this can only happen if xi

and ¬xi are themselves complementary. Otherwise ui would be always equal
to vi, because the AND and the OR function produce the same outputs for
the input combinations (0,0) and (1,1). The connections xi and ¬xi are thus
in fact complementary.

If the learning problem has a solution, the values of the connections
x1, x2, . . . , xn provide the instantiation of the logical variables that we are
looking for to satisfy the expression F . The additional details of the proof can
be worked out as in the proof of Proposition 16. �

Judd has also proved a more general theorem. Even if all linear threshold
functions can be selected as activation functions, the learning problem remains
NP-complete [229].

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

282 10 The Complexity of Learning

10.3.4 Simplifications of the network architecture

The complexity results of the last section show that training neural networks
is a computationally hard problem. If the architecture of the network is only
loosely defined and if the training algorithm must find a valid configuration
in a large region of weight space, then no polynomial time algorithm can be
used.

This situation makes it necessary to improve the known training methods
for a fixed size of the learning problem. We discussed this when we analyzed
fast variations of backpropagation in Chap. 8. A more promising approach
for breaking the “curse of dimensionality”, brought by the combinatorial ex-
plosion of possible weight combinations, is to test different kinds of simplified
architectures. Judd has analyzed some kinds of “flat” neural networks to try
to discover if, at least for some of them, polynomial time learning algorithms
can be designed.

The motivation behind the theoretical analysis of flat neural networks is
the structure of the human cortex. The cortex resembles a two-dimensional
structure of low depth. It could be that this kind of architecture can be trained
more easily than fully connected networks. However, Judd could show that
learning in flat two-dimensional networks is also NP-complete [228]. Another
kind of network, rather “unbiological” one-dimensional strings of low depth,
can be trained in linear time. And if only the average case is considered (and
not the worst-case, as usually done in complexity arguments) the training
time can even be reduced to a constant, if a parallel algorithm is used.

A

B

C

D

E

F

G

H

I

J

Fig. 10.12. A network of three layers in one direction

Figure 10.12 shows a “one-dimensional” network. The inputs come from
the top and the output is produced by the third layer of units. The intercon-
nections are defined in such a way that each unit propagates signals only to
its neighbors to the left and to the right. No signal is propagated over more
than three stages. The i-th bit of the input can affect at most three bits of
the output (Figure 10.12).

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

10.3 Complexity of learning problems 283

Flat three-stage networks can be built out of modules that determine the
output of a unit. The output of unit C, for example, depends only on infor-
mation from the units A,B,D,E, and G. These units constitute, together
with C, an information column. The units D,E, F,G,H , and J constitute
the neighboring column. Both structures overlap and it is necessary to find a
correct combination for a given learning problem. Assume that the input and
the output is binary and that the units in the network are threshold elements
of two inputs (which can compute 14 different logical functions). Each infor-
mation column made of 6 units can assume any of 146 configurations. Not all
of them are compatible with the configuration of the neighboring column. The
combinatorial problem can be solved in two steps: firstly, the valid configura-
tions of the columns are determined using the given input and output vectors.
Secondly, only those configurations compatible with those of the neighbors are
accepted. In a one-dimensional network with n output bits we must combine
the output of n different columns. Judd has shown that this computation can
be performed in linear time [229]. In another paper he took the next step and
assumed that a processor is available to train each column and considered the
average case [230]. Some computer experiments show that in the average case,
that is, when the input-output pairs are selected randomly, the time required
for coordination of the information columns is bounded by a constant. The
network can be trained in constant time independently of its width.

Although the one-dimensional case cannot be considered very realistic,
it gives us a hint about a possible strategy for reducing the complexity of
the learning problem: if the network can be modularized and the information
exchange between modules can be limited in some way, there is a good chance
that an efficient learning algorithm can be found for such networks. Some
of these ideas have been integrated recently into models of the human cortex
[78]. The biological cortex has a flat, two-dimensional structure with a limited
number of cortical layers and a modular structure of the cortical columns [360].
In Burnod’s model the cortical columns are the next hierarchical module after
the neurons, and are also learning and functional substructures wired as a kind
of cellular automata. It seems therefore that modularization of the network
structures, in biological organisms as well as in artificial neural networks, is a
necessary precondition for the existence of efficient learning algorithms.

10.3.5 Learning with hints

The example of the one-dimensional networks illustrates one method capable
of stopping the combinatorial explosion generated by learning problems. An-
other technique consists in considering some of the properties of the function
to be modeled before selecting the desired network architecture. The num-
ber of degrees of freedom of the learning problem can be reduced exploiting
“hints” about the shape or the properties of the function to be approximated.

Assume that we want to approximate a real even function f of n arguments
using a three-layered network. The network has n input sites and a single out-

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

284 10 The Complexity of Learning

put unit. The primitive function at the units is the symmetric sigmoid, i.e., an
odd function. We can force the network to compute exclusively even functions,
that is those for which it holds that ϕ(x1, x2, . . . , xn) = ϕ(−x1,−x2, . . . ,−xn).
This can be guaranteed by replicating each unit and each weight in the sec-
ond layer. Figure 10.13 shows how to interconnect the units in the network.
Both inputs, xi or −xi, lead to the same output of the network. If the whole
network is hardwired following this approach (for each single variable), it will
only be capable of computing even functions. This produces a reduction of
the search region in the space of functions [5].

w ′w

− ′w

θ

−θ
w

xi

A

B

C

Fig. 10.13. Network to compute even functions

This is the general method to include hints or conditions in a network.
If backpropagation is used as the learning method we must also take care to
keep the identity of all duplicated weights in the network. We already saw
in Chap. 7 how this can be done. All corrections to a weight with the same
name are computed independently, but are added before making the weight
update. In the case where the weights have the same name but a different
sign, the weight corrections are multiplied by the corresponding sign before
being added. In this way we keep the original structure of the network, and
weights which should be identical remain so (up to the sign).

Some other kinds of invariance are more difficult to implement. Duplicating
the network and comparing the respective output values helps to do this.
Assume that a network must produce the same real results when two different
n-dimensional input values x1 and x2 are presented. The difference between
the two vectors can reflect some kind of invariance we want to enforce. The
vector x2 could be equal to −x1 or the components of x2 could be some
permutation of the components of x1. We would like to compute a function
invariant under such modifications of the input.

Figure 10.14 shows the general strategy used to solve this problem. A
single untrained network produces the output y1 for the input x1 and the
output y2 for the input x2. The network can be forced to bring y1 and y2
closer by minimizing the function (y1 − y2)2. This is done by duplicating the
network and by performing the additional computation (y1−y2)2/2. Since we

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

10.3 Complexity of learning problems 285

want the network to produce a target value t, the difference between y2 and
t must also be minimized. The right side of the additional computing units
shown in Figure 10.14 shows the difference that must be minimized, whereas
the left side contains the derivative according to y2. The extended network of
Figure 10.14 can be trained with standard backpropagation.

x1

x2

⇒

⇒ 1

2
(y2 − y1)2(y2 − y1)

network

network
y2

y1

1

2
(y2 − t)2(y2 − t)

Fig. 10.14. Extended network to deal with invariants

The learning algorithm must take care of duplicated weights in the net-
work as was discussed in Chap. 7. Using gradient descent we try to force the
network to produce the correct result and to respect the desired invariance.
An alternative approach is to specialize the first layers of the network to the
production of the desired invariance and the last ones to the computation of
the desired output.

Hints, that is, knowledge about necessary or desired invariances of the net-
work function, can also be used to preprocess the training set. If the network
function must (once again) be even, we can expand the training set by intro-
ducing additional input-output pairs. The new input data is obtained from
the old just by changing the sign, whereas the value of the target outputs
remains constant. A larger training set reduces the feasible region of weight
space in which a solution to the learning problem can be found. This can lead
to a better approximation of the unknown function if the VC dimension of the
search space is finite [6]. The technique of “learning with hints” tries to reduce
the inherent complexity of the learning problem by reducing the degrees of
freedom of the neural network.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

286 10 The Complexity of Learning

10.4 Historical and bibliographical remarks

A. N. Kolmogorov’s theorem was rediscovered in the 1980s by Hecht-Nielsen
[1987b] and applied to networks of functions. He relied heavily on the work of
Lorentz]1976], who had described the full scope of this theorem some years
earlier. Since then many different types of function networks and their prop-
erties have been investigated, so that a lot of results about the approximation
properties of networks are already available.

Minsky and Papert [1969] had already made some complexity estimates
about the convergence speed of learning algorithms. However, at that time it
was not possible to formulate more general results, as the various classes of
complexity were not defined until the 1970s in the work of Cook [1971] and
others. Karp [1972] showed that a broad class of problems is NP-complete. In
his Turing Award Lecture he described the intellectual roots of this complexity
research.

In his dissertation Judd [1990] presented the most important theorems
on the complexity of learning algorithms for neural networks. His results have
been extended over the last few years. It has been shown that when the number
of degrees of freedom and combinational possibilities of evaluation elements
goes beyond a certain threshold, the learning problems become NP-complete.
Parberry has collected many interesting results and has helped to systematize
the study of complexity of neural networks [335].

The efforts of authors such as Abu-Mostafa, Judd, and others to reduce the
complexity of the learning problem are reflected in the research of authors such
as Kanerva [1992], who have set up simpler models of biological networks in
order to explain their great ability to adapt and their regular column structure.

The existence theorems in this chapter and the complexity estimations
made for the learning problem may appear superfluous to the practitioner.
However, in a field in which numerical methods are used intensively, we must
be aware of the limits of efficient computations. Only on this basis can we de-
sign network architectures that will make faster solutions to learning problems
possible.

Exercises

1. Compute the approximation error of a sigmoid to the step function for
different values of the constant c, where s(x) = 1/(1 + exp(−cx)). What
is the approximation error to a function approximated by the network of
Figure 10.6?

2. Rewrite the function ((xy/z) − x)/y using only addition and functions
with one real argument.

3. Prove that the network of Figure 10.13 computes an even function.
4. Propose a network architecture and a learning method to map a set of

points in IR5 to a set of points in IR2, in such a way that points close to
each other in IR5 map as well as possible to neighboring points in IR2.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

10.4 Historical and bibliographical remarks 287

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

11

Fuzzy Logic

11.1 Fuzzy sets and fuzzy logic

We showed in the last chapter that the learning problem is NP-complete
for a broad class of neural networks. Learning algorithms may require an
exponential number of iterations with respect to the number of weights until
a solution to a learning task is found. A second important point is that in
backpropagation networks, the individual units perform computations more
general than simple threshold logic. Since the output of the units is not limited
to the values 0 and 1, giving an interpretation of the computation performed
by the network is not so easy. The network acts like a black box by computing a
statistically sound approximation to a function known only from a training set.
In many applications an interpretation of the output is necessary or desirable.
In all such cases the methods of fuzzy logic can be used.

11.1.1 Imprecise data and imprecise rules

Fuzzy logic can be conceptualized as a generalization of classical logic. Mod-
ern fuzzy logic was developed by Lotfi Zadeh in the mid-1960s to model those
problems in which imprecise data must be used or in which the rules of in-
ference are formulated in a very general way making use of diffuse categories
[170]. In fuzzy logic, which is also sometimes called diffuse logic, there are not
just two alternatives but a whole continuum of truth values for logical propo-
sitions. A proposition A can have the truth value 0.4 and its complement Ac

the truth value 0.5. According to the type of negation operator that is used,
the two truth values must not be necessarily add up to 1.

Fuzzy logic has a weak connection to probability theory. Probabilistic
methods that deal with imprecise knowledge are formulated in the Bayesian
framework [327], but fuzzy logic does not need to be justified using a proba-
bilistic approach. The common route is to generalize the findings of multival-
ued logic in such a way as to preserve part of the algebraic structure [62]. In

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

290 11 Fuzzy Logic

this chapter we will show that there is a strong link between set theory, logic,
and geometry. A fuzzy set theory corresponds to fuzzy logic and the semantic
of fuzzy operators can be understood using a geometric model. The geometric
visualization of fuzzy logic will give us a hint as to the possible connection
with neural networks.

Fuzzy logic can be used as an interpretation model for the properties of
neural networks, as well as for giving a more precise description of their per-
formance. We will show that fuzzy operators can be conceived as generalized
output functions of computing units. Fuzzy logic can also be used to specify
networks directly without having to apply a learning algorithm. An expert
in a certain field can sometimes produce a simple set of control rules for a
dynamical system with less effort than the work involved in training a neu-
ral network. A classical example proposed by Zadeh to the neural network
community is developing a system to park a car. It is straightforward to for-
mulate a set of fuzzy rules for this task, but it is not immediately obvious
how to build a network to do the same nor how to train it. Fuzzy logic is now
being used in many products of industrial and consumer electronics for which
a good control system is sufficient and where the question of optimal control
does not necessarily arise.

11.1.2 The fuzzy set concept

The difference between crisp (i.e., classical) and fuzzy sets is established by
introducing a membership function. Consider a finite set X = {x1, x2, . . . , xn}
which will be considered the universal set in what follows. The subset A of
X consisting of the single element x1 can be described by the n-dimensional
membership vector Z(A) = (1, 0, 0, . . . , 0), where the convention has been
adopted that a 1 at the i-th position indicates that xi belongs to A. The set
B composed of the elements x1 and xn is described by the vector Z(B) =
(1, 0, 0, ..., 1). Any other crisp subset of X can be represented in the same way
by an n-dimensional binary vector. But what happens if we lift the restriction
to binary vectors? In that case we can define the fuzzy set C with the following
vector description:

Z(C) = (0.5, 0, 0, ..., 0)

In classical set theory such a set cannot be defined. An element belongs to
a subset or it does not. In the theory of fuzzy sets we make a generalization
and allow descriptions of this type. In our example the element x1 belongs to
the set C only to some extent. The degree of membership is expressed by a
real number in the interval [0, 1], in this case 0.5. This interpretation of the
degree of membership is similar to the meaning we assign to statements such
as “person x1 is an adult”. Obviously, it is not possible to define a definite
age which represents the absolute threshold to enter into adulthood. The act
of becoming mature can be interpreted as a continuous process in which the
membership of a person to the set of adults goes slowly from 0 to 1.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

11.1 Fuzzy sets and fuzzy logic 291

There are many other examples of such diffuse statements. The concepts
“old” and “young” or the adjectives “fast” and “slow” are imprecise but easy
to interpret in a given context. In some applications, such as expert systems,
for example, it is necessary to introduce formal methods capable of dealing
with such expressions so that a computer using rigid Boolean logic can still
process them. This is what the theory of fuzzy sets and fuzzy logic tries to
accomplish.

10 20 30 40 50 60 70

young mature

old

age

1

0

degree of
membership

0.8

0.2

Fig. 11.1. Membership functions for the concepts young, mature and old

Figure 11.1 shows three examples of a membership function in the interval
0 to 70 years. The three functions define the degree of membership of any
given age in the sets of young, adult, and old ages. If someone is 20 years old,
for example, his degree of membership in the set of young persons is 1.0, in
the set of adults 0.35, and in the set of old persons 0.0. If someone is 50 years
old the degrees of membership are 0.0, 1.0, 0.3 in the respective sets.

Definition 11. Let X be a classical universal set. A real function μA : X →
[0, 1] is called the membership function of A and defines the fuzzy set A of X.
This is the set of all pairs (x, μA(x)) with x ∈ X.

A fuzzy set is completely determined by its membership function. Note
that the above definition also covers the case in which X is not a finite set.

The set of support of a fuzzy set A is the set of all elements x of X for
which (x, μA(x)) ∈ A and μA(x) > 0 holds. A fuzzy set A with the finite set
of support {a1, a2, . . . , am} can be described in the following way

A = μ1/a1 + μ2/a2 + · · ·+ μm/am,

where μi = μA(ai) for i = 1, . . . ,m. The symbols “/” and “+” are used only
as syntactical constructors.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

292 11 Fuzzy Logic

Crisp sets are a special case of fuzzy sets, since the range of the function
is restricted to the values 0 and 1. Operations defined over crisp sets, such as
union or intersection, can be generalized to cover also fuzzy sets.

Assume as an example that X = {x1, x2, x3}. The classical subsets A =
{x1, x2} and B = {x2, x3} can be represented as

A = 1/x1 + 1/x2 + 0/x3 B = 0/x1 + 1/x2 + 1/x3.

The union of A and B is computed by taking for each element xi the maximum
of its membership in both sets, that is:

A ∪B = 1/x1 + 1/x2 + 1/x3

The fuzzy union of two fuzzy sets can be computed in the same way. The
union of the two fuzzy sets

C = 0.5/x1 + 0.6/x2 + 0.3/x3 D = 0.7/x1 + 0.2/x2 + 0.8/x3

is given by
C ∪D = 0.7/x1 + 0.6/x2 + 0.8/x3

The fuzzy intersection of two sets A and B can be defined in a similar way, but
instead of taking the maximum we compute the minimum of the membership
of each element xi to A and B. The maximum or minimum of the membership
values are just one pair of possible definitions of the union and intersection
operations for fuzzy sets. As we show later on, there are other alternative
definitions.

11.1.3 Geometric representation of fuzzy sets

Bart Kosko introduced a very useful graphical representation of fuzzy sets
[259]. Figure 11.2 shows an example in which the universal set consists only
of the two elements x1 and x2. Each point in the interior of the unit square
represents a subset of X . The convention is that the coordinates of the rep-
resentation correspond to the membership values of the elements in the fuzzy
set. The point (1, 1), for example, represents the universal set X , with mem-
bership function μA(x1) = 1 and μA(x2) = 1. The point (1, 0) represents the
set {x1} and the point (0, 1) the set {x2}. The crisp subsets of X are located
at the vertices of the unit square. The geometric visualization can be extended
to an n-dimensional hypercube.

Kosko calls the inner region of a unit hypercube in an n-dimensional space
the fuzzy region. We find here all combinations of membership values that a
fuzzy set could assume. The point M in Figure 11.2 corresponds to the fuzzy
set M = 0.5/x1 +0.3/x2. The center of the square represents the most diffuse
of all possible fuzzy sets of X , that is the set Y = 0.5/x1 + 0.5/x2.

The degree of fuzziness of a fuzzy set can be measured by its entropy. In
the geometric visualization, this corresponds inversely to the distance between

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

11.1 Fuzzy sets and fuzzy logic 293

∅ = (0,0)

X = (1,1)

{x } = (1,0)1

{x } = (0,1)2

M

0,5

0,3

Y
0,5

Fig. 11.2. Geometric visualization of fuzzy sets

the representation of the set and the center of the unit square. The set Y in
Figure 11.3 has the maximum possible entropy. The vertices represent the
crisp sets and have the lowest entropy, that is, zero. Note that the fuzzy
concept of entropy is mathematically different from the entropy concept in
physics or information theory. Some authors prefer to use terms like index of
fuzziness [239] or also crispness, certitude, ambiguity, etc. [55].

With this caveat we adopt a preliminary definition of the entropy of a
fuzzy set M as the quotient of the distance d1 (according to some metric)
of the corner which is nearest to the representation of M to the distance d2

from the corner which is farthest away. Figure 11.3 shows the two relevant
segments. The entropy E(M) of M is therefore

E(M) =
d1

d2
.

According to this definition the entropy is bounded by 0 and 1. The maximum
entropy is reached at the center of the square.

The union or intersection of sets can be also visualized using this repre-
sentation. The membership function for the the union of two sets A and B
can be defined as

μA∪B(x) = max(μA(x), μB(x)) ∀x ∈ X (11.1)

and corresponds to the maximum of the corresponding coordinates in the
geometric visualization. The membership function for the intersection of two
sets A and B is given by

μA∩B(x) = min(μA(x), μB(x)) ∀x ∈ X. (11.2)

Together with the points representing the sets A and B, Figure 11.4 shows
the points which represent their union and intersection.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

294 11 Fuzzy Logic

∅ = (0,0)

X = (1,1){x } = (0,1)2

{x } = (1,0)1

M

1/2

1/3

d

d1

2

Fig. 11.3. Distance of the set M to the universal and to the void set

∅ = (0,0)

X = (1,1){x } = (0,1)2

{x } = (1,0)1

A

BA∩B

A∪B

Fig. 11.4. Intersection and union of two fuzzy sets

The union or intersection of two fuzzy sets is in general a fuzzy, not a crisp
set. The complement Ac of a fuzzy set A can be defined with the help of the
membership function μAc given by

μAc(x) = 1− μA(x) ∀x ∈ X . (11.3)

Figure 11.5 shows that the representation of A must be transformed into
another point at the same distance from the center of the unit square. The
line joining the representation of A and Ac goes through the center of the
square. Figure 11.5 also shows how to obtain the representations for A ∪ Ac

and A ∩ Ac using the union and intersection operators defined before. For
fuzzy sets, it holds in general that

A ∪Ac �= X and A ∩Ac �= ∅
which is not true in classical set theory. This means that the principle of
excluded middle and absence of contradiction do not necessarily hold in fuzzy
logic. The consequences will be discussed later.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

11.1 Fuzzy sets and fuzzy logic 295

∅ = (0,0)

X = (1,1){x } = (0,1)2

{x } = (1,0)1

A

AA∩A

A∪A

c

c

c

Fig. 11.5. Complement Ac of a fuzzy set

Kosko [259] establishes a direct relationship between the entropy of fuzzy
sets and the geometric visualization of the union and intersection operations.
To compute the entropy of a set, we need to determine the distance between
the origin and the coordinates of the set. This distance is called the cardinality
of the fuzzy set.

Definition 12. Let A be a subset of a universal set X. The cardinality |A| of
A is the sum of the membership values of all elements of X with respect to A,
i.e.,

|A| =
∑
x∈X

μA(x)

This definition of cardinality corresponds to the distance of the represen-
tation of A from the origin using a Manhattan metric.

Figure 11.6 shows how to define the entropy of a set A using the cardinality
of the sets A∩Ac and A∪Ac. The Manhattan distances d1 and d2, introduced
before to measure the fuzzy entropy, correspond to the cardinalities of the sets
A∩Ac and A∪Ac. The entropy concept introduced previously in an informal
manner can then be formalized with our next definition.

Definition 13. The real value

E(A) =
|A ∩Ac|
|A ∪Ac|

is called the entropy of the fuzzy set A.

The entropy of a crisp set is always zero, since for a crisp set A ∩Ac = ∅.
In fuzzy set theory E(A) is a value in the interval [0, 1], since A ∩Ac can be
non-void.

Some authors take the geometric definition of entropy as given and derive
Definition 13 as a theorem, which is called the fuzzy entropy theorem. [259].
Here we take the definition as given, since the geometric interpretation of fuzzy
union and intersection depends on the exact definition of the fuzzy operators.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

296 11 Fuzzy Logic

∅ = (0,0)

X = (1,1){x } = (0,1)2

{x } = (1,0)1

A

A

A∩A

A∪A

c

c

c

d

d

d

d

1

2 2

1

Fig. 11.6. Geometric representation of the entropy of a fuzzy set

11.1.4 Fuzzy set theory, logic operators, and geometry

It is known in mathematics that an isomorphism exists between set theory
and classic propositional logic. In set theory, the three operators union, in-
tersection, and complement (∪,∩, c) allow the construction of new sets from
other sets. In propositional logic, the operators OR, AND and NOT (∨,∧,¬)
are used to build new propositions.

The union operator of classical set theory can be constructed using the
OR operator. Let A and B be two crisp sets, that is, μA, μB : X → {0, 1}.
The membership function μa∪B of the union set A ∪B is

μA∪B(x) = μA(x) ∨ μB(x) ∀x ∈ X , (11.4)

where the value 0 is interpreted as the logic value false and 1 as true. In a
similar way it holds that for the intersection of the sets A and B

μA∩B(x) = μA(x) ∧ μB(x) ∀x ∈ X. (11.5)

For the complement Ac of the set A it holds that

μAc(x) = ¬μA(x) (11.6)

This correspondence between the operators of classical set theory and classical
logic can be extended to the validity of some equations in both systems. The
laws of de Morgan, for example, are valid in classical set theory as well as in
classical logic:

(A ∪B)c ≡ Ac ∩Bc corresponds to ¬(A ∨B) ≡ ¬A ∧ ¬B
(A ∩B)c ≡ Ac ∪Bc corresponds to ¬(A ∧B) ≡ ¬A ∨ ¬B
A fuzzy logic can be also derived from fuzzy set theory by respecting the

isomorphism mentioned above. The fuzzy AND, OR, and NOT operators must

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

11.1 Fuzzy sets and fuzzy logic 297

be defined in such a way that the same general kinds of relation exist between
them and their equivalents in classical set theory and logic.

The straightforward approach is therefore to identify the OR operation
(∨̃) with the maximum function, AND (∧̃) with the minimum, and comple-
mentation (¬̃) with the function x �→ 1 − x. Equations (11.1), (11.2), and
(11.3) can be written as

μA∪B(x) = μA(x) ∨̃ μB(x) ∀x ∈ X (11.7)
μA∪B(x) = μA(x) ∨̃ μB(x) ∀x ∈ X (11.8)
μAc(x) = ¬̃μA(x) ∀x ∈ X (11.9)

In this way an isomorphism between fuzzy set theory and fuzzy logic is con-
structed which preserves the properties of the isomorphism present in the
classical theories.

Many rules of classical logic are still valid in the world of fuzzy operators.
For example, the functions min and max are commutative and associative.
However, the principle of no contradiction has been abolished. For a proposi-
tion A with truth value 0.4 we get

A ∧̃ ¬̃A = min(0.4, 1− 0.4) �= 0

The principle of excluded middle is not valid for A either:

A ∨̃ ¬̃A = max(0.4, 1− 0.4) �= 1

11.1.5 Families of fuzzy operators

Up to this point we have worked with fuzzy operators defined in a rather
informal way, since there are whole families of these operators that can be
defined. Now we will give an axiomatic definition using the properties we
would like the operators to exhibit.

Consider the fuzzy OR operator. In the fuzzy logic literature [248] such an
operator is required to fulfill the following axioms:

• Axiom U1. Boundary conditions:

0 ∨̃ 0 = 0
1 ∨̃ 0 = 1
0 ∨̃ 1 = 1
1 ∨̃ 1 = 1

• Axiom U2. Commutativity:

a ∨̃ b = b ∨̃ a
• Axiom U3. Monotonicity:

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

298 11 Fuzzy Logic

If a ≤ a′ and b ≤ b′, then a ∨̃ b ≤ a′ ∨̃ b′.
• Axiom U4. Associativity:

a ∨̃ (b ∨̃ c) = (a ∨̃ b) ∨̃ c

It is easy to show that the maximum function fulfills these four conditions.
There are many other functions for which the four axioms are valid, for ex-
ample

B(a, b) = min(1, a+ b)

which is called the bounded sum of a and b. An alternative fuzzy OR operator
can be defined using this function.

However, the bounded sum is not idempotent, that is, in general B(a, a) �=
a. We can therefore introduce a fifth axiom to exclude such operators:

• Axiom U5. Idempotence:
a ∨̃ a = a

Depending on the axioms selected, different fuzzy operators and different
logic systems can be defined. Consequently, the term fuzzy logic refers to a
family of different theories and not to a unique system of logic.

In the case of the fuzzy operator ∧̃ axioms are also formulated in such a way
that fuzzy AND is monotonic, commutative, and associative. The boundary
conditions are:

0 ∧̃ 0 = 0
1 ∧̃ 0 = 0
0 ∧̃ 1 = 0
1 ∧̃ 1 = 1

Idempotence can be demanded and can be enforced using a fifth axiom. For
the fuzzy negation we use the following three axioms:

• Axiom N1. Boundary conditions:

¬̃1 = 0

¬̃0 = 1

• Axiom N2. Monotonicity:

If a ≤ b then ¬̃b ≤ ¬̃a.
• Axiom N3. Involution:

¬̃¬̃a = a

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

11.1 Fuzzy sets and fuzzy logic 299

max(x,y)

0
0.2

0.4
0.6

0.8
1

 x
0

0.2
0.4

0.6
0.8

1

y

0

0.25

0.5

0.75

1

0
0.2

0.4
0.6

0.8
1

 x
0

0.2
0.4

0.6
0.8

1

y

0

.25

0.5

.75

1

min(x,y)

0
0.2

0.4
0.6

0.8
1

 x
0

0.2
0.4

0.6
0.8

1

y

0

0.25

0.5

0.75

1

0
0.2

0.4
0.6

0.8
1

 x
0

0.2
0.4

0.6
0.8

1

y

0

.25

0.5

.75

1

Fig. 11.7. The max and min functions

The difference between these fuzzy operators can be better visualized by
looking at their graphs. Figure 11.7 shows the graphs of the functions max
and min, that is, a possible fuzzy AND and fuzzy OR combination. They
could also be used as activation functions in neural networks. Using output
functions derived from fuzzy logic can have the added benefit of providing a
logical interpretation of the neural output.

The graphs of the functions bounded sum and bounded difference are shown
in Figure 11.8. Both fulfill the conditions imposed by the first four axioms for
fuzzy OR and fuzzy AND operators, but are not idempotent.

min(1,x+y)

0
0.2

0.4
0.6

0.8
1

 x
0

0.2
0.4

0.6
0.8

1

y

0

0.25

0.5

0.75

1

0
0.2

0.4
0.6

0.8
1

 x
0

0.2
0.4

0.6
0.8

1

y

0

.25

0.5

.75

1

max(0,x+y-1)

0
0.2

0.4
0.6

0.8
1

 x
0

0.2
0.4

0.6
0.8

1

y

0

0.25

0.5

0.75

1

0
0.2

0.4
0.6

0.8
1

 x
0

0.2
0.4

0.6
0.8

1

y

0

.25

0.5

.75

1

Fig. 11.8. The fuzzy operators bounded sum and bounded difference

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

300 11 Fuzzy Logic

It is also possible to define a parameterized family of fuzzy operators.
Figure 11.9 illustrates this approach for the case of the so-called Yager union
function which is given by

Yp(a, b) = min(1, (ap + b p)1/p) for p ≥ 1,

where a and b are real numbers in the interval [0, 1]. The formula describes
a family of operators. For p = 2, the function is an approximation of the
bounded sum operator. For p� 1, Yp is an approximation of the max function.
Adjusting the parameter p we can select the desired variant of fuzzy logic.

Yager union operator (p=2)

0
0.2

0.4
0.6

0.8
1

 x
0

0.2
0.4

0.6
0.8

1

y

0

0.25

0.5

0.75

1

0
0.2

0.4
0.6

0.8
1

 x
0

0.2
0.4

0.6
0.8

1

y

0

.25

0.5

.75

1

Yager union operator (p=5)

0
0.2

0.4
0.6

0.8
1

 x
0

0.2
0.4

0.6
0.8

1

y

0

0.25

0.5

0.75

1

0
0.2

0.4
0.6

0.8
1

 x
0

0.2
0.4

0.6
0.8

1

y

0

.25

0.5

.75

1

Fig. 11.9. Two variants of the Yager union operator

Figure 11.9 shows that the Yager union operator is not idempotent. If it
were, the diagonal from the point (0, 0) to the point (1, 1) would belong to
the graph of the function. This is the case for the functions min and max. It
can be shown that these functions are the only ones in which the five axioms
for fuzzy OR and fuzzy AND fully apply [248].

The geometric properties of fuzzy operators can be derived from the ax-
ioms for fuzzy OR, fuzzy AND, and fuzzy negation operators. The boundary
conditions determine four values of the function. The commutativity of the
operators forces the graph of the functions to be symmetrical with respect to
the plane normal to the xy plane and which cuts it at the 45-degree diagonal.
Monotonicity of the operators allows only those function graphs that do not
fold. Associativity is more difficult to visualize but it roughly indicates that
the function does not grow abruptly in some regions and stagnate in others.
If all or some of these symmetry properties hold for a binary function, then
this function fulfills the operator axioms and can be used as a fuzzy opera-
tor. The symmetry properties, in turn, lead to useful algebraic properties of
the operators, and the connection between set theory, logic, and geometry is
readily perceived.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

11.2 Fuzzy inferences 301

11.2 Fuzzy inferences

Fuzzy logic operators can be used as the basis for inference systems. Such
fuzzy inference methods have been extensively studied by the expert systems
community. Knowledge that can only be formulated in a fuzzy, imprecise
manner can be captured in rules that can be processed by a computer.

11.2.1 Inferences from imprecise data

Fuzzy inference rules have the same structure as classical ones. The rules R1

and R2, for example, may have the form

R1:If(A ∧̃B)then C.
R2:If(A ∨̃B)then D.

The difference in conventional inference rules is the semantics of the fuzzy
operators. In this section we identify the fuzzy operators ∧̃ and ∨̃ with the
functions min and max respectively.

Let the truth values of A and B be 0.4 and 0.7 respectively. In this case

A ∧̃B = min(0.4, 0.7) = 0.4

A ∨̃B = max(0.4, 0.7) = 0.7

This is interpreted by the fuzzy inference mechanism as meaning that the
rules R1 and R2 can only be partially applied, that is rule R1 is applied to
40% and rule R2 to 70%. The result of the inference is a combination of the
propositions C and D.

Let us consider another example. Assume that a temperature controller
must regulate an electrical heater. We can formulate three rules for such a
system:

R1:If (temperature = cold) then heat.
R2:If(temperature = normal)then maintain.
R3:If (temperature=warm) then reduce power.

Assume that a temperature of 12 degrees Celsius has a membership degree
of 0.5 in relation to the set of cold temperatures and a membership degree
of 0.3 in relation to the temperatures classified as normal. The temperature
of 12 degrees is converted first of all into a fuzzy category which is the list
of membership values of an element x of X in relation to previously selected
fuzzy sets of the universal set X .

The fuzzy category T can be expressed using a similar notation as for
fuzzy sets. In our example:

T = cold/0.5 + normal/0.3 + warm/0.0.

Note the difference in the notation for fuzzy sets. If a fuzzy category x is
defined in relation to fuzzy sets A, B, and C, it is written as

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

302 11 Fuzzy Logic

x = A/μA(x) +B/μB(x) + C/μC(x)

and not as x = μA(x)/A + μB(x)/B + μC(x)/C.
Using T we can now evaluate the rules R1, R2, and R3 in parallel. The

result is that each rule is valid to a certain extent. A fuzzy inference is the
combination of the three possible consequences, weighted according to their
validity. The result of a fuzzy inference is therefore a fuzzy category. In our
example we deduce that

action = heat/0.5 +maintain/0.3 + reduce/0.0.

Fuzzy inference systems compute inferences of this type. Imprecise data, which
is represented by fuzzy categories, leads to new fuzzy categories which rep-
resent the conclusion. In expert systems this kind of result can be processed
further or it can be transformed into a crisp value. In the case of an electronic
fuzzy controller this last step is always necessary.

The advantage of formulating fuzzy inference rules is their low granularity.
In many cases apparently complex control problems can be modeled using
just a few rules. If we tried to express all actions as consequences of exact
numerical rules, we would have to write more of them or make each one much
more complex.

11.2.2 Fuzzy numbers and inverse operation

The example in the last section shows that a fuzzy controller operates, in
general, in three steps: a) A measurement is transformed into a fuzzy category
using the membership functions of all defined categories; b) All pertinent
inference rules of the control system are evaluated and a fuzzy inference is
produced; c) In the last step the result of the fuzzy inference is transformed
into a crisp value.

There are several alternative ways to transform a measurement into fuzzy
categories. A frequent approach is to use triangular or trapezium-shaped mem-
bership functions. Figure 11.10 shows how a measurement interval can be
subdivided using triangular-shaped membership functions and Figure 11.11
shows the same kind of subdivision but with trapezium-shaped membership
functions.

The transformation of a measurement x into a fuzzy category is given by
the membership values α1, α2, α3 derived from the membership functions (as
shown in Figure 11.10).

An important problem is how to transform the membership values
α1, α2, α3 back into the measurement x, that is, how to implement the in-
verse operation to the fuzzifying of the crisp number. A popular approach is
the centroid method. Figure 11.12 shows the value x and its transformation
into α1, α2, α3. From these three values we can reconstruct the original x. To
do this, the surfaces of the triangular regions limited by the heights α1, α2

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

11.2 Fuzzy inferences 303

1

measurement's domain

α 1

α 2

x

category 1 category 2 category 3

α3

Fig. 11.10. Categories with triangular membership functions

1

measurement's domain

Fig. 11.11. Categories with trapezium-shaped membership functions

1

x

centroid of the shaded regions

α

α

α

1

2

3

Fig. 11.12. The centroid method

and α3 are computed. The horizontal component of the centroid of the total
surface is the approximation to x we are looking for (Figure 11.12).

For all x values for which at least two of the three numbers α1, α2, α3 are
different from zero, we can compute a good approximation using the centroid
method. Figure 11.13 shows the difference between x and its approximation

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

304 11 Fuzzy Logic

when the basis of the triangular regions is of length 2, their height is 1 and
the arrangement is the one shown in Figure 11.12. The value of x has been
chosen in the interval [1, 2]. Figure 11.13 shows that the relative difference
from the correct value of x is never greater than 10%.

1.2 1.4 1.6 1.8 2

1.2

1.4

1.6

1.8

2

centroid

Fig. 11.13. Reconstruction error of the centroid method

The centroid method produces better or worse inverse transformations de-
pending on the placement of the triangular categories. Weighting the surfaces
of the triangular regions according to their position can also affect how good
the inverse transformation is.

11.3 Control with fuzzy logic

A fuzzy controller is a regulating system whose modus operandi is specified
with fuzzy rules. In general it uses a small set of rules. The measurements
are processed in their fuzzified form, fuzzy inferences are computed, and the
result is defuzzified, that is, it is transformed back into a specific number.

11.3.1 Fuzzy controllers

The example with the electrical heater will be completed in this section. We
must determine the domain of definition of the variables used in the problem.
Assume that the room temperature is a number between 0 and 40 degrees
Celsius. The controller can vary the electrical power consumed between 0 and
100 (in some suitable units), whereby 50 is the normal stand-by value.

Figure 11.14 shows the membership functions for the temperature cat-
egories “cold”, “normal”, and “warm” and the control categories “reduce”,
“maintain”, and “heat”.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

11.3 Control with fuzzy logic 305

1

+40˚0˚

0 50 100

maintain heat

20˚

cold normal warm

temperature

current

1

reduce

12°

0.5

0.3

Fig. 11.14. Membership functions for temperature and electric current categories

The temperature of 12 degrees corresponds to the fuzzy number T =
cold/0.5 + normal/0.3+warm/0.0. These values lead to the previously com-
puted inference action = heat/0.5+maintain/0.3+reduce/0.0. The controller
must transform the result of this fuzzy inference into a definite value. The sur-
faces of the membership triangles below the inferred degree of membership are
calculated. The light shaded surface in Figure 11.15 corresponds to the action
“heat”, which is valid to 50%. The darker region corresponds to the action
“maintain” that is valid to 30%. The centroid of the two shaded regions lies at
about 70. This value for the power consumption is adjusted by the controller
in order to heat the room.

It is of course possible to formulate more complex rules involving more than
two variables. In all cases, though, we have to evaluate all rules simultaneously.
Kosko shows some examples of dynamical systems with three or more control
variables [259].

11.3.2 Fuzzy networks

Fuzzy systems can be represented as networks. The computing units must
implement fuzzy operators. Figure 11.16 shows a network with four hidden
units. Each one of them receives the inputs x1, x2 and x3 which correspond
to the fuzzy categorization of a specific number. The fuzzy operators are
evaluated in parallel in the hidden layer of the network, which corresponds
to the set of inference rules. The last unit in the network is the defuzzifier,

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

306 11 Fuzzy Logic

0 50 100

maintain heat

current

1

reduce

centroid = 70

Fig. 11.15. Centroid computation

which transforms the fuzzy inferences into a specific control variable. The
importance of each fuzzy inference rule is weighted by the numbers α1, α2,
and α3 as in a weighted centroid computation.

x

x
defuzzifier

α

α

α

α

1

2

3

4

1

2

x
3

∨̃

∨̃

∧̃

∧̃

Fig. 11.16. Example of a fuzzy network

More complex rules can be implemented and this can lead to networks
with several layers. However, fuzzy systems do not usually lead to very deep
networks. Since at each fuzzy inference step the precision of the conclusion is
reduced, it is not advisable to build too long an inference chain.

Fuzzy operators cannot be computed exactly by sigmoidal units, but for
some of them a relatively good approximation is possible, for example, for
bounded sum or bounded difference. A fuzzy inference chain using these op-
erators can be approximated by a neural network.

The defuzzifier operator in the last layer can be approximated with stan-
dard units. If the membership functions are triangles, the surface of the tri-
angles grows quadratically with the height. A quadratic function of this form

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

11.3 Control with fuzzy logic 307

can be approximated in the pertinent interval using sigmoids. The parameters
of the approximation can be set with the help of a learning algorithm.

11.3.3 Function approximation with fuzzy methods

A fuzzy controller is just a system for the rapid computation of an approxima-
tion of a coarsely defined control surface, like the one shown in Figure 11.17.
The fuzzy controller computes a control variable according to the values of
the variables x and y. Both variables are transformed into fuzzy categories.
Assume that each variable is transformed into a combination of three cate-
gories. There are nine different combinations of the categories for x and y. For
each of these nine combinations the value of the control variable is defined.
This fixes nine points of the control surface.

categories for x

categories for y

control parameter

z0

Fig. 11.17. Approximation of a control surface

Arbitrary values of x and y belong, to different degrees, to the nine com-
bined categories. This means that for arbitrary combinations of x and y an
interpolation of the known function values of the control variable is needed. A
fuzzy controller performs this computation according to the degree of member-
ship of (x, y) in each combined category. In Figure 11.17 the different shadings
of the quadratic regions in the xy plane represent the membership of the in-
put in the category for which the control variable assumes the value z0. Other
values, which correspond to the lighter shaded regions receive a value for the
control variable which is an interpolation of the neighboring z-values.

The control surface can be defined using a few points and, if the control
function is smooth, a good approximation to other values is obtained with

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

308 11 Fuzzy Logic

simple interpolation. The reduced number of given points corresponds to a
reduced number of inference rules in the fuzzy controller. The advantage of
such an approach lies in the economic use of rules. Inference rules can be
defined in the fuzzy formalism in a straightforward manner. The interpolation
mechanism is taken as given. This approach works of course only in the case
where the control function has an adequate degree of smoothness.

11.3.4 The eye as a fuzzy system – color vision

It is interesting to note that the eye makes use of a similar strategy to fuzzy
controllers with regard to color vision. Photons of different wavelengths, cor-
responding to different colors in the visible spectrum, impinge on the retina.
The eye contains receptors for only three types of colors. We can find in the
cochlea different receptors for many of the frequencies present in sounds that
we can hear, but in the eyes we find only receptors that are maximally excited
with light from the spectral regions corresponding to the colors blue, green,
and red. That is why the receptors have received the name of the colors they
detect. Color vision must accommodate sensors to process a two-dimensional
image at every pixel and this can only be done by reducing the number of
detector types available.

The visible spectrum for humans extends from 400 up to 650 nanometers
wavelength. A monochromatic color, that is, a color with a definite and crisp
wavelength, excites all three receptor types in the retina. The output of each
receptor class, however, is not identical but depends on the wavelength of the
light. It has been shown in many color vision experiments, and later through
direct measurements, that the ouput functions of the three receptor classes
correspond to those shown in Figure 11.18. Blue receptors, for example, reach
their maximal excitation for wavelengths around 430 nm. Green receptors
respond maximally at 530 nm and red receptors at 560 nm. When monochro-
matic light excites the receptors on the retina its wavelength is transformed
into three different excitation levels, that is, into a relative excitation of the
three receptor types. The wavelength is transformed into a fuzzy category,
just as in the case of fuzzy controllers. The three excitation levels measure the
degree of membership in each of the three color categories blue, green, and
red. The subsequent processing of the color information is performed based
on this and additional coding steps (for example, comparing complementary
colors). This is why a mixture of two colors is perceived by the brain as a
third color.

Some simple physiological considerations show that good color discrimina-
tion requires at least three types of receptors [205]. Coding of the wavelength
using three excitation values reduces the number of rules needed in subsequent
processing. The sparseness of rules in fuzzy controllers finds its equivalent here
in the sparseness of the biological organs.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

11.4 Historical and bibliographical remarks 309

400 450 500 550 600 650 700

0.2

0.4

0.6

0.8

1

1.2
blue receptor green receptor

red receptor

Fig. 11.18. Response function of the three receptors in the retina

11.4 Historical and bibliographical remarks

Multiple-valued logic has a long history [362]. Aristotle raised the question
of whether all valid propositions can only be assigned the logical values true
or false. The first attempts at formulating a multiple-valued logic were made
by logicians such as Charles Sanders Pierce at the end of the nineteenth and
beginning of the twentieth century. The first well-known system of multi-
ple valued logic was introduced by the Pole Jan Lukasiewicz in the 1920s.
By defining a third truth value Lukasiewicz created a system of logic which
was later axiomatized by other authors [362]. From 1930 onwards, renowned
mathematicians such as Gödel, Brouwer, and von Neumann continued work
on developing an alternative system of logic which could be used in mathe-
matics or physics. In their investigations they considered the possibility of an
infinite number of truth values.

Fuzzy logic, as formulated by Zadeh in 1965, is a multiple-valued logic with
a continuum of truth values. The term fuzzy logic really refers more to a whole
family of possible logic theories which vary in the definition of their logical
operators [465]. In the 1970s the interest in fuzzy logic and its possible use
in expert systems increased, so that the number of papers published on this
topic increased almost exponentially from year to year [Gaines 1977]. First
attempts to use fuzzy logic for control systems were extensively examined by
Mamdani’s group in England in the 1970s [Mamdani 1977]. Since then fuzzy
controllers have left the research laboratories and are used in industrial and
consumer electronics.

Over the last few years interest in fuzzy controllers has increased dramat-
ically. Some companies already offer microchips with hardwired fuzzy oper-
ators and fuzzy inference rules. It is estimated that worldwide sales of fuzzy
chips will increase from 1.5 billions dollars in 1990 to 13 billion dollars in the
year 2000. Some companies are planning to incorporate fuzzy operators in the
instruction set of normal microprocessors.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

310 11 Fuzzy Logic

Fuzzy logic offers an interpretation model for the analysis of neural net-
works. Some pioneer work in this field has been carried out by Bart Kosko.
Over the last few years other authors have continued with the examination
of the relationships between fuzzy logic and neural networks [273]. An active
field of research is the formulation of learning algorithms for fuzzy systems
which retain the clarity of the fuzzy formalism.

Exercises

1. Show that the maximum function fulfills the axioms U1-U5.
2. What are the corresponding axioms for the fuzzy intersection? Show that

the minimum function fulfills them.
3. Propose a learning algorithm for a fuzzy network like the one shown in

Figure 11.16.
4. Construct a set of fuzzy control rules for the pole balancing car shown in

Figure 15.18.
5. Are triangular-shaped membership functions better or worse than trape-

zium-shaped functions? Assume that a crisp number is transformed into
fuzzy categories and then retransformed into a crisp number using the cen-
troid method. What kind of function produces the lowest reconstruction
error?

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

12

Associative Networks

12.1 Associative pattern recognition

The previous chapters were devoted to the analysis of neural networks with-
out feedback, capable of mapping an input space into an output space using
only feed-forward computations. In the case of backpropagation networks we
demanded continuity from the activation functions at the nodes. The neigh-
borhood of a vector x in input space is therefore mapped to a neighborhood
of the image y of x in output space. It is this property which gives its name
to the continuous mapping networks we have considered up to this point.

In this chapter we deal with another class of systems, known generically as
associative memories. The goal of learning is to associate known input vectors
with given output vectors. Contrary to continuous mappings, the neighbor-
hood of a known input vector x should also be mapped to the image y of x,
that is if B(x) denotes all vectors whose distance from x (using a suitable
metric) is lower than some positive constant ε, then we expect the network to
map B(x) to y. Noisy input vectors can then be associated with the correct
output.

12.1.1 Recurrent networks and types of associative memories

Associative memories can be implemented using networks with or without
feedback, but the latter produce better results. In this chapter we deal with
the simplest kind of feedback: the output of a network is used repetitively as
a new input until the process converges. However, as we will see in the next
chapter not all networks converge to a stable state after having been set in
motion. Some restrictions on the network architecture are needed.

The function of an associative memory is to recognize previously learned
input vectors, even in the case where some noise has been added. We have
already discussed a similar problem when dealing with clusters of input vec-
tors (Chap. 5). The approach we used there was to find cluster centroids in

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

312 12 Associative Networks

input space. For an input x the weight vectors produced a maximal excitation
at the unit representing the cluster assigned to x, whereas all other units re-
mained silent. A simple approach to inhibit the other units is to use non-local
information to decide which unit should fire.

The advantage of associative memories compared to this approach is that
only the local information stream must be considered. The response of each
unit is determined exclusively by the information flowing through its own
weights. If we take the biological analogy seriously or if we want to implement
these systems in VLSI, locality is always an important goal. And as we will
see in this chapter, a learning algorithm derived from biological neurons can
be used to train associative networks: it is called Hebbian learning.

The associative networks we want to consider should not be confused with
conventional associative memory of the kind used in digital computers, which
consists of content addressable memory chips. With this in mind we can dis-
tinguish between three overlapping kinds of associative networks [294, 255]:

• Heteroassociative networks map m input vectors x1,x2, . . . ,xm in n-
dimensional space to m output vectors y1,y2, . . . ,ym in k-dimensional
space, so that xi �→ yi. If ‖x̃ − xi‖2 < ε then x̃ �→ yi. This should
be achieved by the learning algorithm, but becomes very hard when the
number m of vectors to be learned is too high.

• Autoassociative networks are a special subset of the heteroassociative net-
works, in which each vector is associated with itself, i.e., yi = xi for
i = 1, . . . ,m. The function of such networks is to correct noisy input vec-
tors.

• Pattern recognition networks are also a special type of heteroassociative
networks. Each vector xi is associated with the scalar i. The goal of such
a network is to identify the ‘name’ of the input pattern.

Figure 12.1 shows the three kinds of networks and their intended use. They
can be understood as automata which produce the desired output whenever
a given input is fed into the network.

12.1.2 Structure of an associative memory

The three kinds of associative networks discussed above can be implemented
with a single layer of computing units. Figure 12.2 shows the structure of a
heteroassociative network without feedback. Let wij be the weight between
input site i and unit j. Let W denote the n × k weight matrix [wij]. The
row vector x = (x1, x2, . . . , xn) produces the excitation vector e through the
computation

e = xW.

The activation function is computed next for each unit. If it is the identity,
the units are just linear associators and the output y is just xW. In general
m different n-dimensional row vectors x1,x2, . . . ,xm have to be associated

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

12.1 Associative pattern recognition 313

ivector

heteroassociative
network

autoassociative

pattern recognition

x1
i

x1
i

x1
i

xn
i

xn
i

xn
i

y1
i

yk
i

x1
i

xn
i

i–th

network

network

Fig. 12.1. Types of associative networks

with m k-dimensional row vectors y1,y2, . . . ,ym. Let X be the m×n matrix
whose rows are each one of the input vectors and let Y be the m× k matrix
whose rows are the output vectors. We are looking for a weight matrix W for
which

XW = Y (12.1)

holds. In the autoassociative case we associate each vector with itself and
equation (12.1) becomes

XW = X (12.2)

If m = n, then X is a square matrix. If it is invertible, the solution of (12.1)
is

W = X−1Y,

which means that finding W amounts to solving a linear system of equations.
What happens now if the output of the network is used as the new input?

Figure 12.3 shows such a recurrent autoassociative network. We make the
assumption that all units compute their outputs simultaneously and we call
such networks asynchronous. In each step the network is fed an input vector
x(i) and produces a new output x(i + 1). The question with this class of

networks is whether there is a fixed point
→
ξ such that

→
ξ W =

→
ξ .

The vector
→
ξ is an eigenvector of W with eigenvalue 1. The network behaves

as a first-order dynamical system, since each new state x(i+ 1) is completely
determined by its most recent predecessor [30].

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

314 12 Associative Networks

x1

x2

xn

y1

yk

Fig. 12.2. Heteroassociative network without feedback

x1

x2

xn

x1

xn

Fig. 12.3. Autoassociative network with feedback

12.1.3 The eigenvector automaton

Let W be the weight matrix of an autoassociative network, as shown in Fig-
ure 12.3. The individual units are linear associators. As we said before, we are
interested in fixed points of the dynamical system but not all weight matrices
lead to convergence to a stable state. A simple example is a rotation by 90
degrees in two-dimensional space, given by the matrix

W =
[

0 1
−1 0

]
.

Such a matrix has no non-trivial eigenvectors. There is no fixed point for the
dynamical system, but infinitely many cycles of length four. By changing the
angle of rotation, arbitrarily long cycles can be produced and by picking an
irrational angle, even a non-cyclic succession of states can be produced.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

12.2 Associative learning 315

Quadratic matrices with a complete set of eigenvectors are more useful
for storage purposes. An n × n matrix W has at most n linear independent
eigenvectors and n eigenvalues. The eigenvectors x1,x2, . . . ,xn satisfy the set
of equations

xiW = λixi for i = 1, . . . , n,

where λ1, . . . , λn are the matrix eigenvalues.
Each weight matrix with a full set of eigenvectors defines a kind of “eigen-

vector automaton”. Given an initial vector, the eigenvector with the largest
eigenvalue can be found (if it exists). Assume without loss of generality that
λ1 is the eigenvalue of w with the largest magnitude, that is, |λ1| > |λi| for
i �= j. Let λ1 > 0 and pick randomly a non-zero n-dimensional vector a0. This
vector can be expressed as a linear combination of the n eigenvectors of the
matrix W:

a0 = α1x1 + α2x2 + · · ·+ αnxn.

Assume that all constants α are non-zero. After the first iteration with the
weight matrix W we get

a1 = a0W
= (α1x1 + α2x2 + · · ·+ αnxn)W
= α1λ1x1 + α2λ2x2 + · · ·+ αnλnxn.

After t iterations the result is

at = α1λ
t
1x

1 + α2λ
t
2x

2 + · · ·+ αnλ
t
nxn.

It is obvious that the eigenvalue λ1, the one with the largest magnitude, dom-
inates this expression for a big enough t. The vector at can be brought arbi-
trarily close to the eigenvector x1 (with respect to the direction and without
considering the relative lengths). In each iteration of the associative network,
the vector x1 attracts any other vector a0 whose component α1 is non-zero.
An example is the following weight matrix:

W =
[

2 0
0 1

]
Two eigenvectors of this matrix are (1, 0) and (0, 1) with respective eigenvalues
2 and 1. After t iterations any initial vector (x1, x2) with x1 �= 0 is transformed
into the vector (2tx1, x2), which comes arbitrarily near to the vector (1, 0) for
a large enough t. In the language of the theory of dynamical systems, the
vector (1, 0) is an attractor for all those two-dimensional vectors whose first
component does not vanish.

12.2 Associative learning

The simple examples of the last section illustrate our goal: we want to use
associative networks as dynamical systems, whose attractors are exactly those

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

316 12 Associative Networks

vectors we would like to store. In the case of the linear eigenvector automaton,
unfortunately just one vector absorbs almost the whole of input space. The
secret of associative network design is locating as many attractors as possible
in input space, each one of them with a well-defined and bounded influence
region. To do this we must introduce a nonlinearity in the activation of the
network units so that the dynamical system becomes nonlinear.

Bipolar coding has some advantages over binary coding, as we have already
seen several times, but this is still more noticeable in the case of associative
networks. We will use a step function as nonlinearity, computing the output
of each unit with the sign function

sgn(x) =
{

1 if x ≥ 0
−1 if x < 0

The main advantage of bipolar coding is that bipolar vectors have a greater
probability of being orthogonal than binary vectors. This will be an issue
when we start storing vectors in the associative network.

12.2.1 Hebbian learning – the correlation matrix

Consider a single-layer network of k units with the sign function as activation
function. We want to find the appropriate weights to map the n-dimensional
input vector x to the k-dimensional output vector y. The simplest learning
rule that can be used in this case is Hebbian learning, proposed in 1949 by
the psychologist Donald Hebb [182]. His idea was that two neurons which are
simultaneously active should develop a degree of interaction higher than those
neurons whose activities are uncorrelated. In the latter case the interaction
between the elements should be very low or zero [308].

xi

yj
wij

Δwij = γ xiyj

Fig. 12.4. The Hebb rule

In the case of an associative network, Hebbian learning is applied, updating
the weight wij by Δwij . This increments measures the correlation between the
input xi at site i and the output yj of unit j. During learning, both input and
output are clamped to the network and the weight update is given by

Δwij = γ xixj .

The factor γ is a learning constant in this equation. The weight matrix W
is set to zero before Hebbian learning is started. The learning rule is applied

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

12.2 Associative learning 317

to all weights clamping the n-dimensional row vector x1 to the input and the
k-dimensional row vector y1 to the output. The updated weight matrix W is
the correlation matrix of the two vectors and has the form

W = [wij]n×k =
[
x1

i y
1
j

]
n×k

.

The matrix W maps the non-zero vector x1 exactly to the vector y1, as can
be proved by looking at the excitation of the k output units of the network,
which is given by the components of

x1W = (y1
1

n∑
i=1

x1
i x

1
i , y

1
2

n∑
i=1

x1
i x

1
i , ..., y

1
k

n∑
i=1

x1
ix

1
i)

= y1(x1 · x1).

For x1 �= 0 it holds x1 · x1 > 0 and the output of the network is

sgn(x1W) = (y1
1 , y

1
2 , ..., y

1
k) = y1,

where the sign function is applied to each component of the vector of excita-
tions.

In general, if we want to associate m n-dimensional non-zero vectors
x1,x2, . . . ,xm with m k-dimensional vectors y1,y2, . . . ,ym, we apply Heb-
bian learning to each input-output pair and the resulting weight matrix is

W = W1 + W2 + · · ·+ Wm, (12.3)

where each matrix W� is the n × k correlation matrix of the vectors x� and
y�, i.e.,

W� =
[
x�

iy
�
j

]
n×k

.

If the input to the network is the vector xp, the vector of unit excitations is

xpW = xp(W1 + W2 + · · ·+ Wm)

= xpWp +
m∑

� �=p

xpW�

= yp(xp · xp) +
m∑

� �=p

y�(x� · xp).

The excitation vector is equal to yp multiplied by a positive constant plus an
additional perturbation term

∑m
� �=p y�(x�·xp) called the crosstalk. The network

produces the desired vector yp as output when the crosstalk is zero. This is
the case whenever the input patterns x1,x2, . . . ,xm are pairwise orthogonal.
Yet, the perturbation term can be different from zero and the mapping can
still work. The crosstalk should only be sufficiently smaller than yp(xp · xp).
In that case the output of the network is

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

318 12 Associative Networks

sgn(xpW) = sgn

⎛
⎝yp(xp · xp) +

m∑
� �=p

y�(x� · xp)

⎞
⎠ .

Since xp · xp is a positive constant, it holds that

sgn(xpW) = sgn

⎛
⎝yp +

m∑
� �=p

y� (x� · xp)
(xp · xp)

⎞
⎠ .

To produce the output yp the equation

yp = sgn

⎛
⎝yp +

m∑
� �=p

y� (x� · xp)
(xp · xp)

⎞
⎠

must hold. This is the case when the absolute value of all components of the
perturbation term

m∑
� �=p

y� (x� · xp)
(xp · xp)

is smaller than 1. This means that the scalar products x� · xp must be small
in comparison to the quadratic length of the vector xp (equal to n for n-
dimensional bipolar vectors). If randomly selected bipolar vectors are associ-
ated with other also randomly selected bipolar vectors, the probability is high
that they will be nearly pairwise orthogonal, as long as not many of them are
selected. The crosstalk will be small. In this case Hebbian learning will lead
to an efficient set of weights for the associative network.

In the autoassociative case, in which a vector x1 is to be associated with
itself, the matrix W1 can also be computed using Hebbian learning. The
matrix is given by

W1 = (x1)Tx1.

Some authors define the autocorrelation matrix W1 as W1 = (1/n)(x1)Tx1.
Since the additional positive constant does not change the sign of the excita-
tion, we will not use it in our computations.

If a set of m row vectors x1,x2, . . . ,xm is to be autoassociated, the weight
matrix W is given by

W = (x1)Tx1 + (x2)Tx2 + · · ·+ (xm)Txm

= XTX,

where X is the m×n matrix whose rows are the m given vectors. The matrix
W is now the autocorrelation matrix for the set of m given vectors. It is
expected from W that it can lead to the reproduction of each one of the vectors
x1,x2, . . . ,xm when used as weight matrix of the autoassociative network.
This means that

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

12.2 Associative learning 319

sgn(xiW) = xi for i = 1, ...,m, (12.4)

or alternatively
sgn(XW) = X. (12.5)

The function sgn(xW) can be considered to be a nonlinear operator. Equa-
tion (12.4) expresses the fact that the vectors x1,x2, . . . ,xm are the eigen-
vectors of the nonlinear operator. The learning problem for associative net-
works consists in constructing the matrix W for which the nonlinear operator
sgn(xW) has these eigenvectors as fixed points. This is just a generalization
of the eigenvector concept to nonlinear functions. On the other hand, we do
not want to simply use the identity matrix, since the objective of the whole
exercise is to correct noisy input vectors. Those vectors located near to stored
patterns should be attracted to them. For W = XTX, (12.5) demands that

sgn(XXTX) = X. (12.6)

If the vectors x1,x2, . . . ,xm are pairwise orthogonal XTX is the identity
matrix multiplied by n and (12.6) is fulfilled. If the patterns are nearly pairwise
orthogonal XTX is nearly the identity matrix (times n) and the associative
network continues to work.

12.2.2 Geometric interpretation of Hebbian learning

The matrices W1,W2, . . . ,Wm in equation (12.3) can be interpreted geomet-
rically. This would provide us with a hint as to the possible ways of improving
the learning method. Consider first the matrix W1, defined in the autoasso-
ciative case as

W1 = (x1)Tx1.

Any input vector z fed to the network is projected into the linear subspace L1

spanned by the vector x1, since

zW1 = z(x1)Tx1 = (z(x1)T)x1 = c1x1,

where c1 represents a constant. The matrix W1 represents, in general, a non-
orthogonal projection operator that projects the vector z in L1. A similar
interpretation can be derived for each weight matrix W2 to Wm. The matrix
W =

∑m
i=1 Wi is therefore a linear transformation which projects a vector z

into the linear subspace spanned by the vectors x1,x2, . . . ,xm, since

zW = zW1 + zW2 + · · ·+ zWm

= c1x1 + c2x2 + · · ·+ cmxm

with constants c1, c2, . . . , cm. In general W does not represent an orthogonal
projection.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

320 12 Associative Networks

12.2.3 Networks as dynamical systems – some experiments

How good is Hebbian learning when applied to an associative network? Some
empirical results can illustrate this point, as we proceed to show in this section.

Since associative networks can be considered to be dynamical systems, one
of the important issues is how to identify their attractors and how extended the
basins of attraction are, that is, how large is the region of input space mapped
to each one of the fixed points of the system. We have already discussed how
to engineer a nonlinear operator whose eigenvectors are the patterns to be
stored. Now we investigate this matter further and measure the changes in
the basins of attraction when the patterns are learned one after the other
using the Hebb rule. In order to measure the size of the basins of attraction
we must use a suitable metric. This will be the Hamming distance between
bipolar vectors, which is just the number of different components which both
contain.

Table 12.1. Percentage of 10-dimensional vectors with a Hamming distance (H)
from 0 to 4, which converge to a stored vector in a single iteration. The number of
stored vectors increases from 1 to 10.

Number of stored vectors (dimension 10)

H 1 2 3 4 5 6 7 8 9 10

0 100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0

1 100.0100.0 90.0 85.0 60.0 60.0 54.3 56.2 45.5 33.0

2 100.0 86.7 64.4 57.2 40.0 31.8 22.5 23.1 17.0 13.3

3 100.0 50.0 38.6 25.4 13.5 8.3 4.8 5.9 3.1 2.4

4 100.0 0.0 9.7 7.4 4.5 2.7 0.9 0.8 0.3 0.2

Table 12.1 shows the results of a computer experiment. Ten randomly
chosen vectors in 10-dimensional space were stored in the weight matrix of an
associative network using Hebbian learning. The weight matrix was computed
iteratively, first for one vector, then for two, etc. After each update of the
weight matrix the number of vectors with a Hamming distance from 0 to 4 to
the stored vectors, and which could be mapped to each one of them by the
network, was counted. The table shows the percentage of vectors that were
mapped in a single iteration to a stored pattern. As can be seen, each new
stored pattern reduces the size of the average basins of attraction, until by 10
stored vectors only 33% of the vectors with a single different component are
mapped to one of them.

The table shows the average results for all stored patterns. When only
one vector has been stored, all vectors up to Hamming distance 4 converge to
it. If two vectors have been stored, only 86.7% of the vectors with Hamming

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

12.2 Associative learning 321

1 2 3 4

5 6 7 8

Fig. 12.5. The grey shading of each concentric circle represents the percentage of
vectors with Hamming distance from 0 to 4 to stored patterns and which converge to
them. The smallest circle represents the vectors with Hamming distance 0. Increasing
the number of stored patterns from 1 to 8 reduces the size of the basins of attraction.

distance 2 converge to the stored patterns. Figure 12.5 is a graphical repre-
sentation of the changes to the basins of attraction after each new pattern has
been stored. The basins of attraction become continuously smaller and less
dense.

Table 12.1 shows only the results for vectors with a maximal Hamming
distance of 4, because vectors with a Hamming distance greater than 5 are
mapped not to x but to −x, when x is one of the stored patterns. This is so
because

sgn(−xW) = −sgn(xW) = −x.

These additional stored patterns are usually a nuisance. They are called spu-
rious stable states. However, they are inevitable in the kind of associative
networks considered in this chapter.

The results of Table 12.1 can be improved using a recurrent network of
the type shown in Figure 12.3. The operator sgn(xW) is used repetitively.
If an input vector does not converge to a stored pattern in one iteration, its
image is nevertheless rotated in the direction of the fixed point. An additional
iteration can then lead to convergence.

The iterative method was described before for the eigenvector automaton.
The disadvantage of that automaton was that a single vector attracts almost
the whole of input space. The nonlinear operator sgn(xW) provides a solution
for this problem. On the one hand, the stored vectors can be reproduced, i.e.,
sgn(xW) = x. There are no “eigenvalues” different from 1. On the other
hand, the nonlinear sign function does not allow a single vector to attract
most of input space. Input space is divided more regularly into basins of
attraction for the different stored vectors. Table 12.2 shows the convergence

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

322 12 Associative Networks

of an autoassociative network when five iterations are used. Only the first
seven vectors used in Table 12.1 were considered again for this table.

Table 12.2. Percentage of 10-dimensional vectors with a Hamming distance (H)
from 0 to 4, which converge to a stored vector in five iterations. The number of
stored vectors increases from 1 to 7.

Number of stored vectors (dimension 10)

H 1 2 3 4 5 6 7

0 100.0100.0100.0100.0100.0100.0100.0

1 100.0100.0 90.0 85.0 60.0 60.0 54.3

2 100.0100.0 72.6 71.1 41.8 34.8 27.9

3 100.0 80.0 48.6 47.5 18.3 10.8 8.5

4 100.0 42.8 21.9 22.3 6.8 3.7 2.0

The table shows an improvement in the convergence properties of the
network, that is, an expansion of the average size and density of the basins
of attraction. After six stored vectors the results of Table 12.2 become very
similar to those of Table 12.1.

The results of Table 12.1 and Table 12.2 can be compared graphically.
Figure 12.6 shows the percentage of vectors with a Hamming distance of 0 to
5 from a stored vector that converge to it. The broken line shows the results
for the recurrent network of Table 12.2. The continuous line summarizes the
results for a single iteration. Comparison of the “single shot” method and the
recurrent computation show that the latter is more effective at least as long
as not too many vectors have been stored. When the capacity of the weight
matrix begins to be put under strain, the differences between the two methods
disappear.

The sizes of the basins of attraction in the feed-forward and the recurrent
network can be compared using an index I for their size. This index can be
defined as

I =
5∑

h=0

hph

where ph represents the percentage of vectors with Hamming distance h from
a stored vector which converge to it. Two indices were computed using the
data in Table 12.1 and Table 12.2. The results are shown in Figure 12.7. Both
indices are clearly different up to five stored vectors.

As all these comparisons show, the size of the basins of attraction falls very
fast. This can be explained by remembering that five stored vectors imply at
least ten actually stored patterns, since together with x the vector −x is
also stored. Additionally, distortion of the basins of attraction produced by

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

12.2 Associative learning 323

0

100

0

50

100

0 1 2 3 4 5

2 stored
vectors

3 stored
vectors

recursive

0

100

0

50

1004 stored
vectors

5 stored
vectors

0

50

100

0

50

100
6 stored
vectors

7 stored
vectors

% %

%
%

% %

recursive

recursive

recursive

recursive recursive

50

50

0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

Fig. 12.6. Comparison of the percentage of vectors with a Hamming distance from
0 to 5 from stored patterns and which converge to them

Hebbian learning leads to the appearance of other spurious stable states. A
computer experiment was used to count the number of spurious states that
appear when 2 to 7 random bipolar vectors are stored in a 10× 10 associative
matrix. Table 12.3 shows the fast increase in the number of spurious states.

Spurious states other than the negative stored patterns appear because
the crosstalk becomes too large. An alternative way to minimize the crosstalk
term is to use another kind of learning rule, as we discuss in the next section.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

324 12 Associative Networks

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7

recursive

one iteration

Number of stored vectors

index

Fig. 12.7. Comparison of the indices of attraction for an associative network with
and without feedback

Table 12.3. Increase in the number of spurious states when the number of stored
patterns increases from 2 to 7 (dimension 10)

stored vectors23 4 5 6 7

negative vectors23 4 5 6 7

spurious fixed points24 8 162445

total4712213052

12.2.4 Another visualization

A second kind of visualization of the basins of attraction allows us to perceive
their gradual fragmentation in an associative network. Figure 12.8 shows the
result of an experiment using input vectors in a 100-dimensional space. Several
vectors were stored and the size of the basins of attraction of one of them and
its bipolar complement were monitored using the following technique: the 100
components of each vector were divided into two groups of 50 components
using random selection. The Hamming distance of a vector to the stored vector
was measured by counting the number of different components in each group.
In this way the vector z with Hamming distances 20 and 30 to the vector x,
according to the chosen partition in two groups of components, is a vector
with total Hamming distance 50 to the stored vector. The chosen partition
allows us to represent the vector z as a point at the position (20, 30) in a
two-dimensional grid. This point is colored black if z is associated with x by
the associative network, otherwise it is left white. For each point in the grid
a vector with the corresponding Hamming distance to x was generated.

As Figure 12.8 shows, when only 4 vectors have been stored, the vector x
and its complement −x attract a considerable portion of their neighborhood.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

12.3 The capacity problem 325

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

Fig. 12.8. Basin of attraction in 100-dimensional space of a stored vector. The
number of stored patterns is 4, 6, 10 and 15, from top to bottom, left to right.

As the number of stored vectors increases, the basins of attraction become
ragged and smaller, until by 15 stored vectors they are starting to become
unusable. This is near to the theoretical limit for the capacity of an associative
network.

12.3 The capacity problem

The experiments of the previous sections have shown that the basins of at-
traction of stored patterns deteriorate every time new vectors are presented
to an associative network. If the crosstalk term becomes too large, it can even
happen that previously stored patterns are lost, because when they are pre-
sented to the network one or more of their bits are flipped by the associative
computation. We would like to keep the probability that this could happen
low, so that stored patterns can always be recalled. Depending on the upper
bound that we want to put on this probability some limits to the number of
patterns m that can be stored safely in an autoassociative network with an
n×n weight matrix W will arise. This is called the maximum capacity of the
network and an often quoted rule of thumb is m ≈ 0.18n. It is actually easy
to derive this rule [189].

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

326 12 Associative Networks

The crosstalk term for n-dimensional bipolar vectors and m patterns in
the autoassociative case is

1
n

m∑
� �=p

x�(x� · xp).

This can flip a bit of a stored pattern if the magnitude of this term is larger
than 1 and if it is of opposite sign. Assume that the stored vectors are chosen
randomly from input space. In this case the crosstalk term for bit i of the
input vector is given by

1
n

m∑
� �=p

x�
i(x

� · xp).

This is a sum of (m− 1)n bipolar bits. Since the components of each pattern
have been selected randomly we can think of mn random bit selections (for
large m and n). The expected value of the sum is zero. It can be shown that
the sum has a binomial distribution and for large mn we can approximate
it with a normal distribution. The standard deviation of the distribution is
σ =

√
m/n. The probability of error P that the sum becomes larger than 1

or −1 is given by the area under the Gaussian from 1 to ∞ or from −1 to
−∞. That is,

P =
1√
2πσ

∫ ∞

1

e−x2/(2σ2)dx

If we set the upper bound for one bit failure at 0.01, the above expression can
be solved numerically to find the appropriate combination of m and n. The
numerical solution leads to m ≈ 0.18n as mentioned before.

Note that these are just probabilistic results. If the patterns are correlated,
even m < 0.18n can produce problems. Also, we did not consider the case of
a recursive computation and only considered the case of a false bit. A more
precise computation does not essentially change the order of magnitude of
these results: an associative network remains statistically safe only if fewer
than 0.18n patterns are stored. If we demand perfect recall of all patterns
more stringent bounds are needed [189]. The experiments in the previous
section are on such a small scale that no problems were found with the recall
of stored patterns even when m was much larger than 0.18n.

12.4 The pseudoinverse

Hebbian learning produces good results when the stored patterns are nearly
orthogonal. This is the case when m bipolar vectors are selected randomly
from an n-dimensional space, n is large enough and m much smaller than n.
In real applications the patterns are almost always correlated and the crosstalk
in the expression

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

12.4 The pseudoinverse 327

xpW = yp(xp · xp) +
m∑

� �=p

y�(x� · xp)

affects the recall process because the scalar products x� · xp, for � �= p, are
not small enough. This causes a reduction in the capacity of the associative
network, that is, of the number of patterns that can be stored and later
recalled. Consider the example of scanned letters of the alphabet, digitized
using a 16× 16 grid of pixels. The pattern vectors do not occupy input space
homogeneously but concentrate around a small region. We must therefore look
for alternative learning methods capable of minimizing the crosstalk between
the stored patterns. One of the preferred methods is using the pseudoinverse
of the pattern matrix instead of the correlation matrix.

12.4.1 Definition and properties of the pseudoinverse

Let x1,x2, . . . ,xm be n-dimensional vectors and associate them with the m
k-dimensional vectors y1,y2, . . . ,ym. The matrix X is, as before, the m× n
matrix whose rows are the vectors x1,x2, . . . ,xm. The rows of the m × k
matrix Y are the vectors y1,y2, . . . ,ym. We are looking for a weight matrix
W such that

XW = Y.

Since in general m �= n and the vectors x1,x2, . . . ,xm are not necessarily
linearly independent, the matrix X cannot be inverted. However, we can look
for a matrix W which minimizes the quadratic norm of the matrix XW−Y,
that is, the sum of the squares of all its elements. It is a well-known result of
linear algebra that the expression ‖XW − Y‖2 is minimized by the matrix
W = X+Y, where X+ is the so-called pseudoinverse of the matrix X. In some
sense the pseudoinverse is the best “approximation” to an inverse that we can
get, and if X−1 exists, then X−1 = X+.

Definition 14. The pseudoinverse of a real m × n matrix is the real matrix
X+ with the following properties:

a) XX+X = X.
b) X+XX+ = X+.
c) X+X and XX+ are symmetrical.

It can be shown that the pseudoinverse of a matrix X always exists and is
unique [14]. We can now prove the result mentioned before [185].

Proposition 18. Let X be an m × n real matrix and Y be an m × k real
matrix. The n × k matrix W = X+Y minimizes the quadratic norm of the
matrix XW−Y.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

328 12 Associative Networks

Proof. Define E = ‖XW −Y‖2. The value of E can be computed from the
equation

E = tr(S),

where S = (XW −Y)T(XW −Y) and tr(·) denotes the function that com-
putes the trace of a matrix, that is, the sum of all its diagonal elements. The
matrix S can be rewritten as

S = (X+Y −W)TXTX(X+Y −W) + YT(I−XX+)Y. (12.7)

This can be verified by bringing S back to its original form. Equation (12.7)
can be written as

S = (X+Y −W)T(XTXX+Y −XTXW) + YT(I−XX+)Y.

Since the matrix XX+ is symmetrical (from the definition of X+), the above
expression transforms to

S = (X+Y −W)T((XX+X)TY −XTXW) + YT(I−XX+)Y.

Since from the definition of X+ we know that XX+X = X it follows that

S = (X+Y −W)T(XTY −XTXW) + YT(I−XX+)Y
= (X+Y −W)TXT(Y −XW) + YT(I−XX+)Y
= (XX+Y −XW)T(Y −XW) + YT(I−XX+)Y
= (−XW)T(Y −XW) + YTXX+(Y −XW) + YT(I−XX+)Y
= (−XW)T(Y −XW) + YT(−XW) + YTY

= (Y −XW)T(Y −XW).

This confirms that equation (12.7) is correct. Using (12.7) the value of E can
be written as

E = tr
(
(X+Y −W)TXTX(X+Y −W)

)
+ tr

(
YT(I−XX+)Y

)
,

since the trace of an addition of two matrices is the addition of the trace of
each matrix. The trace of the second matrix is a constant. The trace of the
first is positive or zero, since the trace of a matrix of the form AAT is always
positive or zero. The minimum of E is reached therefore when W = X+Y,
as we wanted to prove. �

An interesting corollary of the above proposition is that the pseudoinverse
of a matrix X minimizes the norm of the matrix XX+ − I. This is what we
mean when we say that the pseudoinverse is the second best choice if the
inverse of a matrix is not defined.

The quadratic norm E has a straightforward interpretation for our asso-
ciative learning task. Minimizing E = ‖XW −Y‖2 amounts to minimizing

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

12.4 The pseudoinverse 329

the sum of the quadratic norm of the vectors xiW − yi, where (xi,yi), for
i = 1, . . . ,m, are the vector pairs we want to associate. The identity

xiW = yi + (xiW − yi)

always holds. Since the desired result of the computation is yi, the term xiW−
yi represents the deviation from the ideal situation, that is, the crosstalk in
the associative network. The quadratic norm E defined before can also be
written as

E =
m∑

i=1

∥∥xiW− yi
∥∥2.

Minimizing E amounts to minimizing the deviation from perfect recall. The
pseudoinverse can thus be used to compute an optimal weight matrix W.

Table 12.4. Percentage of 10-dimensional vectors with a Hamming distance (H)
from 0 to 4, which converge to a stored vector in five iterations. The number of
stored vectors increases from 1 to 7. The weight matrix is X+X.

Number of stored vectors (dimension 10)

H 1 2 3 4 5 6 7

0 100.0100.0100.0100.0100.0100.0100.0

1 100.0100.0 90.0 85.0 50.0 50.0 30.0

2 100.0 86.7 77.8 60.0 22.7 10.4 1.3

3 100.0 50.8 40.8 30.4 3.2 0.0 0.0

4 100.0 1.9 7.6 8.6 0.0 0.0 0.0

An experiment similar to the ones performed before (Table 12.4) shows
that using the pseudoinverse to compute the weight matrix produces better
results than when the correlation matrix is used. Only one iteration was per-
formed during the associative recall. The table also shows that if more than
five vectors are stored the quality of the results does not improve. This can
be explained by noting that the capacity of the associative network has been
overflowed. The stored vectors were also randomly chosen. The pseudoinverse
method performs better than Hebbian learning when the patterns are corre-
lated.

12.4.2 Orthogonal projections

In Sect. 12.2.2 we provided a geometric interpretation of the effect of the cor-
relation matrix in the associative computation. We arrived at the conclusion
that when an n-dimensional vector x1 is autoassociated, the weight matrix
(x1)Tx1 projects the whole of input space into the linear subspace spanned by

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

330 12 Associative Networks

x1. However, the projection is not an orthogonal projection. The pseudoin-
verse can be used to construct an operator capable of projecting the input
vector orthogonally into the subspace spanned by the stored patterns.

What is the advantage of performing an orthogonal projection? An autoas-
sociative network must associate each input vector with the nearest stored
pattern and must produce this as the result. In nonlinear associative net-
works this is done in two steps: the input vector x is projected first onto
the linear subspace spanned by the stored patterns, and then the nonlinear
function sgn(·) is used to find the bipolar vector nearest to the projection.
If the projection falsifies the information about the distance of the input to
the stored patterns, then a suboptimal selection could be the result. Fig-
ure 12.9 illustrates this problem. The vector x is projected orthogonally and
non-orthogonally in the space spanned by the vectors x1 and x2. The vector
x is closer to x2 than to x1. The orthogonal projection x̃ is also closer to
x2. However, the non-orthogonal projection x̆ is closer to x1 as to x2. This is
certainly a scenario we should try to avoid.

orthogonal projection non-orthogonal projection

x

x̂
x̂

x

x1
x1

x2
x2

x̃

x

Fig. 12.9. Projections of a vector x

In what follows we consider only the orthogonal projection. If we use the
scalar product as the metric to assess the distance between patterns, the
distance between the input vector x and the stored vector xi is given by

d = x · xi = (x̃ + x̂) · xi = x̃ · xi, (12.8)

where x̃ represents the orthogonal projection onto the vector subspace
spanned by the stored vectors, and x̂ = x− x̃. Equation (12.8) shows that the
original distance d is equal to the distance between the projection x̃ and the
vector xi. The orthogonal projection does not falsify the original information.
We must therefore only show that the pseudoinverse provides a simple way

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

12.4 The pseudoinverse 331

to find the orthogonal projection to the linear subspace defined by the stored
patterns.

Consider m n-dimensional vectors x1,x2, . . . ,xm, where m < n. Let x̃ be
the orthogonal projection of an arbitrary input vector x �= 0 on the subspace
spanned by the m given vectors. In this case

x = x̃ + x̂,

where x̂ is orthogonal to the vectors x1,x2, . . . ,xm. We want to find an n×n
matrix W such that

xW = x̃.

Since x̂ = x− x̃, the matrix W must fulfill

x̂ = x(I −W). (12.9)

Let X be the m× n matrix whose rows are the vectors x1,x2, . . . ,xm. Then
it holds for x̂ that

Xx̂T = 0,

since x̂ is orthogonal to all vectors x1,x2, . . . ,xm. A possible solution for this
equation is

x̂T = (I−X+X)xT, (12.10)

because in this case

Xx̂T = X(I−X+X)xT = (X−X)xT = 0.

Since the matrix I−X+X is symmetrical it holds that

x̂ = x(I−X+X). (12.11)

A direct comparison of equations (12.9) and (12.11) shows that W = X+X,
since the orthogonal projection x̂ is unique. This amounts to a proof that the
orthogonal projection of a vector x can be computed by multiplying it with
the matrix X+X.

What happens if the number of patterns m is larger than the dimension
of the input space? Assume that the m n-dimensional vectors x1,x2, . . . ,xm

are to be associated with the m real numbers y1, y2, . . . , ym. Let X be the
matrix whose rows are the given patterns and let y = (y1, y2, . . . , ym). We are
looking for the n× 1 matrix W such that

XW = yT.

In general there is no exact solution for this system of m equations in n
variables. The best approximation is given by W = X+yT, which minimizes
the quadratic error ‖XW − yT‖2. The solution X+XT is therefore the same
as that we find if we use linear regression.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

332 12 Associative Networks

+

+

+

+

+ Ei

x1
i

x2
i

xn
i

wij (o1 − y1
i)2

(ok − yk
i)2

Fig. 12.10. Backpropagation network for a linear associative memory

The only open question is how best to compute the pseudoinverse. We
already discussed in Chap. 9 that there are several algorithms which can be
used, but that a simple approach is to compute an approximation using a
backpropagation network. A network, such as the one shown in Figure 12.10,
can be used to find the appropriate weights for an associative memory. The
units in the first layer are linear associators. The learning task consists in find-
ing the weight matrix W with elements wij that produces the best mapping
from the vectors x1,x2, . . . ,xm to the vectors y1,y2, . . . ,ym. The network is
extended as shown in Figure 12.10. For the i-th input vector, the output of
the network is compared to the vector yi and the quadratic error Ei is com-
puted. The total quadratic error E =

∑m
i=1 Ei is the quadratic norm of the

matrix XW −Y. Backpropagation can find the matrix W which minimizes
the expression ‖XW−Y‖2. If the input vectors are linearly independent and
m < n, then a solution with zero error can be found. If m ≥ n and Y = I,
the network of Figure 12.10 can be used to find the pseudoinverse X+ or the
inverse X−1 (if it exists). This algorithm for the computation of the pseudoin-
verse brings backpropagation networks in direct contact with the problem of
associative networks. Strictly speaking, we should minimize ‖XW−Y‖2 and
the quadratic norm of W. This is equivalent to introducing a weight decay
term in the backpropagation computation.

12.4.3 Holographic memories

Associative networks have found many applications for pattern recognition
tasks. Figure 12.11 shows the “canonical” example. The faces were scanned
and encoded as vectors. A white pixel was encoded as −1 and a black pixel
as 1. Some images were stored in an associative network. When later a key,
that is, an incomplete or noisy version of one of the stored images is presented
to the network, this completes the image and finds the one with the greatest
similarity. This is called an associative recall.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

12.4 The pseudoinverse 333

Fig. 12.11. Associative recall of stored patterns

This kind of application can be implemented in conventional workstations.
If the dimension of the images becomes too large (for example 106 pixels for a
1000×1000 image, the only alternative is to use innovative computer architec-
tures, like so-called holographic memories. They work with similar methods to
those described here, but computation is performed in parallel using optical
elements. We leave the discussion of these architectures for Chap. 18.

12.4.4 Translation invariant pattern recognition

It would be nice if the process of associative recall could be made robust in the
sense that those patterns which are very similar, except for a translation in the
plane, could be identified as being, in fact, similar. This can be done using the
two-dimensional Fourier transform of the scanned images. Figure 12.12 shows
an example of two identical patterns positioned with a small displacement
from each other.

Fig. 12.12. The pattern “0” at two positions of a grid

The two-dimensional discrete Fourier transform of a two-dimensional array
is computed by first performing a one-dimensional Fourier transform of the
rows of the array and then a one-dimensional Fourier transform of the columns
of the results (or vice versa). It is easy to show that the absolute value of the
Fourier coefficients does not change under a translation of the two-dimensional
pattern. Since the Fourier transform also has the property that it preserves
angles, that is, similar patterns in the original domain are also similar in

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

334 12 Associative Networks

the Fourier domain, this preprocessing can be used to implement translation-
invariant associative recall. In this case the vectors which are stored in the
network are the absolute values of the Fourier coefficients for each pattern.

Definition 15. Let a(x, y) denote an array of real values, where x and y
represent integers such that 0 ≤ x ≤ N − 1 and 0 ≤ y ≤ N − 1. The two-
dimensional discrete Fourier transform Fa(fx, fy) of a(x, y) is given by

Fa(fx, fy) =
1
N

N−1∑
y=0

N−1∑
x=0

a(x, y)e
2π
N ixfxe

2π
N iyfy

where 0 ≤ fx ≤ N − 1 and 0 ≤ fy ≤ N − 1.

Consider two arrays a(x, y) and b(x, y) of real values. Assume that they
represent the same pattern, but with a certain displacement, that is b(x, y) =
a(x+ dx, y+ dy), where dx and dy are two given integers. Note that the addi-
tions x+dx and y+dy are performed modulo N (that is, the displaced patterns
wrap around the two-dimensional array). The two-dimensional Fourier trans-
form of the array b(x, y) is therefore

Fb(fx, fy) =
1
N

N−1∑
y=0

N−1∑
x=0

a(x+ dx, y + dy)e
2π
N ixfxe

2π
N iyfy .

With the change of indices x′ = (x+ dx)modN and y′ = (y+ dy)modN the
above expression transforms to

Fb(fx, fy) =
1
N

N−1∑
y=0

N−1∑
x=0

a(x′, y′)e
2π
N ix′fxe

2π
N iy′fye

−2π
N idxfxe

−2π
N idyfy .

The two sums can be rearranged and the constant factors taken out of the
double sum to yield

Fb(fx, fy) =
1
N

e
−2π

N idxfxe
−2π

N idyfy

N−1∑
y′=0

N−1∑
x′=0

a(x′, y′)e
2π
N ix′fxe

2π
N iy′fy .

which can be written as

Fb(fx, fy) = e
−2π

N idxfxe
−2π

N idyfyFa(fx, fy).

This expression tells us that the Fourier coefficients of the array b(x, y) are
identical to the coefficients of the array a(x, y), except for a phase factor.
Since taking the absolute values of the Fourier coefficients eliminates any
phase factor, it holds that

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

12.5 Historical and bibliographical remarks 335

0
5

10
15

20

0

5

10

15

20
0

5

10

15

20

25

0
5

10
15

20

0

5

10

15

20
0

5

10

15

20

25

Fig. 12.13. Absolute values of the two-dimensional Fourier transform of the pat-
terns of Figure 12.12

‖Fb(fx, fy)‖ = ‖e−2π
N idxfxe

−2π
N idyfy‖‖Fa(fx, fy)‖

= ‖Fa(fx, fy)‖,
and this proves that the absolute values of the Fourier coefficients for both
patterns are identical.

Figure 12.13 shows the absolute values of the two-dimensional Fourier co-
efficients for the two patterns of Figure 12.12. They are identical, as expected
from the above considerations.

Note that this type of comparison holds as long as the background noise
is low. If there is a background with a certain structure it should be displaced
together with the patterns, otherwise the analysis performed above does not
hold. This is what makes the translation-invariant recognition of patterns a
difficult problem when the background is structured. Recognizing faces in
real photographs can become extremely difficult when a typical background
(a forest, a street, for example) is taken into account.

12.5 Historical and bibliographical remarks

Associative networks have been studied for a long time. Donald Hebb consid-
ered in the 1950s how neural assemblies can self-organize into feedback circuits
capable of recognizing patterns [308]. Hebbian learning has been interpreted in
different ways and several modifications of the basic algorithm have been pro-
posed, but they all have three aspects in common: Hebbian learning is a local,
interactive, and time-dependent mechanism [73]. A synaptic phenomenon in
the hippocampus, known as long-term potentiation, is thought to be produced
by Hebbian modification of the synaptic strength.

There were some other experiments with associative memories in the 1960s,
for example the hardware implementations by Karl Steinbuch of his “learn-
ing matrix”. A preciser mathematical description of associative networks was
given by Kohonen in the 1970s [253]. His experiments with many different

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

336 12 Associative Networks

classes of associative memories contributed enormously to the renewed surge
of interest in neural models. Some researchers tried to find biologically plau-
sible models of associative memories following his lead [89]. Some discrete
variants of correlation matrices were analyzed in the 1980s, as done for ex-
ample by Kanerva who considered the case of weight matrices with only two
classes of elements, 0 or 1 [233].

In recent times much work has been done on understanding the dynamical
properties of recurrent associative networks [231]. It is important to find meth-
ods to describe the changes in the basins of attraction of the stored patterns
[294]. More recently Haken has proposed his model of a synergetic computer,
a kind of associative network with a continuous dynamics in which synergetic
effects play the crucial role [178]. The fundamental difference from conven-
tional models is the continuous, instead of discrete, dynamics of the network,
regulated by some differential equations.

The Moore–Penrose pseudoinverse has become an essential instrument in
linear algebra and statistics [14]. It has a simple geometric interpretation and
can be computed using standard linear algebraic methods. It makes it possible
to deal efficiently with correlated data of the kind found in real applications.

Exercises

1. The Hamming distance between two n-dimensional binary vectors x and
y is given by h =

∑n
i=1(xi(1−yi)+yi(1−xi)). Write h as a function of the

scalar product x · y. Find a similar expression for bipolar vectors. Show
that measuring the similarity of vectors using the Hamming distance is
equivalent to measuring it using the scalar product.

2. Implement an associative memory capable of recognizing the ten digits
from 0 to 9, even in the case of a noisy input.

3. Preprocess the data, so that the pattern recognition process is made trans-
lation invariant.

4. Find the inverse of an invertible matrix using the backpropagation algo-
rithm.

5. Show that the pseudoinverse of a matrix is unique.
6. Does the backpropagation algorithm always find the pseudoinverse of any

given matrix?
7. Show that the two-dimensional Fourier transform is a composition of two

one-dimensional Fourier transforms.
8. Express the two-dimensional Fourier transform as the product of three

matrices (see the expression for the one-dimensional FT in Chap. 9).

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13

The Hopfield Model

One of the milestones for the current renaissance in the field of neural networks
was the associative model proposed by Hopfield at the beginning of the 1980s.
Hopfield’s approach illustrates the way theoretical physicists like to think
about ensembles of computing units. No synchronization is required, each
unit behaving as a kind of elementary system in complex interaction with the
rest of the ensemble. An energy function must be introduced to harness the
theoretical complexities posed by such an approach. The next two sections
deal with the structure of Hopfield networks. We then proceed to show that
the model converges to a stable state and that two kinds of learning rules can
be used to find appropriate network weights.

13.1 Synchronous and asynchronous networks

A relevant issue for the correct design of recurrent neural networks is the ad-
equate synchronization of the computing elements. In the case of McCulloch-
Pitts networks we solved this difficulty by assuming that the activation of each
computing element consumes a unit of time. The network is built taking this
delay into account and by arranging the elements and their connections in the
necessary pattern. When the arrangement becomes too contrived, additional
units can be included which serve as delay elements. What happens when
this assumption is lifted, that is, when the synchronization of the computing
elements is eliminated?

13.1.1 Recursive networks with stochastic dynamics

We discussed the design and operation of associative networks in the previous
chapter. The synchronization of the output was achieved by requiring that all
computing elements evaluate their inputs and compute their output simulta-
neously. Under this assumption the operation of the associative memory can

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

338 13 The Hopfield Model

be described with simple linear algebraic methods. The excitation of the out-
put units is computed using vector-matrix multiplication and evaluating the
sign function at each node.

The methods we have used before to avoid dealing explicitly with the
synchronization problem have the disadvantage, from the point of view of both
biology and physics, that global information is needed, namely a global time.
Whereas in conventional computers synchronization of the digital building
blocks is achieved using a clock signal, there is no such global clock in biological
systems. In a more biologically oriented simulation, global synchronization
should thus be avoided. In this chapter we deal with the problem of identifying
the properties of neural networks lacking global synchronization.

Networks in which the computing units are activated at different times
and which provide a computation after a variable amount of time are stochas-
tic automata. Networks built from this kind of units behave like stochastic
dynamical systems.

13.1.2 The bidirectional associative memory

Before we start analyzing asynchronous networks we will examine another
kind of synchronous associative model with bidirectional edges. We will arrive
at the concept of the energy function in a very natural way.

We have already discussed recurrent associative networks in which the
output of the network is fed back to the input units using additional feed-
back connections (Figure 12.3). In this way we designed recurrent dynamical
systems and tried to determine their fixpoints. However, there is another way
to define a recurrent associative memory made up of two layers which send
information recursively between them. The input layer contains units which
receive the input to the network and send the result of their computation
to the output layer. The output of the first layer is transported by bidirec-
tional edges to the second layer of units, which then return the result of their
computation back to the first layer using the same edges. As in the case of
associative memory models, we can ask whether the network achieves a stable
state in which the information being sent back and forth does not change after
a few iterations [258]. Such a network (shown in Figure 13.1) is known as a
resonance network or bidirectional associative memory (BAM). The activa-
tion function of the units is the sign function and information is coded using
bipolar values.

The network in Figure 13.1 maps an n-dimensional row vector x0 to a k-
dimensional row vector y0. We denote the n×k weight matrix of the network
by W so that the mapping computed in the first step can be written as

y0 = sgn(x0W).

In the feedback step y0 is treated as the input and the new computation is

xT
1 = sgn(WyT

0).

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13.1 Synchronous and asynchronous networks 339

x1

x2

x3

xn

y1

y2

y3

yk

w11

wnk

.

.

.

.

.

.

Fig. 13.1. Example of a resonance network (BAM)

A new computation from left to right produces

y1 = sgn(x1W).

After m iterations the system has computed a set of m + 1 vector pairs
(x0,y0), . . . , (xm,ym) which fulfill the conditions

yi = sgn(xiW) (13.1)

and
xT

i+1 = sgn(WyT
i). (13.2)

The question is whether after some iterations a fixpoint (x,y) is found. This
is the case when both

y = sgn(xW) and xT = sgn(WyT) (13.3)

hold. The BAM is thus a generalization of a unidirectional associative memory.
An input vector, the “key”, can be presented to the network from the left or
from the right and, after some iterations, the BAM finds the corresponding
complementary vector. As can be seen, no external feedback connections are
necessary. The same edges are used for the transmission of information back
and forth.

It can be immediately deduced from (13.3) that if a vector pair (x,y) is
given and we want to condition a BAM to accept this pair as a fixed point,
Hebbian learning can be used to compute an adequate matrix W. If W is
defined as W = xTy, as prescribed by Hebbian learning, then

y = sgn(xW) = sgn(xxTy) = sgn(‖x‖2y) = y

and also

xT = sgn(WyT) = sgn(xTyyT) = sgn(xT‖y‖2) = xT.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

340 13 The Hopfield Model

If we want to store several vector pairs (x1,y1), . . . , (xm,ym) in a BAM, then
Hebbian learning works better if the vectors x1, . . . ,xm and y1, . . . ,ym are
pairwise orthogonal within their respective groups, because in that case the
perturbation term becomes negligible (refer to Chap. 12).

For a set of m vector pairs the matrix W is set to

W = xT
1 y1 + xT

2 y2 + · · ·+ xT
mym.

BAMs can be used to build autoassociative networks because the matrices
produced by the Hebb rule or by computing the pseudoinverse are symmetric.
To see this, define X as the matrix, each of whose m rows is an n-dimensional
vector, so that if W denotes the connection matrix of an autoassociative
memory for those m vectors, then it is true that

X = XW and XT = WXT,

because W is symmetric. This is just another way of writing the type of
computation performed by a BAM.

13.1.3 The energy function

With the BAM we can motivate and explore the concept of an energy function
in a simple setting. Assume that a BAM is given for which the vector pair
(x,y) is a stable state. If the initial vector presented to the network from
the left is x0, the network will converge to (x,y) after some iterations. The
vector y0 is computed according to y0 = sgn(x0W). If y0 is now used for a
new iteration from the right, excitation of the units in the left layer can be
summarized in an excitation vector e computed according to

eT = Wy0.

The vector pair (x0,y0) is a stable state of the network if sgn(e) = x0. All
vectors e close enough to x0 fulfill this condition. These vectors differ from
x0 by a small angle and therefore the product x0eT is larger than for other
vectors of the same length but further away from x0. The product

E = −x0eT = −x0WyT
0

is therefore smaller (because of the minus sign) if the vector WyT
0 lies closer

to x0. The scalar value E can be used as a kind of index of convergence to
the stable states of an associative memory. We call E the energy function of
the network.

Definition 16. The energy function E of a BAM with weight matrix W, in
which the output yi of the right layer of units is computed in the i-th iteration
according to equation (13.1) and the output xi of the left layer is computed
according to (13.2) is given by

E(xi,yi) = −1
2
xiWyT

i . (13.4)

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13.2 Definition of Hopfield networks 341

The factor 1/2 will be useful later and is just a scaling constant for the
energy function. In the following sections we show that the energy function
assumes locally minimal values at stable states. The energy function can also
be generalized to arbitrary vectors x and y.

Up to this point we have only considered units with the sign function as
activation nonlinearity in the type of associative memories we have discussed.
If we now consider units with a threshold and the step function as its activation
function, we must use a more general expression for the energy function.
This can be done by extending the input vectors with an additional constant
component. Each n-dimensional vector x will be transformed into the vector
(x1, . . . , xn, 1). We proceed in a similar way with the k-dimensional vector
y. The weight matrix W must be extended to a new matrix W′ with an
additional row and column. The negative thresholds of the units in the right
layer of the BAM are included in row n + 1 of W′, whereas the negative
thresholds of the units in the left are used as the entries of the column k + 1
of the weight matrix. The entry (n+ 1, k+ 1) of the weight matrix can be set
to zero. This transformation is equivalent to the introduction of an additional
unit with constant output 1 into each layer. The weight of each edge from
a constant unit to each one of the others is the negative threshold of the
connected unit. It is straightforward to deduce that the energy function of
the extended network can be written as

E(xi,yi) = −1
2
xiWyT

i +
1
2
θryT

i +
1
2
xiθ

T
� . (13.5)

The row vector of thresholds of the k units in the left layer is denoted in the
above expression by θ�. The row vector of thresholds of the n units in the
right layer is denoted by θr.

13.2 Definition of Hopfield networks

So far we have considered only conventional or bidirectional associative mem-
ories working with synchronized units. Dropping the assumption of simultane-
ous firing of the computing elements leads to the appearance of novel network
properties.

13.2.1 Asynchronous networks

In an asynchronous network each unit computes its excitation at random times
and changes its state to 1 or −1 independently of the others and according to
the sign of its total excitation. The probability of two units firing simultane-
ously is zero. Consequently, the same dynamics can be obtained by selecting
one unit randomly, computing its excitation and updating its state accord-
ingly. There will not be any delay between computation of the excitation and
state update. We adopt the additional simplification that the state of a unit

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

342 13 The Hopfield Model

is not changed if the total excitation is zero. This means that we leave the
sign function undefined for the argument zero. Asynchronous networks are
of course more realistic models of biological networks, although the assump-
tion of zero delay in the computation and transmission of signals lacks any
biological basis.

Using the energy function it can be shown that a BAM arrives at a stable
state after a finite number of iterations. A stable state is a vector pair (x,y)
which fulfills the conditions (13.3). When a BAM reaches this state pair, no
component of the bipolar vectors x and y can be changed without contra-
dicting (13.3). The vector pair (x,y) is therefore also a stable state for an
asynchronous network.

Proposition 19. A bidirectional associative memory with an arbitrary weight
matrix W reaches a stable state in a finite number of iterations using either
synchronous or asynchronous updates.

Proof. For a vector x = (x1, x2, . . . , xn), a vector y = (y1, y2, . . . , yk) and an
n× k weight matrix W = {wij} the energy function is the bilinear form

E(x,y) = −1
2
(x1, x2, . . . , xn)

⎛
⎜⎜⎜⎝
w11 w12 · · · w1k

w21 w22 · · · w2k

...
. . .

...
wn1 wn2 · · · wnk

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝
y1
y2
...
yk

⎞
⎟⎟⎟⎠ .

The value of E(x,y) can be computed by multiplying first W by yT and the
result with −x/2. The product of the i-th row of W and yT represents the
excitation of the i-th unit in the left layer. If we denote these excitations by
g1, g2, . . . , gn the above expression transforms to

E(x,y) = −1
2
(x1, x2, . . . , xn)

⎛
⎜⎜⎜⎝
g1
g2
...
gn

⎞
⎟⎟⎟⎠ .

We can also compute E(x,y) multiplying first x by W. The product of the i-th
column of W with x corresponds to the excitation of unit i in the right layer.
If we denote these excitations by e1, e2, . . . , ek, the expression for E(x,y) can
be written as

E(x,y) = −1
2
(e1, e2, . . . , ek)

⎛
⎜⎜⎜⎝
y1
y2
...
yk

⎞
⎟⎟⎟⎠ .

Therefore, the energy function can be written in the two equivalent forms

E(x,y) = −1
2

k∑
i=1

eiyi and E(x,y) = −1
2

n∑
i=1

gixi.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13.2 Definition of Hopfield networks 343

In asynchronous networks at each time t we randomly select a unit from the
left or right layer. The excitation is computed and its sign is the new activation
of the unit. If the previous activation of the unit remains the same after this
operation, then the energy of the network has not changed.

The state of unit i on the left layer will change only when the excitation gi

has a different sign than xi, the present state. The state is updated from xi to
x′i, where x′i now has the same sign as gi. Since the other units do not change
their state, the difference between the previous energy E(x,y) and the new
energy E(x′,y) is

E(x,y) − E(x′,y) = −1
2
gi(xi − x′i).

Since both xi and −xi have a different sign than gi it follows that

E(x,y) − E(x′,y) > 0.

The new state (x′,y) has a lower energy than the original state (x,y). The
same argument can be made if a unit on the right layer has been selected, so
that for the new state (x,y′) it holds that

E(x,y) − E(x,y′) > 0,

whenever the state of a unit in the right layer has been flipped.
Any update of the network state reduces the total energy. Since there are

only a finite number of possible combinations of bipolar states, the process
must stop at some point, that is, a state (a,b) is found whose energy cannot
be further reduced. The network has fallen into a local minimum of the energy
function and the state (a,b) is an attractor of the system. �

The above proposition also holds for synchronous networks, since these
can be considered as a special case of asynchronous dynamics. Note that the
proposition puts conditions on the matrix W. This means that any given real
matrix W possesses bidirectional stable bipolar states.

13.2.2 Examples of the model

In 1982 the American physicist John Hopfield proposed an asynchronous neu-
ral network model which made an immediate impact in the AI community. It
is a special case of a bidirectional associative memory, but chronologically it
was proposed before the BAM.

In the Hopfield model it is assumed that the individual units preserve
their individual states until they are selected for a new update. The selection
is made randomly. A Hopfield network consists of n totally coupled units,
that is, each unit is connected to all other units except itself. The network
is symmetric because the weight wij for the connection between unit i and

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

344 13 The Hopfield Model

unit j is equal to the weight wji of the connection from unit j to unit i. This
can be interpreted as meaning that there is a single bidirectional connection
between both units. The absence of a connection from each unit to itself avoids
a permanent feedback of its own state value [198].

Figure 13.2 shows an example of a network with three units. Each one of
them can assume the state 1 or −1. A Hopfield network can also be interpreted
as an asynchronous BAM in which the left and right layers of units have fused
to a single layer. The connections in a Hopfield network with n units can be
represented using an n× n weight matrix W = {wij} with a zero diagonal.

unit 3unit 2

unit 1

x3

x1

x2

w12 w13

w23

Fig. 13.2. A Hopfield network of three units

It is easy to show that if the weight matrix does not contain a zero diagonal,
the network dynamics does not necessarily lead to stable states. The weight
matrix

W =

⎛
⎝−1 0 0

0 −1 0
0 0 −1

⎞
⎠ ,

for example, transforms the state vector (1, 1, 1) into the state vector
(−1,−1,−1) and conversely. In the case of asynchronous updating, the net-
work chooses randomly among the eight possible network states.

A connection matrix with a zero diagonal can also lead to oscillations in
the case where the weight matrix is not symmetric. The weight matrix

W =
(

0 −1
1 0

)

describes the network of Figure 13.3. It transforms the state vector (1,−1)
into the state vector (1, 1) when the network is running asynchronously. After
this transition the state (−1, 1) can be updated to (−1,−1) and finally to
(1,−1). The state vector changes cyclically and does not converge to a stable
state.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13.2 Definition of Hopfield networks 345

1

–1

x1 x2

Fig. 13.3. Network with asymmetric connections

The symmetry of the weight matrix and a zero diagonal are thus necessary
conditions for the convergence of an asynchronous totally connected network
to a stable state. These conditions are also sufficient, as we show later.

The units of a Hopfield network can be assigned a threshold θ different
from zero. In this case each unit selected for a state update adopts the state
1 if its total excitation is greater than θ, otherwise the state −1. This is the
activation rule for perceptrons, so that we can think of Hopfield networks as
asynchronous recurrent networks of perceptrons.

The energy function of a Hopfield network composed of units with thresh-
olds different from zero can be defined in a similar way as for the BAM. In
this case the vector y of equation (13.5) is x and we let θ = θ� = θr.

Definition 17. Let W denote the weight matrix of a Hopfield network of n
units and let θ be the n-dimensional row vector of units’ thresholds. The energy
E(x) of a state x of the network is given by

E(x) = −1
2
xWxT + θxT.

The energy function can also be written in the form

E(x) = −1
2

n∑
j=1

n∑
i=1

wijxixj +
n∑

i=1

θixi.

The factor 1/2 is used because the identical terms wijxixj and wjixjxi are
present in the double sum.

The energy function of a Hopfield network is a quadratic form. A Hop-
field network always finds a local minimum of the energy function. It is thus
interesting to look at an example of the shape of such an energy function. Fig-
ure 13.4 shows a network of just two units with threshold zero. It is obvious
that the only stable states are (1,−1) and (−1, 1). In any other state, one of
the units forces the other to change its state to stabilize the network. Such
a network is a flip-flop, a logic component with two outputs which assume
complementary logic values.

The energy function of a flip-flop with weights w12 = w21 = −1 and two
units with threshold zero is given by

E(x1, x2) = x1x2,

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

346 13 The Hopfield Model

0
–1

0

Fig. 13.4. A flip-flop

where x1 and x2 denote the states of the first and second units respectively.
Figure 13.5 shows the energy function for the so-called continuous Hopfield
model [199] in which the unit’s states can assume all real values between 0 and
1. In the network of Figure 13.4 only the four discrete states (1, 1), (1,−1),
(−1, 1) and (−1,−1) are allowed. The energy function has local minima at
(1,−1) and (−1, 1). A flip-flop can therefore be interpreted as a network ca-
pable of storing one of the states (1,−1) or (−1, 1).

-1

0

1 x1

-1

0

1

x2 -1

0

1

-1

0

1 x1

-1

0

1

x2 -1

0

1

Fig. 13.5. Energy function of a flip-flop

Hopfield networks can also be used to compute logical functions. Con-
junction, for example, can be implemented with a network of three units. The
states of two units are set and remain fixed during the computation (clamping
their states). Only the third unit can change its state. If the network weights
and the unit thresholds have the appropriate values, the unconstrained unit
will assume a state which corresponds to the conjunction of the two clamped
states.

Figure 13.6 shows a network for the computation of the logical disjunction
of two Boolean values x1 and x2. The input is clamped and after some time
the network settles to a state which corresponds to the disjunction of x1 and
x2. The constants “true” and “false” correspond to the numerical values 1
and −1. In this network the thresholds of the clamped units and their mutual
connections play no role in the computation.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13.2 Definition of Hopfield networks 347

x1

x2

unit 3unit 2

unit 1

0.5

1

1
–

Fig. 13.6. Network for the computation of the OR function

Since the individual units of the network are perceptrons, the question of
whether there are logic functions which cannot be computed by a Hopfield
network of a given size arises. This is the case in our next example. Assume
that a Hopfield network of three units should store the set of stable states
given by the following table:

unit 1 2 3
state 1 −1 −1 −1
state 2 1 −1 1
state 3 −1 1 1
state 4 1 1 −1

From the point of view of the third unit (third column) this is the XOR
function. If the four vectors shown above are to become stable states of the
network, the third unit cannot change state when any of these four vectors
has been loaded in the network. In this case the third unit should be capable
of linearly separating the vectors (−1,−1) and (1, 1) from the vectors (−1, 1)
and (1,−1), which we know is impossible. The same argument is valid for
any of the three units, since the table given above remains unchanged after
a permutation of the units’ labels. This shows that no Hopfield network of
three units can have these stable states. However, the XOR problem can be
solved if the network is extended to four units. The network of Figure 13.7
can assume the following stable states, if adequate weights and thresholds are
selected:

unit 1 2 3 4
state 1 −1 −1 −1 1
state 2 1 −1 1 1
state 3 −1 1 1 1
state 4 1 1 −1 −1

The third column represents the XOR function of the two first columns. The
fourth column corresponds to an auxiliary unit, whose state can be set from

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

348 13 The Hopfield Model

outside. The unknown weights can be found using the learning algorithms
described in the next sections.

w12 w13

w23

unit 3unit 2

unit 1

unit 4

x3x2

x1

x4

w14

w24 w34

Fig. 13.7. Network for the computation of XOR

13.2.3 Isomorphism between the Hopfield and Ising models

Physicists have analyzed the Hopfield model in such exquisite detail because
it is isomorphic to the Ising model of magnetism (at temperature zero) [25].
Ising proposed the model which now bears his name more than 70 years ago in
order to describe some properties of ensembles of elementary magnets [214].

In general, the Ising model can be used to describe those systems made of
particles capable of adopting one of two states. In the case of ferromagnetic
materials, their atoms can be modeled as particles of spin 1/2 (up) or spin
−1/2 (down). The spin points in the direction of the magnetic field. All tiny
magnets interact with each other. This causes some of the atoms to flip their
spin until equilibrium is reached and the total magnetization of the material
reaches a constant level, which is the sum of the individual spins. With these
few assumptions we can show that the energy function deduced from the Ising
model has the same form as the energy function of Hopfield networks.

The total magnetic field hi sensed by the atom i in an ensemble of particles
is the sum of the fields induced by each atom and the external field h∗ (if
present), that is

hi =
n∑

j=1

wijxj + h∗, (13.6)

where wij represents the magnitude of the magnetic coupling between the
atoms labeled i and j. The magnetic coupling changes according to the dis-
tance between atoms and the magnetic permeability of the environment. The

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13.3 Converge to stable states 349

external field

Fig. 13.8. Particles with two possible spins

potential energy E of a certain state (x1, x2, . . . , xn) of an Ising material can
be derived from (13.6) and has the form

E = −1
2

n∑
i,j

wijxixj +
n∑
i

−h∗xi. (13.7)

In paramagnetic materials the coupling constants are zero. In ferromagnetic
materials the constants wij are all positive, which leads in turn to a significant
coupling of the spin states.

Equation (13.7) is isomorphic to the energy function of Hopfield networks.
This is why the term energy function is used in the first place. Both systems
are dynamically equivalent, but only in the case of zero temperature, since
the system behaves deterministically at each state update. Later on, when we
consider Boltzmann machines, we will accept a time-varying temperature and
stochastic state updates as in the full Ising model.

13.3 Converge to stable states

It is easy to show that Hopfield models always converge to stable states. The
proof of this fact relies on analysis of the new value of the energy function
after each state update.

13.3.1 Dynamics of Hopfield networks

Before going into the details of the convergence proof, we analyze two simple
examples and compute the energy levels of all their possible states. Figure 13.9
shows a network composed of three units with arbitrarily chosen weights and
thresholds. The network can adopt any of eight possible states whose transi-
tions we want to visualize. Figure 13.10 shows a diagram of all possible state
transitions for the network of Figure 13.9. The vertical axis represents the
energy of the network defined in the usual way. Each state of the network is

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

350 13 The Hopfield Model

represented by an oval located at its precise energy level. The arrows show the
state transitions allowed. Each transition has the same probability because the
probability of selecting one of the three units for a state transition is uniform
and equal to 1/3. Note that the diagram does not show the few transitions in
which a state returns to itself.

unit 3unit 1

unit 2

0.5

0.5 0.5

1 1

–1

Fig. 13.9. Example of a Hopfield network

We can make other interesting observations in the transition diagram. The
state (1,−1, 1), for example, is extremely unstable. The probability of leaving
it at the next iteration is 1, because three different transitions to other states
are possible, each with probability 1/3. The state (−1, 1, 1) is relatively stable
because the probability of leaving it at the next iteration is just 1/3. There is
only a single stable state, namely the vector (−1,−1,−1), as the reader can
readily verify. The only two states without a predecessor are shown in gray.
In the theory of cellular automata, such “urstates” are called garden of Eden
configurations. They cannot be arrived at, they can only be induced from the
outside before the automaton starts working.

The network in Figure 13.11 has the same structure as the network consid-
ered previously, but the weights and thresholds have the opposite sign. The
diagram of state transitions (Figure 13.12) is the inversion of the diagram
in Figure 13.10. The new network has two stable states and just one state
without predecessors. As can be seen from the diagrams, the dynamic of the
Hopfield model is always the same: the energy of the system eventually reaches
a local minimum and the state of the network can no longer change.

13.3.2 Convergence proof

We can now proceed to prove that, in general, Hopfield models behave in the
way shown in the last two examples.

Proposition 20. A Hopfield network with n units and asynchronous dynam-
ics, which starts from any given network state, eventually reaches a stable
state at a local minimum of the energy function.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13.3 Converge to stable states 351

3.5

3.0

2.5

2.0

1.5

1.0

0.5

- 0.5

-1.0

-1.5

-2.0

-2.5

1 –1 1

1 1 1

–1 1 1

–1 –1 1

–1 –1 –1

–1 1 –1

1 1 –1

1 –1 –1

energy

stable state

Fig. 13.10. State transitions for the network of Figure 13.9

unit 3unit 1

unit 2

–1 –1

1

– 0.5

– 0.5 – 0.5

Fig. 13.11. Second example of a Hopfield network

Proof. The energy function of a state x = (x1, x2, . . . , xn) of a Hopfield net-
work with n units is given by

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

352 13 The Hopfield Model

2.5

2.0

1.5

1.0

0.5

-0.5

-1.0

- 1.5

-2.0

-2.5

-3.0

-3.5 1 –1 1

1 1 1

–1 1 1

–1 –1 1

–1 –1 –1

–1 1 –1

1 1 –1

1 –1 –1

energy

 stable state

 stable state

Fig. 13.12. State transitions for the network of Figure 13.11

E(x) = −1
2

n∑
j=1

n∑
i=1

wijxixj +
n∑

i=1

θixi, (13.8)

where the terms involved are defined as usual. If during the current iteration
unit k is selected and does not change its state, then the energy of the system
does not change either. If the state of the unit is changed in the update
operation, the network reaches a new global state x′ = (x1, . . . , x

′
k, . . . , xn)

for which the new energy is E(x′). The difference between E(x) and E(x′) is
given by all terms in the summation in (13.8) which contain xk and x′k, that
is

E(x)− E(x′) = (−
n∑

j=1

wkjxkxj + θkxk)− (−
n∑

j=1

wkjx
′
kxj + θkx

′
k).

The factor 1/2 disappears from the computation because the terms wkjxkxj

appear twice in the double sum of (13.8). Since wkk = 0 we can rewrite the
above equation as

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13.3 Converge to stable states 353

E(x) − E(x′) = −(xk − x′k)
n∑

j=1

wkjxj + θk(xk − x′k)

= −(xk − x′k)(
n∑

j=1

wkjxj − θk),

from which we finally obtain

E(x) − E(x′) = −(xk − x′k)ek,

where ek denotes the total excitation of unit k (including subtraction of the
threshold). The excitation ek has a different sign from xk and −x′k, because
otherwise the unit state would not have been changed. This means that the
product −(xk − x′k)ek is positive and therefore

E(x)− E(x′) > 0.

This shows that every time the state of a unit is altered, the total energy
of the network is reduced. Since there is only a finite set of possible states, the
network must eventually reach a state for which the energy cannot be reduced
further. It is a stable state of the network, as we wanted to prove. �

There is a simpler proof of the last proposition, which has the advantage
of offering a nice visualization of the dynamics of a Hopfield network [74].
Assume that we classify the units of a network according to their state: the
first set contains the units with state 1, the second set the units with state
−1. There are edges linking every unit with all the others, so that some edges
go from one set to the other. We now randomly select one of the units and
compute its “attraction” by the units in its own set and the attraction by the
units in the other set. The “attraction” is the sum of the weights of all edges
between a unit and the units in its set or in the other one. If the attraction
from the outside is greater than the attraction from its own set, the unit
changes sides by altering its state. If the external attraction is lower than the
internal, the unit keeps its current state. This procedure is repeated several
times, each time selecting one of the units randomly. It corresponds to the
updating strategy of a Hopfield network. Figure 13.13 shows an example in
which the attraction from the outside is greater than the internal one. The
selected unit must change sides. It is clear that the network must eventually
reach a stable state, because the sum of the weights of all edges connecting
one set to the other can only become lower in the course of time. Since the
number of possible network states is finite, a global state must be reached in
which the attraction of one set by the other cannot be further reduced. This
is the task known in combinatorics as the minimal cut problem, in which we
want to find a cut of minimal flow in a graph. The procedure described always
finds a locally minimal cut.

The wording of Proposition 20 has been carefully chosen. That the net-
work “eventually” settles in a stable state, means that the probability of not

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

354 13 The Hopfield Model

-1

1
-1 -1

-1
-1

1

1

1

 external
attraction = 15

 internal
attraction =10

Fig. 13.13. Attraction from the inside and from the outside of a unit’s class

reaching such a state approaches zero as the number of iterations increases.
It would be possible to select always one and the same unit for computation
of the excitation, and in this case the network would stay in deadlock. Since
the units are selected randomly, the probability of such pathological behavior
falls to zero as time progresses.

In the proof of Proposition 20 only the symmetry and the zero diagonal of
the weight matrix were used. The proof of convergence is very similar to the
proof of convergence for the BAM. However, in the case of a BAM the decisive
property was the independence of a unit’s state from its own excitation. This
is also the case for Hopfield networks, since no unit feeds its own state back
into itself, i.e., the diagonal of the weight matrix is zero.

13.3.3 Hebbian learning

A Hopfield network can be used as an associative memory. If we want to
“imprint” m different stable states in the network we have to find adequate
weights for the connections. In the case of the BAM we already mentioned
that Hebbian learning is a possible alternative. Since Hopfield networks are
a specialization of BAM networks, we also expect Hebbian learning to be
applicable in this case. Let us first discuss the case of a Hopfield network with
n units and threshold zero.

Hebbian learning is implemented by loading the m selected n-dimensional
stable states x1,x2, . . . ,xm on the network and by updating the network’s
weights (initially set to zero) after each presentation according to the rule

wij ← wij + xk
i x

k
j , i, j = 1, . . . , n and i �= j.

The symbols xk
i and xk

j denote the i-th and j-th component respectively of
the vector xk. The only difference from an autoassociative memory is the

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13.3 Converge to stable states 355

requirement of a zero diagonal. After presentation of the first vector x1 the
weight matrix is given by the expression

W1 = xT
1 x1 − I,

where I denotes the n× n identity matrix. Subtraction of the identity matrix
guarantees that the diagonal of W becomes zero, since for any bipolar vector
xi it holds that xi

kx
i
k = 1. Obviously W1 is a symmetric matrix.

The minimum of the energy function of a Hopfield network with the weight
matrix W1 is located at x1 because

E(x) = −1
2
xW1xT = −1

2
(xxT

1 x1xT − xxT)

and xxT = n for bipolar vectors. This means that the function

E(x) = −1
2
‖xxT

1 ‖2 +
n

2

has a local minimum at x = x1. In this case it holds that

E(x) = −n
2

2
+
n

2
.

This shows that x1 is a stable state of the network.
In the case of m different vectors x1,x2, . . . ,xm the matrix W is defined

as
W = (x1xT

1 − I) + (xT
2 x2 − I) + · · ·+ (xT

mxm − I),

or equivalently

W = xT
1 x1 + xT

2 x2 + · · ·+ xT
mxm −mI.

If the network is initialized with the state x1, the vector e of the excitation
of the units is

e = x1W

= x1xT
1 x1 + x1xT

2 x2 + · · ·+ x1xT
mxm −mx1I

= (n−m)x1 +
m∑

j=2

α1jxj .

The constants α12, α13, . . . , α1m represent the scalar products of the first vec-
tor with each one of the other m−1 vectors x2, . . . ,xm. The state x1 is stable
when m < n and the perturbation term

∑m
j=2 α1jxj is small. In this case it

holds that
sgn(e) = sgn(x1)

as desired. The same argumentation can be used for any of the other vec-
tors. The best results are achieved with Hebbian learning when the vectors
x1,x2, . . . ,xm are orthogonal or close to orthogonal, just as in the case of any
other associative memory.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

356 13 The Hopfield Model

13.4 Equivalence of Hopfield and perceptron learning

Hebbian learning is a simple rule which is useful for the computation of the
weight matrix in Hopfield networks. However, sometimes Hebbian learning
cannot find a weight matrix for which m given vectors are stable states, al-
though such a matrix exists. If the vectors to be stored lie near each other,
the perturbation term can grow so large as to preclude a solution by Hebbian
learning. In this case another learning rule is needed, which is a variant of
perceptron learning.

13.4.1 Perceptron learning in Hopfield networks

Let us consider Hopfield networks composed of units with a non-zero threshold
and the step function as activation function. The units adopt state 1 when
the excitation is greater than the threshold and otherwise the state −1. The
units are just perceptrons and it is straightforward to assume that perceptron
learning could be used for determination of the weights and thresholds of the
network for a given learning problem.

Let n denote the number of units in a Hopfield network, let W = {wij}
be the n × n weight matrix, and let θi denote the threshold of unit i. If a
vector x = (x1, . . . , xn) is given to be “imprinted” on the network, this vector
will be a stable state only when, if loaded in the network, the network global
state does not change. This is the case if for every unit its excitation minus
its threshold has the same sign as the current state (the value zero is assigned
the minus sign). This means that the following n inequalities must hold:

For unit 1 : sgn(x1)(0 + x2w12 + x3w13 + · · ·
+ xnw1n − θ1) < 0

For unit 2 : sgn(x2)(x1w21 + 0 + x3w23 + · · ·
+ xnw2n − θ2) < 0

...
For unit n : sgn(xn)(x1wn1 + x2wn2 + · · · + xn−1wnn−1

+ 0 − θn) < 0

The factor sgn(xi) is used in each inequality to obtain always the same in-
equality operator (“less than”). Only the n(n − 1)/2 non-zero entries of the
weight matrix as well as the n thresholds of the units appear in these inequal-
ities. Let v denote a vector of dimension n + n(n − 1)/2 whose components
are the non-diagonal entries wij of the weight matrix W (with i < j so as to
consider each weight only once) and the n thresholds with minus sign. The
vector v is given by

v = (w12, w13, . . . , w1n︸ ︷︷ ︸
n−1

, w23, w24, . . . , w2n︸ ︷︷ ︸
n−2

, . . . , wn−1n︸ ︷︷ ︸
1

,−θ1, . . . ,−θn︸ ︷︷ ︸
n

).

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13.4 Equivalence of Hopfield and perceptron learning 357

The vector x is transformed into n auxiliary vectors z1, z2, . . . , zn of dimension
n+ n(n− 1)/2 given by the expression

z1 = (x2, x3, . . . , xn︸ ︷︷ ︸
n−1

, 0, 0, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
n

)

z2 = (x1, 0, . . . , 0︸ ︷︷ ︸
n−1

, x3, . . . , xn︸ ︷︷ ︸
n−2

, 0, 0, . . . , 0, 1, . . . , 0︸ ︷︷ ︸
n

)

...
zn = (0, 0, . . . , x1︸ ︷︷ ︸

n−1

, 0, 0, . . . , x2︸ ︷︷ ︸
n−2

, 0, 0, . . . , 0, 0, . . . , 1︸ ︷︷ ︸
n

).

The components of the vectors z1, . . . , zn were defined so that the previous
inequalities for each unit can be written in the equivalent form

unit 1 sgn(x1)z1 · v > 0
unit 2 sgn(x2)z2 · v > 0
...
unit n sgn(xn)zn · v > 0

The vectors z1, z2, . . . , zn can always be defined in this way. We will not write
down the exact transformation rule here because it is rather involved.

The last set of inequalities shows that the solution to the original problem
is found by computing a linear separation of the vectors z1, z2, . . . , zn. The
vectors which belong to the positive half-space are those for which sgn(xi)
holds. The vectors which belong to the negative half-space are those for which
sgn(xi) = −1. This problem can be solved using perceptron learning, which
allows us to compute the vector v of weights needed for the linear separation,
and from this we can deduce the weight matrix W.

In the case where m vectors x1,x2, . . . ,xm are given to be imprinted in the
Hopfield network, we have to use the above transformation for every one of
them. Each vector is transformed into n auxiliary vectors, so that at the end
we have nm different auxiliary vectors which must be linearly separated. If
they are actually linearly separable, perceptron learning will find the solution
to the problem, coded in the vector v of the transformed perceptron.

The analysis performed above shows that it is possible to transform a
learning problem in a Hopfield network with n units into a learning problem
for a perceptron of dimension n+n(n−1)/2, that is, n(n+1)/2. Figure 13.14
shows an example of a Hopfield network that can be transformed into the
equivalent perceptron to the right. The three-dimensional Hopfield problem
is transformed in this way into a learning problem for a six-dimensional per-
ceptron.

Each iteration of the perceptron learning algorithm updates only the
weights of the edges attached to a single unit and its threshold. For example,
if a correction is needed because of the sign of z1 · v, then only the weights

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

358 13 The Hopfield Model

0
w12 w13

w23

w12

w13

w23

θ1

θ2 θ3

−θ1

−θ2

−θ3

Fig. 13.14. Transformation of a Hopfield network into a perceptron

w12, w13, . . . , w1n and the threshold θ1 must be updated. This means that it
is possible to use perceptron learning or the delta rule locally. During training
all units are set to the desired stable states. If the sign of a unit’s excita-
tion is incorrect for the desired state, then the weights and threshold of this
individual perceptron are corrected in the usual manner. It is not necessary
to transform the Hopfield states into the n(n + 1)/2-dimensional perceptron
states every time we want to start the learning algorithm. This is only needed
to prove the equivalence of Hopfield and perceptron learning.

13.4.2 Complexity of learning in Hopfield models

The interesting result which can immediately be inferred from the equivalence
of Hopfield networks and perceptrons is that every learning algorithm for
perceptrons can be transformed into a learning method for Hopfield networks.
The delta rule or algorithms that proceed by finding inner points of solution
polytopes can also be used to train Hopfield networks.

We have already shown in Chap. 10 that learning problems for multilayer
networks are in general NP-complete. However, some special architectures
can be trained in polynomial time. We saw in Chap. 4 that the learning prob-
lem for Hopfield networks can be solved in polynomial time, because there
are learning algorithms for perceptrons whose complexity grows polynomi-
ally with the number of training vectors and their dimension (for example,
Karmarkar’s algorithm). Since the transformation described in the previous
section converts m desired stable states into nm vectors to be linearly sep-
arated, and since this can be done in polynomial time, it follows that the
learning problem for Hopfield networks can be solved in polynomial time. In
Chap. 6 we also showed how to compute an upper bound for the number of
linearly separable functions. This upper bound, valid for perceptrons, is also
valid for Hopfield networks, since the stable states must be linearly separable
(for the equivalent perceptron). This equivalence simplifies computation of
the capacity of a Hopfield network when it is used as an associative memory.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13.5 Parallel combinatorics 359

13.5 Parallel combinatorics

The networks analyzed in the previous sections can be used either to compute
Boolean functions or as associative memories. Those recurrent networks for
which an energy function of a certain form exists can be used to solve some
difficult problems in the fields of combinatorics and optimization theory. Hop-
field networks have been proposed for these kinds of tasks.

13.5.1 NP-complete problems and massive parallelism

Many complex problems can be solved in a reasonable length of time using
multiprocessor systems and parallel algorithms. This is easier for tasks that
can be divided into independent subproblems, which are then assigned to
different processors. The solution to the original problem is obtained by col-
lecting the partial results after they have been computed. However, many well-
known and important problems cannot be split in this manner. The parallel
processes must cooperate and exchange information, so that the programmer
must include some synchronization primitives in the system. If synchroniza-
tion consumes too many resources and too much time, the parallel system
may become only marginally faster than a sequential one.

Hopfield networks do not need any kind of synchronization; they guarantee
that a local minimum of the energy function will be reached. If an optimiza-
tion problem can be written in an analytical form isomorphic to the Hopfield
energy function, it can be solved by a Hopfield network. We can assume that
every unit in the network is simulated by a small processor. The states of
the units can be computed asynchronously by transmitting the current unit
states from processor to processor. There is no need for expensive synchro-
nization and the task is solved by a massively parallel system. This strategy
can be applied to all those combinatorial problems for whose solution large
mainframes have traditionally been used.

We now show how to “load” an optimization problem on a Hopfield net-
work discussing some progressively complicated examples. In the next subsec-
tions we will use the usual coding (with 0 and 1) for binary vectors and not
the bipolar coding used in the previous examples.

13.5.2 The multiflop problem

Assume that we are looking for a binary vector of dimension n whose compo-
nents are all zero with the exception of a single 1. The Hopfield network that
solves this problem when n = 4 is depicted in Figure 13.15. Whenever a unit
is set to 1, it inhibits the other units through the edges with weight −2. If the
network is started with all units set to zero, then the excitation of every unit
is zero, which is greater than the threshold and therefore the first unit to be
asynchronously selected will flip its state to 1. No other unit can change its
state after this first unit has been set to 1. A stable state has been reached.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

360 13 The Hopfield Model

One may think of this network as a generalization of the flip-flop network for
two-dimensional vectors.

-1 -1 -1 -1

-2

-2

-2

-2 -2 -2

Fig. 13.15. A multiflop network

The weights for this network can be deduced from the following consider-
ations. Let x1, x2, . . . , xn denote the binary states of the individual units. Our
task is to find a minimum of

E(x1, . . . , xn) = (
n∑

i=1

xi − 1)2.

This expression can also be written as

E(x1, . . . , xn) =
n∑

i=1

x2
i +

n∑
i�=j

xixj − 2
n∑

i=1

xi + 1.

For binary states it holds that xi = x2
i and therefore

E(x1, . . . , xn) =
n∑

i�=j

xixj −
n∑

i=1

xi + 1

which can be rewritten as

E(x1, . . . , xn) = −1
2

n∑
i�=j

(−2)xixj +
n∑

i=1

(−1)xi + 1.

This expression is isomorphic to the energy function of the Hopfield network of
Figure 13.15 (not considering the constant 1, which is irrelevant for the opti-
mization problem). The network solves the multiflop problem in an automatic
way by following its inherent dynamics.

13.5.3 The eight rooks problem

We make the optimization problem a notch more complicated: n rooks must
be positioned in an n× n chess board so that no one figure can take another.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13.5 Parallel combinatorics 361

It is thus necessary to position each rook in a different row and column to the
others. This problem can be thought of as a two-dimensional generalization
of the multiflop problem. Each row is a chain of cells and only one of them
can be set to 1. The same holds for each column.

The network of Figure 13.16 can solve this problem for a 4 × 4 board.
Each field is represented by a unit. Only the connections of the first unit in
the board are shown to avoid cluttering the diagram. The connections of each
unit to all elements in the same row or column have the weight −2, all others
have a weight zero. All units have the threshold −1. Any unit set to 1 inhibits
any other units in the same row or column. If a row or column is all set to 0,
when one of its elements is selected it will immediately switch its state to 1,
since the total excitation (zero) is greater than the threshold −1.

–2
–2

–2 –2 –2

–2

–2

–2

–2

–2

–1 –1 –1 –1

–1

–1

–1

–1 –1 –1

–1 –1 –1

–1 –1 –1

Fig. 13.16. Network for the solution of a four rooks problem

The weights for the network are derived from the following considerations:
Let xij represent the state of the unit corresponding to the square ij in the
n× n board. The number of ones in column j is given by

∑n
i=1 xij . If in each

column only a single 1 is allowed, the following function must be minimized:

E1(x11, . . . , xnn) =
n∑

j=1

(
n∑

i=1

xij − 1)2.

The minimum of the function corresponds to the situation in which just one
rook has been positioned in every column. Similarly, for the rows of the board
we define the function E2 according to

E2(x11, . . . , xnn) =
n∑

i=1

(
n∑

j=1

xij − 1)2.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

362 13 The Hopfield Model

We want to minimize the function E = E1 + E2. The general strategy is to
reduce its analytical expression to a Hopfield form. The necessary algebraic
steps can be avoided by noticing that the expression for E1 is the sum of n
independent functions (one per column). The term (

∑n
i=1 xij−1)2 corresponds

to a multiflop problem. The weights for the edges in each column can be set
to −2, as was done before in the multiflop problem. The same is done for each
row: the weights between any unit and its row partners are set to −2. Only the
thresholds must be selected with a little more care. The simple juxtaposition
of a row-multiflop with a column-multiflop at each field will give us a threshold
of −1 + (−1) = −2. This would mean that each row or column can contain
up to two elements whose state is 1. This is avoided by setting the thresholds
of the units to −1. The resulting network is the one shown in Figure 13.16.
Each field will be forced to adopt the state zero whenever another unit is set
to 1 in its own row or its own column.

13.5.4 The eight queens problem

The well-known eight queens problem can also be solved with a Hopfield net-
work. It is just a generalization of the rooks problem, since now the diagonals
of the board will also be considered. Each diagonal can be occupied at most
once by a queen. As before with the rooks problem, we solve this task by
overlapping multiflop problems at each square. Figure 13.17 shows how three
multiflop chains have to be considered for each field. The diagram shows a
4×4 board and the overlapping of multiflop problems for the upper left square
on the board. This overlapping provides us with the necessary weights, which
are set to wij = −2, when unit i is different from unit j and belongs to the
same row, column or diagonal as unit j. Otherwise we set wij to zero. The
thresholds of all units are set to −1.

Fig. 13.17. The eight queens problem

A computer simulation shows, however, that this simple connection pat-
tern does not always provide a correct solution for the n-queens problem. The

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13.5 Parallel combinatorics 363

proposed connection weights produce an energy function in which local min-
ima with less than n queens are possible. The only alternative if such a stable
state is found is to start the simulation again.

It is not possible to set the weights of the network of Figure 13.17 in such a
way as to obtain only correct solutions. The difficulty is that diagonals can be
occupied by a queen but they can also be unoccupied. Simple overlapping of
multiflop problems does not work any more. The energy function has become
much more complex than in the previous cases and we now have to achieve
compromises between the weights which we choose for rows and columns and
for diagonals.

13.5.5 The traveling salesman

The Traveling Salesman Problem (TSP) is one of the most celebrated bench-
marks in combinatorics. It is simple to state and visualize and it is NP-
complete. If we can solve the TSP efficiently, we can provide an efficient
solution for other problems in the class NP. Hopfield and Tank [200] were
the first to try to solve the TSP using a neural network.

A

B
C

D

E

F

G

Fig. 13.18. A TSP and its solution

In the TSP we are looking for a path through n cities S1, S2, . . . , Sn, such
that every city is visited at least once and the length of a round trip is minimal.
Let dij denote the distance between the cities Si and Sj . A round trip can
be represented using a matrix. Each of the n rows of the matrix is associated
with a city. The columns are labeled 1 through n and they correspond to the
n necessary visits. The following matrix shows a path going through the cities
S1, S2, S3 and S4 in that same order:

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

364 13 The Hopfield Model

1 2 3 4
S1 1 0 0 0
S2 0 1 0 0
S3 0 0 1 0
S4 0 0 0 1

A single 1 is allowed in each row and each column, otherwise the salesman
would visit a city twice or two cities simultaneously. This matrix must fulfill
the same conditions as in the rooks problem and we can again use a network
in which a unit is used to represent each entry in the matrix (the new “chess
board”).

Solving the TSP requires minimizing the length of the round trip, that is
of

L =
1
2

n∑
i,j,k

dijxikxj,k+1,

where xik represents the state of the unit corresponding to the entry ik in
the matrix. When xik and xj,k+1 are both 1, this means that the city Si is
visited in the k-th step and the city Sj in the step k+1. The distance between
both cities must be added to the total length of the round trip. We use the
convention that the column n+ 1 is equal to the first column of the matrix,
so that we always obtain a round trip.

In the minimization problems we must include the constraints for a valid
round trip. It is necessary to add the energy function of the rooks problem to
the length L to obtain the new energy function E, which is given by

E =
1
2

n∑
i,j,k

dijxikxj,k+1 +
γ

2
(

n∑
j=1

(
n∑

i=1

xij − 1)2 +
n∑

i=1

(
n∑

j=1

xij − 1)2),

where the constant γ regulates how much weight is given to the minimization
of the length or to the generation of legal paths. The first summation to the
right of the equal sign already has the form of a Hopfield energy function; the
expression in parentheses has it too, since it is the energy function of a rooks
problem. The weights for the network can be deduced immediately from this
expression: the weights of edges between units in the same row or column
must be set to −γ and the thresholds of the units to −γ/2. The weights must
be modified by including the length between states, so that the weight of the
edge between unit ik and unit j, k + 1 becomes

wik,jk+1 = −dij + tik,jk+1

where tik,jk+1 = −γ whenever the units belong to the same row or column,
otherwise tik,jk+1 is zero.

With this network we can try to find solutions of the TSP. A simulation
shows that the generated routes are sometimes not legal, because one city is
not visited or more than one city is visited in a single step. We can always

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13.5 Parallel combinatorics 365

force the network to generate legal tours: it is only necessary to set γ to a
very large value so as to obliterate the contribution of the cities’ distances. If
γ is zero, we do not care whether the tour is a legal one and only the total
length is minimized (by choosing an “empty” tour). Since the value of γ is
not prescribed, it can be found by trial and error. In general the network
will not be capable of finding the global minimum and because large TSPs
(with more than 100 cities) have so many local minima, it is difficult to decide
whether the local minimum that has been found is a good approximation to
the optimal result. The whole approach is dependent on the existence of real,
massively parallel systems, since the number of units required to solve a TSP
increases quadratically with the number n of cities (and the number of weights
increases proportionally to n4).

13.5.6 The limits of Hopfield networks

The first articles of Hopfield and Tank on parallel solutions to combinatorial
problems received a lot of attention [200, 201]. The theoretical question was
whether this could be a method to solve NP-hard problems or at least to get
an approximate solution in polynomial time. In the following years many other
researchers tried to extend the range of combinatorial problems that could be
solved using Hopfield’s technique, trying to improve the quality of the results
at the same time. It emerged that well-behaved average problems could be
solved efficiently. However, these average results should be compared to the
expected running time for the worst case. Bruck and Goodman [74] showed
that a polynomially bounded network (on the size of the problem) is unable
to find the global minimum of the energy function of NP-complete problems
(encoded as Hopfield networks) with a 100% guarantee. Stated in another
way: if we try to transform all local minima of the Hopfield network into an
optimal solution of the combinatorial problem, the size of the network explodes
exponentially. We proceed to prove the result of Bruck and Goodman, but we
must first introduce an additional complexity class: the complement of the
class NP.

The class NP of nondeterministic problems solvable in polynomial time is
different from the class P of problems solvable in polynomial time not only in
the way exposed already in Chap. 10. If a problem is a member of the class
P , the same is true for the complementary problem. The complement of the
decision problem “For the problem instance I, is X true for I?”is just “For
the problem instance I, is X false for I?”. A deterministic polynomial time
algorithm terminates on each of the two questions. It is only necessary to
substitute “true” for “false” to transform a polynomial time algorithm for a
problem in P in an algorithm for its complement. But this is not necessarily so
for problems in NP. A solution for the Traveling Salesman Decision Problem
(TSDP), that is, the computation of the tour’s length and the comparison
with the decision’s threshold, can be verified in polynomial time. However,
the complementary problem has the wording “Is there no tour with a total

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

366 13 The Hopfield Model

length smaller than R?”. If the answer is “yes”, no polynomial time algorithm
is known that could verify this assertion. It would be necessary to propose a
data structure on which to perform some computations which could convince
us of the truth of the assertion. Theoreticians assume that the complement
of the TSDP probably does not belong to the class NP. The class which
contains the complement of all NP problems is called co-NP. It is generally
assumed that NP �= co-NP . This inequality is somewhat strong, since it
implies that P �= NP . Otherwise we would have co-P = co-NP = P = NP ,
i.e., the equality NP = co-NP would be valid. Yet theoreticians expect that
eventually it will be proved that NP �= co-NP . Figure 13.19 illustrates the
expected containments of the classes NP, P and co-NP.

NPco-NP

P

NPc

Fig. 13.19. The classes NP and co-NP

The following lemma determines under what conditions equality of the
classes NP and co-NP would be possible. We can assume that this condition
cannot be fulfilled.

Lemma 1. If there is an NP-complete problem X whose complement Xc be-
longs to NP, then NP = co-NP .

The lemma is true because any problem Y in NP can be reduced in poly-
nomial time into X . The complement of Y can therefore be transformed in
polynomial time into Xc. Since a solution of Xc can be verified in polyno-
mial time, the same is true for any solution of Y c. This and some additional
technical details would imply that NP = co-NP .

Neural networks are just a subset of the algorithmic world. Since it is
suspected that there is no polynomial time algorithm for the problems in the
class NP, it should be possible to prove that Hopfield networks of bounded
size are subjected to the same limitations. The following proposition settles
this question [75].

Proposition 21. Let L be an NP-complete decision problem and H a Hopfield
network with a number of weights bounded by a polynomial on the size of the
problem. If H can solve L (100% success rate) then NP = co-NP .

Proof. The problem L has a certain size defined by an appropriate coding.
Since we must compute the energy function and from it derive the necessary

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13.6 Implementation of Hopfield networks 367

weights for H , a polynomial bound on the total number of weights is neces-
sary. A Hopfield network always finds a local minimum of its energy function.
In our case, a 100% hit rate means that all local minima of the energy func-
tion should make possible a decision on the truth or falsity of the decision
problem L. The Hopfield network can be considered a data structure that
makes possible the verification of the found solution. It is only necessary to
verify whether the solution found by the network is indeed a local minimum
of the energy function. The polynomial size of the net makes this verification
possible in polynomial time. The decision problem and the complement are,
in this case, completely symmetric. The TSDP can be answered with “yes” if
the tour found by the network is shorter than the decision threshold. But the
complement of the TSDP can be decided also just by comparing the length
of the optimal tour found with the decision threshold. Therefore the comple-
ment of L is a member of the class NP and it follows from Lemma 1 that
NP = co-NP . Since it is generally assumed that this cannot be so, there
should be a contradiction in the premises. The network H does not exist
unless NP = co-NP . �

Even if we content ourselves with a polynomially bounded network that
can provide approximate solutions (for example, TSP round-trips not larger by
a given ε than the optimal tour), no such network can be built. It is because of
this inherent limitation that some authors have sought to introduce stochastic
factors into the networks, as we will discuss when we deal with Boltzmann
machines in the next chapter.

13.6 Implementation of Hopfield networks

Hopfield networks as massively parallel systems are only interesting if they
can be implemented in hardware and not just simulated in a sequential com-
puter. Some proposals have been made for special chips capable of simulating
Hopfield networks but the most promising approach are optical computers,
capable of solving the connectivity problem of neural networks.

13.6.1 Electrical implementation

In 1984 Hopfield proposed an electrical realization of his model which uses
a circuit very similar to the ones used by Steinbuch (Chap. 18) [199]. Fig-
ure 13.20 shows a diagram of the circuit. The outputs of the amplifiers
x1, x2, . . . , xn are interpreted as the states of the Hopfield units. Their com-
plements ¬x1,¬x2, . . . ,¬xn are produced by inverters. All states and their
complements are fed back to the input of the electrical circuit. An electrical
contact is represented by a small circle. A resistance is present at each con-
tact point. The connection r13, for example, contains a resistor with resistance
r13 = 1/w13. The constants wij represent the weights of the Hopfield network

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

368 13 The Hopfield Model

between the units i and j. Inhibiting connections between one unit and an-
other (that is, connections with negative weights) are simulated by connecting
one inverted output of a unit to the other one. In Figure 13.20, for example,
the connection points in the upper row all come from the inverted output of
unit 1.

...
x1

1

2

2

3 3

r13

x x

x x

x

Fig. 13.20. Electrical implementation of a Hopfield network

In a network with n amplifiers the current Ii at the input to the i-th
amplifier is given by

Ii =
n∑

j=1

xj

rij
=

n∑
j=1

xjwij ,

where we have used the convention that rij is negative if the inverted value
of xj has been connected to the input of the amplifier xi. The current Ii rep-
resents the excitation of unit i. The amplifier transforms the total excitation
into 0 or 1 according to a certain electrical threshold, which can be set to an
arbitrary positive value.

This simple circuit can be used to simulate Hopfield networks in a fraction
of the time needed by a sequential computer. If the circuit is provided with
variable resistors it is then possible to implement some learning algorithms
directly in hardware.

13.6.2 Optical implementation

The most important computation that must be accelerated for a fast simula-
tion of Hopfield networks is the vector matrix multiplication. Computation of
the excitation of a node requires such an operation every time a unit’s state
is to be updated. Optical methods can be used to perform this numerical op-
eration faster. Figure 13.21 shows an optical realization of the Hopfield model
[132].

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13.6 Implementation of Hopfield networks 369

The logical structure is in principle the same as in the network of Fig-
ure 13.20, but the vector matrix multiplication is computed analogically using
optical techniques. The n binary values which represent the network’s state
are projected through the vertical lens to the left of the arrangement. The
lens projects each value xi onto the corresponding row of an optical mask.
Each row i in the mask is divided into fields which represent the n weights
wi1, wi2, . . . , win. Each field is partially darkened according to the value of
the corresponding weight. The individual unit states are projected using light
emitting diodes and the luminosity is proportional to the corresponding xi

value. The light going through the mask is collected by another lens in such
a way that all the incoming light from a column is collected at a single posi-
tion. The amount of light that goes through the mask is proportional to the
product of xi and wij at each position ij of the mask. The incoming light at
the j-th detector represents the total excitation of unit j, which is equal to

sj =
n∑

i=1

wijxi.

The total excitation of the unit j can now be processed by an analog or digital
circuit to produce the unit state which is used again in a new iteration of the
network.

w
x

illuminated row

input from
light emitting
diodes ij

i

excitation
of the j-th unit

SLM mask

lens

lens

Fig. 13.21. Optical implementation of a Hopfield network

The difference compared with the electrical model is that the weights and
signals must be normalized and scaled to fit the kind of optical processing
being done. The most significant difference is the absence of direct connections.
The light paths do not affect each other, so that it is possible to implement
much larger networks than in the purely electrical realization. We will come
back to the topic of optical implementations when we discuss neural hardware
in Chap. 18.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

370 13 The Hopfield Model

13.7 Historical and bibliographical remarks

With the introduction in 1982 of the model named after him, John Hopfield
established the connection between neural networks and physical systems of
the type considered in statistical mechanics. This in turn gave computer sci-
entists a whole new arsenal of mathematical tools for the analysis of neural
networks. Other researchers had already considered more general associative
memory models in the 1970s, but by restricting the architecture of the net-
work to a symmetric connection matrix with a zero diagonal, it was possible
to design recurrent networks with stable states. With the introduction of the
concept of the energy function, the convergence properties of the networks
could be more easily analyzed.

The Hopfield network also has the advantage, in comparison with other
models, of a simple technical implementation using electronic or optical de-
vices [132]. The computing strategy used when updating the network states
corresponds to the relaxation methods traditionally used in physics [92].

The properties of Hopfield networks have been investigated since 1982 us-
ing the theoretical tools of statistical mechanics [322]. Gardner [155] published
a classical treatise on the capacity of the perceptron and its relation to the
Hopfield model. The total field sensed by particles with a spin can be com-
puted using the methods of mean field theory. This simplifies a computation
which is hopeless without the help of some statistical assumptions [189]. Using
these methods Amit et al. [24] showed that the number of stable states in a
Hopfield network of n units is bounded by 0.14n. A recall error is tolerated
only 5% of the time. This upper bound is one of the most cited numbers in
the theory of Hopfield networks.

In 1988 Kosko proposed the BAM model, which is a kind of “missing
link” between conventional associative memories and Hopfield networks. Many
other variations have been proposed since, some of them with asynchronous,
others with synchronous dynamics [231]. Hopfield networks have also been
studied from the point of view of dynamical systems. In this respect spin
glass models play a relevant role. These are materials composed of particles
with a spin and mutual interactions [412].

Combinatorial problems have a long tradition, but a really systematic
theory capable of unifying the myriad of heuristic methods developed in the
past was first developed in the 1960s and 1970s [361]. The important point
was the increasingly important role played by computers and the emergence
of a new attitude which tried to reach whole classes of problems and not
just individual cases. An important research theme which remains is how to
split a combinatorial problem into subtasks that can be assigned to different
processors [160].

The efforts of Hopfield and Tank with the TSP led to many other similar
experiments in related fields. Wilson and Pawley [456] repeated their experi-
ments but they could not confirm the optimistic results of the former authors.
The main difficulty is that complex combinatorial problems produce an expo-

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

13.7 Historical and bibliographical remarks 371

nential number of local minima of the energy function. In sequential comput-
ers, Hopfield models cannot compete with conventional methods [224]. Many
heuristics have been proposed for the TSP, starting with the classical work by
Kernighan and Lin [274]. The only way to make Hopfield models competitive
is through the use of special hardware. Sheu et al. have obtained interesting
results and significant speedup in comparison with sequential computers by
using a technique they call hardware annealing.

One of the first to deal with the intrinsic limits of the Hopfield model for
the solution of the TSP was Abu-Mostafa [3], who nevertheless considered
only the case of networks of constant size. Bruck and Goodman [75] consid-
ered networks of variable but polynomially bounded size and obtained the
same negative results. Although this almost meant the “death of the travel-
ing salesman” [322], the Hopfield model and its stochastic variants have been
applied in many other fields, such as psychology, simulation of ensembles of
biological neural networks, and chaotic behavior of neural circuits.

The optical implementation of Hopfield networks is a promising field of
research. Other than masks, holograms can also be used to store the network
weights [352]. The main technical problem is still the size reduction of the op-
tical components, which could make them a viable alternative to conventional
electronic systems.

Exercises

1. Train a Hopfield network in the computer using the perceptron learning
algorithm.

2. Solve a TSP of 10 cities with a Hopfield network. How many weights do
you need for the network?

3. Compute the energy of the different possible states of the network shown
in Figure 13.6. Do the same for Figure 13.7 assigning some values to the
weights and thresholds.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

14

Stochastic Networks

14.1 Variations of the Hopfield model

In the previous chapter we showed that Hopfield networks can be used to
provide solutions to combinatorial problems that can be expressed as the
minimization of an energy function, although without guaranteeing global
optimality. Once the weights of the edges have been defined, the network shows
spontaneous computational properties. Harnessing this spontaneous dynamics
for useful computations requires some way of avoiding falling into local minima
of the energy function in such a way that the global minimum is reached. In the
case of the eight queens problem, the number of local minima is much higher
than the number of global minima and very often the Hopfield network does
not stabilize at a correct solution. The issue to be investigated is therefore
whether a certain variation of the Hopfield model could achieve better results
in combinatorial optimization problems.

One possible strategy to improve the global convergence properties of a
network consists in increasing the number of paths in search space, in such a
way that not only binary but also real-valued states become possible. Contin-
uous updates of the network state become possible and the search for minima
of the energy function is no longer limited to the corners of a hypercube in
state space. All interior points are now legal network states. A continuous acti-
vation function also makes it possible to describe more precisely the electrical
circuits used to implement Hopfield networks.

A second strategy to avoid local minima of the energy function consists in
introducing noise into the network dynamics. As usual, the network will reach
states of lower energy but will also occasionally jump to states higher up in
the energy ladder. In a statistical sense we expect that this extended dynamics
can help the network to skip out of local minima of the energy function. The
best-known models of such stochastic dynamics are Boltzmann machines.

First we will discuss real-valued states and continuous dynamics. The main
difficulty in handling this extended model is providing a precise definition of
the energy function in the continuous case.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

374 14 Stochastic Networks

14.1.1 The continuous model

The Hopfield model with binary or bipolar states can be generalized by ac-
cepting, just as in backpropagation networks, all real values in the interval
[0, 1] as possible unit states. Consequently, the discrete Hopfield model be-
comes the continuous model. The activation function selected is the sigmoid
and the dynamics of the network remains asynchronous.

The difference between the new and the discrete model is given by the
activation assumed by unit i once it has been asynchronously selected for
updating. The new state is given by

xi = s(ui) =
1

1 + e−ui

where ui denotes the net excitation of the unit. Additionally we assume that a
unit’s excitation changes slowly in time. Changes in the state of other units will
not be registered instantaneously, but with a certain delay. The net excitation
of unit i changes in time according to

dui

dt
= γ

⎛
⎝−ui +

n∑
j=1

wijxj

⎞
⎠ = γ

⎛
⎝−ui +

n∑
j=1

wijs(uj)

⎞
⎠ , (14.1)

where γ denotes a positive learning constant and wij the weight between unit
i and unit j. For a simulation we compute a discrete approximation of dui,
which is added to the current value of ui. The result leads to the new state
xi = s(ui).

We have to show that the defined dynamics of the continuous model leads
to equilibrium. With this objective in mind we define an energy function with
only slight differences from the one for the discrete model. Hopfield [199]
proposes the following energy function:

E = −1
2

n∑
i=1

n∑
j=1

wijxixj +
n∑

i=1

xi∫
0

s−1(x)dx.

We just have to show that the energy of the network becomes lower after each
state update. The change in time of the energy is given by

dE

dt
= −

n∑
i=1

n∑
j=1

wij
dxi

dt
xj +

n∑
i=1

s−1(xi)
dxi

dt
.

This expression can be simplified by remembering that the network is sym-
metric (i.e., wij = wji). Since ui = s−1(xi) it holds that

dE

dt
= −

n∑
i=1

dxi

dt

⎛
⎝ n∑

j=1

wijxj − ui

⎞
⎠

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

14.2 Stochastic systems 375

From equation (14.1) we now obtain

dE

dt
= − 1

γ

n∑
i=1

dxi

dt

dui

dt
.

Since xi = s(ui), the above expression can be written as

dE

dt
= − 1

γ

n∑
i=1

s′(ui)
(
dui

dt

)2

.

We know that s′(ui) > 0 because the sigmoid is a strict monotone function,
and since the constant γ is also positive we finally conclude that

dE

dt
≤ 0.

The defined dynamics of the network implies that the energy is reduced or re-
mains unchanged after each update. A stable state is reached when dE/dt van-
ishes. This happens when dui/dt reaches the saturation region of the sigmoid
where dui/dt ≈ 0. The state of all units can no longer change appreciably.

The time needed for convergence can increase exponentially, since dui/dt
gets smaller and smaller. We must therefore require convergence to a neigh-
borhood of a local minimum and this can happen in finite time. Some authors
have proposed variations of (14.1) that accelerate the convergence process.

Experimental results show that the continuous Hopfield model can find
better solutions for combinatorial problems than the discrete model. However,
in the case of really hard problems (for example the TSP), the continuous
model has no definite advantage over the discrete model. Still, even in this
case the continuous model remains interesting, because it can be more easily
implemented with analog hardware.

14.2 Stochastic systems

The optimization community has been using a method known as simulated
annealing for many years. [304]. Annealing is a metallurgical process in which
a material is heated and then slowly brought to a lower temperature. The
crystalline structure of the material can reach a global minimum in this way.
The high temperature excites all atoms or molecules, but later, during the
cooling phase, they have enough time to assume their optimal position in the
crystalline lattice and the result is fewer fractures and fewer irregularities in
the crystal.

Annealing can avoid local minima of the lattice energy because the dy-
namics of the particles contains a temperature-dependent component. The
particles not only lose energy during the cooling phase, but sometimes borrow
some energy from the background and assume a higher-energy state. Shallow

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

376 14 Stochastic Networks

A

B

C

Fig. 14.1. The effect of thermal noise

minima of the energy function can be avoided in this way. This situation is
shown in Figure 14.1. If the dynamics of the system is such that the system
converges to local energy minima, the system state can be trapped at posi-
tion A, although C is a more favorable state in terms of the global energy.
Some thermal noise, that is, local energy fluctuations, can give the system the
necessary impulse to skip over energy barrier B and reach C.

14.2.1 Simulated annealing

To minimize a function E we simulate this phenomenon in the following way:
the value of the free variable x is changed always if the update Δx can reduce
the value of the function E. However, if the increment actually increases the
value of E by ΔE, the new value for x, that is x + Δx is accepted with
probability

pΔE =
1

1 + eΔE/T
,

where T is a temperature constant. For high values of T , pΔE ≈ 1/2 and the
update is accepted half the time. If T = 0 only those updates which reduce the
value of E are accepted with probability 1. Varying the value of T , from large
values all the way down to zero, corresponds to the heating and cooling phases
of the annealing process. This explains why this computational technique has
been called simulated annealing.

We expect that simulated annealing will allow us to simulate the dynamics
of Hopfield networks in such a way that deeper regions of the energy function
are favored. It can even be shown that with this simulation strategy the global
minimum of the energy function is asymptotically reached [1]. Many other
kinds of optimization algorithms can be combined with an annealing phase in
order to improve their results. The sigmoid is used for the computation of the
probability because it corresponds to those functions used in thermodynamics
for the analysis of thermal equilibrium. This simplifies the statistical analysis

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

14.2 Stochastic systems 377

of the method, because it is possible to use some results known from statistical
mechanics.

Hopfield networks can be considered as optimization systems and thermal
noise can be introduced in different ways in the network dynamics. We can
distinguish between Gauss or Boltzmann machines, depending on the stage
at which noise is introduced into the computation.

14.2.2 Stochastic neural networks

The dynamics of a Hopfield network can be generalized according to the strat-
egy described in our next definition.

Definition 18. A Boltzmann machine is a Hopfield network composed of n
units with states x1, x2, . . . , xn. The state of unit i is updated asynchronously
according to the rule

xi =
{

1 with probability pi,
0 with probability 1− pi,

where
pi =

1
1 + exp(−(

∑n
j=1 wijxj − θi)/T)

and T is a positive temperature constant. The constants wij denote the network
weights and the constants θi the bias of the units.

The Boltzmann machine can be defined using bipolar or binary states,
but in this chapter we will stick to binary states. The energy function for a
Boltzmann machine has the same form as for Hopfield networks:

E = −1
2

n∑
i=1

n∑
j=1

wijxixj +
n∑

i=1

θixi

The difference between a Boltzmann machine and a Hopfield network is
the stochastic activation of the units. If T is very small then pi ≈ 1 when∑n

i=1 wij − θi is positive. If the net excitation is negative, then pi ≈ 0. In
this case the dynamics of the Boltzmann machine approximates the dynam-
ics of the discrete Hopfield network and the Boltzmann machine settles on a
local minimum of the energy function. If T > 0, however, the probability of a
transition, or a sequence of transitions, from a network state x1, x2, . . . , xn to
another state is never zero. The state space of the Boltzmann machine con-
tains the 2n vertices of the n-dimensional hypercube. When a network state
is selected, we are choosing a vertex of the hypercube. The probability of
reaching any other vertex that is different only at the i-th single component
is proportional to pi when xi = 0 or to 1 − pi when xi = 1. In both cases
the probability of a transition does not vanish. A transition from any given

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

378 14 Stochastic Networks

vertex to another is always possible. The transition probability along a pre-
defined path is given by the product of all the transition probabilities from
vertex to vertex along this path. The product is positive whenever T > 0.
Therefore, Boltzmann machines with T > 0 cannot settle on a single state;
they reduce the energy of the system but they also let it become larger. Dur-
ing the cooling phase we expect those transitions from higher to lower energy
levels to be more probable, as it happens in simulated annealing experiments.
When T is large, the network state visits practically the complete state space.
During the cooling phase, the network begins to stay longer in the basins of
attraction of the local minima. If the temperature is reduced according to the
correct schedule, we can expect the system to reach a global minimum with
the integrated transition probability 1.

14.2.3 Markov chains

Let us illustrate the dynamics defined in the last section with a small example.
Take one of the smallest Hopfield networks, the flip-flop. The weight between
the two units is equal to −1 and the threshold is −0.5.

–1
– 0.5 – 0.5

Fig. 14.2. A flip-flop network

The network works using binary states. There are four of them with the
following energies:

E00 = 0.0 E10 = −0.5
E01 = −0.5 E11 = 0.0

Figure 14.3 shows the distribution of the four states in energy levels. We
have included the transition probabilities from one state to the other, under
the assumption T = 1. For example, for a transition from state 00 to state
01, the second unit must be selected and its state must change from 0 to 1.
The probability of this happening is

p00→01 =
1
2

(
1

1 + exp(−0.5)

)
= 0.31

The factor 1/2 is used in the computation because any one of two units can
be selected in the update step and the probability that a unit is selected for
an update is 1/2. The argument 0.5 corresponds to the net excitation of the
second unit in the network state 00. All other transition probabilities were
computed in a similar way.

In order to analyze the dynamics of a Boltzmann machine we need to refer
to its matrix of transition probabilities.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

14.2 Stochastic systems 379

0.62

0.38

0

-0.5

0 0 1 1

0 1 1 0

0.31

0.31
0.31

0.31
0.19 0.19

0.19 0.19

0.38

0.62

energy

Fig. 14.3. Transition probabilities of a flip-flop network (T = 1)

Definition 19. The state transition matrix PT = {pij} of a Boltzmann ma-
chine with n units is the 2n × 2n matrix, whose elements pij represent the
probability of a transition from state i to the state j in a single step at the
temperature T .

PT is a 2n×2n matrix because there are 2n network states. The transition
matrix is, according to the definition, a sparse matrix. The matrix for the flip-
flop network, for example, is of dimension 4× 4. The diagonal elements pii of
the matrix PT represent the probabilities that state i does not change. If the
states 00, 01, 10, and 11 are taken in this order, the matrix P ≡ P1 for the
flip-flop network is given by:

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1+e1/2

1
2

1
1+e−1/2

1
2

1
1+e−1/2 0

1
2

1
1+e1/2

1
1+e−1/2 0 1

2
1

1+e1/2

1
2

1
1+e1/2 0 1

1+e−1/2
1
2

1
1+e1/2

0 1
2

1
1+e−1/2

1
2

1
1+e−1/2

1
1+e1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The numerical value of the matrix in our example is:

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.38 0.31 0.31 0

0.19 0.62 0 0.19

0.19 0 0.62 0.19

0 0.31 0.31 0.38

⎞
⎟⎟⎟⎟⎟⎟⎠ .

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

380 14 Stochastic Networks

It follows from the definition of the transition matrix, that 0 ≤ pij ≤ 1. As
long as T > 0, it holds that 0 ≤ pij < 1, since no network state is stable. It
should be clear that

n∑
j=1

pij = 1,

because at each step the state i is changed with probability
∑n

j �=i pij or re-
mains the same with probability pii. A matrix with elements pij ≥ 0 and
whose rows add up to 1 is called a stochastic matrix. Boltzmann machines are
examples of a first-order Markov process, because the transition probabilities
only depend on the current state, not on the history of the system. In this
case the matrix is called a Markov matrix. Using the transition matrix it is
possible to compute the probability distribution of the network states at any
time t. Assume, for example, that each of the four states of the flip-flop net-
work is equiprobable at the beginning. The original probability distribution
v0 is therefore

v0 = (0.25, 0.25, 0.25, 0.25)

The probability distribution v1 after an update step of the network is given
by

v1 = v0P

= (0.25, 0.25, 0.25, 0.25)

⎛
⎜⎜⎜⎜⎜⎜⎝

0.38 0.31 0.31 0

0.19 0.62 0 0.19

0.19 0 0.62 0.19

0 0.31 0.31 0.38

⎞
⎟⎟⎟⎟⎟⎟⎠

= (0.19, 0.31, 0.31, 0.19)

As can be seen, for T = 1 the flip-flop network assumes the states 01 and 10
62% of the time, and 38% of the time the states 00 and 11. The development
of the probability distribution of the network states is computed in general
according to

vt = vt−1P.

A dynamical system obeying such an equation in which a Markov matrix
P is involved, is called a Markov chain. The main issue is finding the final
probability distribution given by a vector v for which

v = vP .

The vector v is therefore an eigenvector of P with eigenvalue 1. A funda-
mental result of Markov chains theory states that such a stable distribution
v always exists, if all states can be reached from any other state in one or
more steps, and with non-zero probability [363]. Since all Boltzmann machines

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

14.2 Stochastic systems 381

with T > 0 fulfill these conditions, such a stable probability distribution, rep-
resenting thermal equilibrium of the network dynamics, exists. It is important
to underline that the network arrives to the stable distribution independently
of the initial one. If the initial distribution is denoted by v0, then

vt = vt−1P = vt−2P2 = · · · = v0Pt

When the stable state v has been reached, the matrix PT has stabilized. In
the case of the flip-flop network, the matrix Pt converges to

lim
t→∞Pt =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.19 0.31 0.31 0.19

0.19 0.31 0.31 0.19

0.19 0.31 0.31 0.19

0.19 0.31 0.31 0.19

⎞
⎟⎟⎟⎟⎟⎟⎠ .

The stable matrix consists of four identical rows. Starting from an arbitrary
distribution (a1, a2, a3, a4) we can compute the stable distribution:

v = (a1, a2, a3, a4)

⎛
⎜⎜⎜⎜⎜⎜⎝

0.19 0.31 0.31 0.19

0.19 0.31 0.31 0.19

0.19 0.31 0.31 0.19

0.19 0.31 0.31 0.19

⎞
⎟⎟⎟⎟⎟⎟⎠

= (0.19, 0.31, 0.31, 0.19).

In the computation we made use of the fact that a1 + a2 + a3 + a4 = 1,
since this must hold for all probability distributions. The same distribution
was found in the vector-matrix multiplication after a single step (because of
the simplicity of the problem). As this example has shown, any Boltzmann
machine can be analyzed by constructing the transition matrix in order to
find its eigenvectors using any of the common iterative methods.

14.2.4 The Boltzmann distribution

It is theoretically possible to use probability functions other than the sigmoid
in order to define the network dynamics. Its advantage, nevertheless, is that we
can find this kind of transition function in many interesting physical processes.

Consider a system in thermal equilibrium with m different states and as-
sociated energies E1, E2, . . . , Em. The probability pij of a transition from a
state of energy Ei to another state of energy Ej is given by

pij =
1

1 + e(Ej−Ei)/T
(14.2)

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

382 14 Stochastic Networks

Physical systems obeying such a probability function for energy transitions,
and at thermal equilibrium, reach a stable probabilistic state known as the
Boltzmann distribution.

According to the Boltzmann distribution the probability pi that a system
assumes the energy level Ei during thermal equilibrium is

pi =
e−Ei/T

Z
(14.3)

In this formula Z =
∑m

i=1 e−Ei/T is a normalizing factor known as the state
sum.

It is important to deal with the Boltzmann distribution analytically be-
cause it provides us with the solution of the eigenvector problem for a Markov
matrix without having to perform the iterative computations described be-
fore. The precise derivation of the Boltzmann distribution is done in ergodic
theory, which deals with the dynamics of infinite Markov chains, among other
problems.

We can nevertheless verify the validity of the Boltzmann distribution with
some straightforward calculations. For a system in thermal equilibrium, the
transition matrix for m states with associated energies E1, E2, . . . , Em is the
following:

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1−
m∑

i=2

1

1+e(Ei−E1)/T
· · · 1

1+e(Em−E1)/T

1
1+e(E1−E2)/T

. . .
...

...
...

1
1+e(E1−Em)/T · · · 1−

m−1∑
i=1

1

1+e(Ei−Em)/T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The product of the Boltzmann distribution

1
Z

(
e−E1/T , e−E2/T , ..., e−Em/T

)
.

with P is a vector of dimension m. Its first component is

v1 =
1
Z

(
e−E1/T

(
1−

m∑
i=2

1
1 + e(Ei−E1)/T

)
+

m∑
i=2

e−Ei/T

1 + e(E1−Ei)/T

)

=
1
Z

(
e−E1/T −

m∑
i=2

e−E1/T

1 + e(Ei−E1)/T
+

m∑
i=2

e−Ei/T

1 + e(E1−Ei)/T

)

=
1
Z

(
e−E1/T −

m∑
i=2

1
eE1/T + eEi/T

+
m∑

i=2

1
eEi/T + eE1/T

)

=
1
Z

e−E1/T .

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

14.2 Stochastic systems 383

We again get the first component of the Boltzmann distribution. The same
can be shown for the other components, proving that the distribution is stable
with respect to P.

It easy to show that a Boltzmann machine is governed by equation (14.2).
If a transition from state α to state β occurs, a unit k must have changed its
state from xk to x′k. The energy of the network in state α is given by

Eα = −1
2

n∑
i�=k

n∑
j �=k

wijxixj +
n∑

i�=k

θixi −
n∑

i=1

wkixixk + θkxk,

in state β by

Eβ = −1
2

n∑
i�=k

n∑
j �=k

wijxixj +
n∑

i�=k

θixi −
n∑

i=1

wkixix
′
k + θkx

′
k.

The contribution of unit k was expressed in both cases separately. The energy
difference is therefore

Eβ − Eα = −
n∑

i=1

wkixi(x′k − xk) + θk(x′k − xk). (14.4)

Since the states are different xk �= x′k. Assume without loss of generality that
xk = 0 and the unit state changed to x′k = 1. This happened following the
defined rules, that is, with probability

pα→β =
1

1 + exp (− (
∑n

i=1 wkixi − θk))
. (14.5)

Since x′k = 1 it holds that x′k − xk = 1 and (14.4) transforms to

Eβ − Eα = −
n∑

i=1

wkixi + θk. (14.6)

The transition is ruled by equation (14.5), which is obviously equivalent to
(14.2). The only limitation is that in Boltzmann machines state transitions
involving two units are not allowed, but this does not affect the substance of
our argument. The Boltzmann distribution is therefore the stable probability
distribution of the network. In our flip-flop example, the stable distribution is
given by

v =
1

e−E00 + e−E01 + e−E10 + e−E11

(
e−E00 , e−E01 , e−E10 , e−E11

)
=

1
2

(
1

1 + e0.5

)(
1, e0.5, e0.5, 1

)
= (0.19, 0.31, 0.31, 0.19) .

The result is the same as that computed previously using the direct method.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

384 14 Stochastic Networks

14.2.5 Physical meaning of the Boltzmann distribution

It is interesting to give the Boltzmann distribution a physical interpretation.
This can be done using an example discussed by Feynman. The atmosphere is
a system in which the air molecules occupy many different energy levels in the
gravitational field. We can investigate the distribution of the air molecules in
an air column in thermal equilibrium. Figure 14.4 shows a slice of thickness
dh of a vertical air cylinder. The slice is cut at height h. The weight G of a
differential air cylinder with unitary base area is

G = −mgndh
wherem represents the mass of an air particle (all of them are equal to simplify
the derivation), g the gravitational field strength, and n the number of air
particles in a unitary volume. In that case, n dh is the number of particles in
a differential cylinder.

h

h + dh

g

Fig. 14.4. Horizontal slice of an air column in thermal equilibrium

The weight G is equal to the difference between the pressure Ph+dh on the
upper side of the cylinder and the pressure Ph on the lower side, that is,

dP = Ph+dh − Ph = −mgndh
According to the theory of ideal gases,

P = nkT ,

where k represents the Boltzmann constant and T the temperature. Conse-
quently, dP = kTdn. Combining the last two equations we get

kT dn = −mgndh
dn

n
= −mg

kT
dh

From this we conclude that

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

14.3 Learning algorithms and applications 385

n = n0e−mgh/kT .

The equation tells us that the number of air particles decreases exponentially
with altitude (and correspondingly with the energy level). The equation is
similar to (14.3). The above analysis shows therefore that the Boltzmann
distribution determines the mean density of the particles which reach the
energy level −mgh/kT . We can deduce similar conclusions for other physical
systems governed by the Boltzmann distribution.

The above result gives an intuitive idea of one of the essential properties of
the Boltzmann distribution: a system in thermal equilibrium stays in states of
low energy with greater probability. Fluctuations can occur, but the number of
transitions to higher energy levels decreases exponentially. Those transitions
can be increased by raising the temperature T . The system is “heated” and
the number of state transitions grows accordingly.

14.3 Learning algorithms and applications

As we have shown, when the temperature T is positive there are no absolutely
stable states. Nevertheless we can ask if a Boltzmann machine can be trained
to reproduce a given probability distribution of network states. If this can be
done the network will learn to behave in a statistically reproducible way, once
some of the inputs have been fixed.

14.3.1 Boltzmann learning

Ackley, Hinton, and Sejnowski developed the algorithm called Boltzmann
learning [7]. We follow Hertz et al. in the derivation [189]. An alternative
proof can be found in [108].

The states of the input units of the network will be indexed with α and
the states of the hidden units with β (hidden units are those which receive
no external input). If there are m input and k hidden units, the state of the
network is specified by the state of n = m+k units. Without loss of generality
we consider only units with threshold zero.

The probability Pα that the input units assume state α (without consid-
ering the state β of the hidden units) is given by

Pα =
∑

β

Pαβ (14.7)

where Pαβ denotes the probability of the combined network state αβ and the
sum is done considering all possible states of the hidden units. Equation (14.7)
can be written as

Pα =
1
Z

∑
β

exp(−γEαβ) (14.8)

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

386 14 Stochastic Networks

where
Z =

∑
α,β

exp(−γEαβ) (14.9)

and γ = 1/T . Equations (14.8) and (14.9) are derived from the Boltzmann
distribution. The energy of the network in state αβ is

Eαβ = −1
2

n∑
i=1

n∑
j=1

wijx
αβ
i xαβ

j . (14.10)

Equation (14.7) provides us with the probability distribution of the states α
in a free running network, that is, a network without external input. We want
the network to learn to take the states α with the probability distribution
Rα. During the training phase, an input vector is clamped to the input units.
The distance D between the desired and the actual behavior of the network
is measured using the expression

D =
∑

α

Rα log
Rα

Pα
. (14.11)

The distance D is zero only if the distribution Rα is equal to the distribution
Pα. The learning algorithm must minimize D. Gradient descent on this error
function leads to the weight update

Δwij = −η ∂D
∂wij

= η
∑
α

Rα

Pα

∂Pα

∂wij
. (14.12)

Combining equations (14.8), (14.9), and (14.10) we obtain the expression

∂Pα

∂wij
=
γ
∑

β exp(−γEαβ)xαβ
i xαβ

j

Z

−
γ
(∑

β exp(−γEαβ)
)∑

λμ exp(−γEλμ)xλμ
i xλμ

j

Z2

= γ

⎛
⎝∑

β

xαβ
i xαβ

j Pαβ − Pα 〈xixj〉free

⎞
⎠ .

The expression 〈xixj〉free denotes the expected value of the product of the
unit states xi and xj in the free running network. Combining this result with
(14.12) we get

Δwij = ηγ

⎛
⎝∑

α

Rα

Pα

∑
β

xαβ
i xαβ

j Pαβ −
∑

α

Rα 〈xixj〉free

⎞
⎠ . (14.13)

We introduce the conditional probability Pβ|α which is the probability that
the hidden units assume state β when the input units are in state α, that is,

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

14.3 Learning algorithms and applications 387

Pαβ = Pβ|αPα.

The expected value of the product of xi and xj during training (i.e., with
clamped input) is given by

〈xixj〉fixed =
∑
α

RαPβ|αx
αβ
i xαβ

j .

Using both definitions of the expected products and substituting in (14.13)
leads to the expression

Δwij = ηγ

⎛
⎝∑

α,β

RαPβ|αx
αβ
i xαβ

j −
∑
α

Rα 〈xixj〉free

⎞
⎠

= ηγ
(
〈xixj〉fixed − 〈xixj〉free

)
The above equation describes the learning method for a Boltzmann ma-

chine: the network is let run with clamped inputs and the average 〈xixj〉fixed
is computed. In a second pass, the network is let run without inputs. The
average 〈xixj〉free is computed and subtracted from the previously computed
average. This provides us with an estimate of Δwij . The network weights
are corrected until gradient descent has found a local minimum of the error
measure D.

Note that Boltzmann learning resembles Hebbian learning. The values of
〈xixj〉fixed and 〈xixj〉free correspond to the entries of the stochastic correla-
tion matrix of network states. The second term is subtracted and is interpreted
as Hebbian “forgetting”. This controlled loss of memory should prevent the
network from learning false, spontaneously generated states. Obviously, Boltz-
mann learning in this form is computationally expensive for serial computers,
since several passes over the whole data set and many update steps are needed.

14.3.2 Combinatorial optimization

Boltzmann machines can be used in those cases in which Hopfield networks
become trapped in shallow local minima of the energy function. The energy
function should have basins of attraction with clearly defined borders. Only
in that case can we give a statistical guarantee that the global minimum
will be reached. For problems such as the TSP this is not guaranteed. In
these problems there are few global minima surrounded by many relatively
deep local minima. The basins of attraction of the global minima are not
much larger than the basins of attraction of the local minima. A Boltzmann
machine can hardly improve on the results of the Hopfield network when the
error function has an unfavorable shape. Boltzmann machines are therefore
more important from a theoretical than from an engineering point of view.
They can be used to model biological phenomena, such as conditioning and

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

388 14 Stochastic Networks

ε

stochastic term

network

output

Fig. 14.5. Working principle of a Gauss machine

the emergence of memory. Biological neurons are stochastic systems and our
models of artificial neural networks should reflect this fact.

Another possible realization of a stochastic Hopfield network consists in
providing each unit in the network with a stochastic external input. Each
unit i computes its net excitation

∑N
j=1 wijxj − θi plus a stochastic term

ε, as shown in Figure 14.5. The network dynamics is the standard Hopfield
dynamics. Due to the stochastic term, some units update their states and can
occasionally bring the network to states with a higher energy. Such stochastic
systems have been called Gauss machines, because the stochastic term obeys
a Gauss distribution. Some authors have compared Boltzmann and Gauss
machines and find the latter more suitable for some tasks [13].

14.4 Historical and bibliographical remarks

Simulated annealing has been used for many years in the field of numerical
optimization. The technique is a special case of the Monte Carlo method.
Simulated annealing was brought into the mainstream of computing by the
article published by Kirkpatrick, Gelatt, and Vecchi in 1983 [246]. The nec-
essary conditions for convergence to a global minimum of a given function
were studied in the classical paper by Geman and Geman [158]. An extensive
analysis of the problem can be found in [1].

The introduction of stochastic computing units was proposed by several
authors in different contexts. The Boltzmann machine concept was developed
by Hinton and Sejnowski in the 1980s [191]. Their learning algorithm was the
first proposed for stochastic networks and allowed dealing with hidden units in
networks of the Hopfield type. In the following years other types of stochastic
behavior were introduced. This led to models such as the Cauchy machine
[423] and the Gauss machines mentioned already.

The role of noise in Hopfield networks has been studied by many physicists
[25]. It can be shown, for example, that the number of false local minima that

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

14.4 Historical and bibliographical remarks 389

arise in Hopfield networks can be compensated with a stochastic dynamic, so
that the statistical capacity of the network is improved.

Exercises

1. Solve the eight queens problem using a Boltzmann machine. Define the
network’s weights by hand.

2. Find with the computer the equilibrium distribution for a 10-node Boltz-
mann machine with randomly generated weights. Compute the Boltzmann
distribution of the network and compare with the previous result.

3. Train a Boltzmann machine to generate solutions of the eight queens prob-
lem. Compare with your manually defined network of Exercise 1.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

15

Kohonen Networks

15.1 Self-organization

In this chapter we consider self-organizing networks. The main difference be-
tween them and conventional models is that the correct output cannot be
defined a priori, and therefore a numerical measure of the magnitude of the
mapping error cannot be used. However, the learning process leads, as before,
to the determination of well-defined network parameters for a given applica-
tion.

15.1.1 Charting input space

In Chap. 5 we considered networks with a single layer which learn to identify
clusters of vectors. This is also an example of a self-organizing system, since
the correct output was not predefined and the mapping of weight vectors to
cluster centroids is an automatic process.

f

A B

a1

Fig. 15.1. A function f : A → B

When a self-organizing network is used, an input vector is presented at
each step. These vectors constitute the “environment” of the network. Each

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

392 15 Kohonen Networks

new input produces an adaptation of the parameters. If such modifications are
correctly controlled, the network can build a kind of internal representation
of the environment. Since in these networks learning and “production” phases
can be overlapped, the representation can be updated continuously.

The best-known and most popular model of self-organizing networks is the
topology-preserving map proposed by Teuvo Kohonen [254, 255]. So-called
Kohonen networks are an embodiment of some of the ideas developed by
Rosenblatt, von der Malsburg, and other researchers. If an input space is to
be processed by a neural network, the first issue of importance is the structure
of this space. A neural network with real inputs computes a function f defined
from an input space A to an output space B. The region where f is defined
can be covered by a Kohonen network in such a way that when, for example,
an input vector is selected from the region a1 shown in Figure 15.1, only one
unit in the network fires. Such a tiling in which input space is classified in
subregions is also called a chart or map of input space. Kohonen networks
learn to create maps of the input space in a self-organizing way.

15.1.2 Topology preserving maps in the brain

Kohonen’s model has a biological and mathematical background. It is well
known in neurobiology that many structures in the brain have a linear or
planar topology, that is, they extend in one or two dimensions. Sensory ex-
perience, on the other hand, is multidimensional. A simple event, such as
the perception of color, presupposes interaction between three different kinds
of light receptors. The eyes capture additional information about the struc-
ture, position, and texture of objects too. The question is: how do the pla-
nar structures in the brain manage to process such multidimensional signals?
Put another way: how is the multidimensional input projected to the two-
dimensional neuronal structures? This important question can be illustrated
with two examples.

The visual cortex is a well-studied region in the posterior part of the human
brain. Many neurons work together to decode and process visual impressions.
It is interesting to know that the visual information is mapped as a two-
dimensional projection on the cortex, despite the complexity of the pathway
from the retina up to the cortical structures. Figure 15.2 shows a map of the
visual cortex very similar to the one already discovered by Gordon Holmes at
the beginning of the century [161]. The diagram on the right represents the
whole visual field and its different regions. The inner circle represents the cen-
ter of the visual field, whose contents are captured by the fovea. The diagram
on the left uses three different shadings to show the correspondence between
regions of the visual cortex and regions of the visual field. Two important phe-
nomena can be observed: firstly, that neighboring regions of the visual field are
processed by neighboring regions in the cortex; and secondly, that the surface
of the visual cortex reserved for the processing of the information from the
fovea is disproportionally large. This means that signals from the center of

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

15.1 Self-organization 393

the visual field are processed in more detail and with higher resolution than
signals from the periphery of the visual field. Visual acuity increases from the
periphery to the center.

0

180

9090

4545

135135

visual field of the
 right eye

visual field and corresponding cortex regioncenter of the visual field
and corresponding cortex region

posterior cortex
(lobus occipitalis)

Fig. 15.2. Mapping of the visual field on the cortex

The visual cortex is therefore a kind of map of the visual field. Since this is
a projection of the visual world onto the spherically arranged light receptors
in the retina, a perfect correspondence between retina and cortex would need
a spherical configuration of the latter. However, the center of the visual field
maps to a proportionally larger region of the cortex. The form of the extended
cortex should therefore resemble a deformed sphere. Physiological experiments
have confirmed this conjecture [205].

In the human cortex we not only find a topologically ordered representation
of the visual field but also of sensations coming from other organs. Figure 15.3
shows a slice of two regions of the brain: to the right the somatosensory cortex,
responsible for processing mechanical inputs, and to the left the motor cortex,
which controls the voluntary movement of different body parts. Both regions
are present in each brain hemisphere and are located contiguous to each other.

Figure 15.3 shows that the areas of the brain responsible for processing
body signals are distributed in a topology-preserving way. The region in
charge of signals from the arms, for example, is located near to the region
responsible for the hand. As can be seen, the spatial relations between the
body parts are preserved as much as possible in the sensory cortex. The same
phenomenon can be observed in the motor cortex.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

394 15 Kohonen Networks

Fig. 15.3. The somatosensory and motor cortex

Of course, all details of how the cortex processes sensory signals have
not yet been elucidated. However, it seems a safe assumption that the first
representation of the world built by the brain is a topological one, in which
the exterior spatial relations are mapped to similar spatial relations in the
cortex. One might think that the mapping of the sensory world onto brains
is genetically determined, but experiments with cats that are blind in one
eye have shown that those areas of the cortex which in a normal cat process
information from the lost eye readapt and can process information from the
other eye. This can only happen if the cat loses vision from one eye when the
brain is still developing, that is, when it still possesses enough plasticity. This
means that the topological correspondence between retina and cortex is not
totally genetically determined and that sensory experience is necessary for the
development of the correct neural circuitry [124].

Kohonen’s model of self-organizing networks goes to the heart of this is-
sue. His model works with elements not very different from the ones used by
other researchers. More relevant is the definition of the neighborhood of a
computing unit. Kohonen’s networks are arrangements of computing nodes
in one-, two-, or multi-dimensional lattices. The units have lateral connec-

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

15.2 Kohonen’s model 395

tions to several neighbors. Examples of this kind of lateral coupling are the
inhibitory connections used by von der Malsburg in his self-organizing models
[284]. Connections of this type are also present, for example, in the human
retina, as we discussed in Chap. 3.

15.2 Kohonen’s model

In this section we deal with some examples of the ordered structures known as
Kohonen networks. The grid of computing elements allows us to identify the
immediate neighbors of a unit. This is very important, since during learning
the weights of computing units and their neighbors are updated. The objective
of such a learning approach is that neighboring units learn to react to closely
related signals.

15.2.1 Learning algorithm

Consider the problem of charting an n-dimensional space using a one-
dimensional chain of Kohonen units. The units are all arranged in sequence
and are numbered from 1 to m (Figure 15.4). Each unit becomes the n-
dimensional input x and computes the corresponding excitation. The n-
dimensional weight vectors w1,w2, . . . ,wm are used for the computation. The
objective of the charting process is that each unit learns to specialize on dif-
ferent regions of input space. When an input from such a region is fed into
the network, the corresponding unit should compute the maximum excitation.
Kohonen’s learning algorithm is used to guarantee that this effect is achieved.

...

1 2 3 m

x

w
1

w
2

w
3

w
m-1

w
m

neighborhood of unit 2 with radius 1

Fig. 15.4. A one-dimensional lattice of computing units

A Kohonen unit computes the Euclidian distance between an input x
and its weight vector w. This new definition of excitation is more appro-
priate for certain applications and also easier to visualize. In the Kohonen
one-dimensional network, the neighborhood of radius 1 of a unit at the k-th
position consists of the units at the positions k − 1 and k + 1. Units at both

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

396 15 Kohonen Networks

ends of the chain have asymmetrical neighborhoods. The neighborhood of ra-
dius r of unit k consists of all units located up to r positions from k to the
left or to the right of the chain.

Kohonen learning uses a neighborhood function φ, whose value φ(i, k)
represents the strength of the coupling between unit i and unit k during the
training process. A simple choice is defining φ(i, k) = 1 for all units i in a
neighborhood of radius r of unit k and φ(i, k) = 0 for all other units. We will
later discuss the problems that can arise when some kinds of neighborhood
functions are chosen. The learning algorithm for Kohonen networks is the
following:

Algorithm 15.2.1 Kohonen learning

start : The n-dimensional weight vectors w1,w2, . . . ,wm of them computing
units are selected at random. An initial radius r, a learning constant
η, and a neighborhood function φ are selected.

step 1 : Select an input vector ξ using the desired probability distribution over
the input space.

step 2 : The unit k with the maximum excitation is selected (that is, for which
the distance between wi and ξ is minimal, i = 1, . . . ,m).

step 3 : The weight vectors are updated using the neighborhood function and
the update rule

wi ← wi + ηφ(i, k)(ξ −wi), for i = 1, . . . ,m.

step 4 : Stop if the maximum number of iterations has been reached; otherwise
modify η and φ as scheduled and continue with step 1.

The modifications of the weight vectors (step 3) attracts them in the direc-
tion of the input ξ. By repeating this simple process several times, we expect
to arrive at a uniform distribution of weight vectors in input space (if the
inputs have also been uniformly selected). The radius of the neighborhood is
reduced according to a previous plan, which we call a schedule. The effect is
that each time a unit is updated, neighboring units are also updated. If the
weight vector of a unit is attracted to a region in input space, the neighbors
are also attracted, although to a lesser degree. During the learning process
both the size of the neighborhood and the value of φ fall gradually, so that
the influence of each unit upon its neighbors is reduced. The learning constant
controls the magnitude of the weight updates and is also reduced gradually.
The net effect of the selected schedule is to produce larger corrections at the
beginning of training than at the end.

Figure 15.5 shows the results of an experiment with a one-dimensional
Kohonen network. Each unit is represented by a dot. The input domain is
a triangle. At the end of the learning process the weight vectors reach a
distribution which transforms each unit into a “representative” of a small
region of input space. The unit in the lower corner, for example, is the one

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

15.2 Kohonen’s model 397

.

.. . . .
.... .

Fig. 15.5. Map of a triangular region

which responds with the largest excitation for vectors in the shaded region. If
we adopt a “winner-takes-all” activation strategy, then it will be the only one
to fire.

The same experiment can be repeated for differently shaped domains. The
chain of Kohonen units will adopt the form of a so-called Peano curve. Fig-
ure 15.6 is a series of snapshots of the learning process from 0 to 25000 iter-
ations [255]. At the beginning, before training starts, the chain is distributed
randomly in the domain of definition. The chain unwraps little by little and the
units distribute gradually in input space. Finally, when learning approaches
its end, only small corrections affect the unit’s weights. At that point, the
neighborhood radius has been reduced to zero and the learning constant has
reached a small value.

Fig. 15.6. Mapping a chain to a triangle

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

398 15 Kohonen Networks

Kohonen networks can be arranged in multidimensional grids. An inter-
esting choice is a planar network, as shown in Figure 15.7. The neighborhood
of radius r of unit k consists, in this case, of all other units located at most r
places to the left or right, up or down in the grid. With this convention, the
neighborhood of a unit is a quadratic portion of the network. Of course we
can define more sophisticated neighborhoods, but this simple approach is all
that is needed in most applications.

Figure 15.7 shows the flattening of a two-dimensional Kohonen network in
a quadratic input space. The four diagrams display the state of the network
after 100, 1000, 5000, and 10000 iterations. In the second diagram several
iterations have been overlapped to give a feeling of the iteration process. Since
in this experiment the dimension of the input domain and of the network are
the same, the learning process reaches a very satisfactory result.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 15.7. Mapping a square with a two-dimensional lattice. The diagram on the
upper right shows some overlapped iterations of the learning process. The diagram
below it is the final state after 10000 iterations.

Settling on a stable state is not so easy in the case of multidimensional
networks. There are many factors which play a role in the convergence process,
such as the size of the selected neighborhood, the shape of the neighborhood
function and the scheduling selected to modify both. Figure 15.8 shows an
example of a network which has reached a state very difficult to correct. A knot
has appeared during the training process and, if the plasticity of the network

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

15.2 Kohonen’s model 399

has reached a low level, the knot will not be undone by further training, as
the overlapped iterations in the diagram on the right, in Figure 15.8 show.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 15.8. Planar network with a knot

Several proofs of convergence have been given for one-dimensional Ko-
honen networks in one-dimensional domains. There is no general proof of
convergence for multidimensional networks.

15.2.2 Mapping high-dimensional spaces

Usually, when an empirical data set is selected, we do not know its real dimen-
sion. Even if the input vectors are of dimension n, it could be that the data
concentrates on a manifold of lower dimension. In general it is not obvious
which network dimension should be used for a given data set. This general
problem led Kohonen to consider what happens when a low-dimensional net-
work is used to map a higher-dimensional space. In this case the network must
fold in order to fill the available space. Figure 15.9 shows, in the middle, the
result of an experiment in which a two-dimensional network was used to chart
a three-dimensional box. As can be seen, the network extends in the x and y
dimensions and folds in the z direction. The units in the network try as hard
as possible to fill the available space, but their quadratic neighborhood poses
some limits to this process. Figure 15.9 shows, on the left and on the right,
which portions of the network approach the upper or the lower side of the
box. The black and white stripes resemble a zebra pattern.

Remember that earlier we discussed the problem of adapting the planar
brain cortex to a multidimensional sensory world. There are some indications
that a self-organizing process of the kind shown in Figure 15.9 could also be
taking place in the human brain, although, of course, much of the brain struc-
ture emerges pre-wired at birth. The experiments show that the foldings of
the planar network lead to stripes of alternating colors, that is, stripes which

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

400 15 Kohonen Networks

0
0.2

0.4
0.6

0.8
1 0

0.2

0.4

0.6

0.8

1

−0.4

−0.2

0

0.2

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 15.9. Two-dimensional map of a three-dimensional region

map alternately to one side or the other of input space (for the z dimension).
A commonly cited example for this kind of structure in the human brain is
the visual cortex. The brain actually processes not one but two visual images,
one displaced with respect to the other. In this case the input domain consists
of two planar regions (the two sides of the box of Figure 15.9). The planar
cortex must fold in the same way in order to respond optimally to input from
one or other side of the input domain. The result is the appearance of the
stripes of ocular dominance studied by neurobiologists in recent years. Fig-
ure 15.10 shows a representation of the ocular dominance columns in LeVays’
reconstruction [205]. It is interesting to compare these stripes with the ones
found in our simple experiment with the Kohonen network.

Fig. 15.10. Diagram of eye dominance in the visual cortex. Black stripes represent
one eye, white stripes the other.

These modest examples show the kinds of interesting consequence that can
be derived from Kohonen’s model. In principle Kohonen networks resemble the
unsupervised networks we discussed in Chap. 5. Here and there we try to chart
an input space distributing computing units to define a vector quantization.
The main difference is that Kohonen networks have a predefined topology. They

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

15.3 Analysis of convergence 401

are organized in a grid and the learning problem is to find a way to distribute
this grid in input space. One could follow another approach, such as using a
k-means type of algorithm to distribute n × n units in a quadratic domain.
We could thereafter use these units as the vertices of a planar grid, which we
define at will. This is certainly better if we are only interested in obtaining
a grid for our quadratic domain. If we are interested in understanding how
a given grid (i.e., the cortex) adapts to a complex domain, we have to start
training with the folded grid and terminate training with an unfolded grid. In
this case what we are investigating is the interaction between “nurture and
nature”. What initial configurations lead to convergence? How is convergence
time affected by a preordered network compared to a fully random network?
All these issues are biologically relevant and can only be answered using the
full Kohonen model or its equivalent.

15.3 Analysis of convergence

We now turn to the difficult question of analyzing the convergence of Ko-
honen’s learning algorithm. We will not go into detail in this respect, since
the necessary mathematical machinery is rather complex and would take too
much space in this chapter. We will content ourselves with looking at the
conditions for stability when the network has arrived at an ordered state, and
give some useful references for more detailed analysis.

15.3.1 Potential function – the one-dimensional case

Consider the simplest Kohonen network – it consists of just one unit and the
input domain is the one-dimensional interval [a, b]. The learning algorithm will
lead to convergence of the sole weight x in the middle of the interval [a, b].

a bx
F

1
F

2

Fig. 15.11. The weight x in the interval [a, b]

In our example Kohonen learning consists of the update rule

xn = xn−1 + η(ξ − xn−1),

where xn and xn−1 represent the values of the unit’s weight in steps n and
n − 1 and ξ is a random number in the interval [a, b]. If 0 < η ≤ 1, the
series x1, x2, . . . cannot leave the interval [a, b], that is, it is bounded. Since
the expected value 〈x〉 of x is also bounded, this means that the expected
value of the derivative of x with respect to t is zero,

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

402 15 Kohonen Networks 〈
dx

dt

〉
= 0,

otherwise the expected value of x will eventually be lower than a or greater
than b. Since 〈

dx

dt

〉
= η (〈ξ〉 − 〈x〉) = η

(
a+ b

2
− 〈x〉

)
,

this means that
〈x〉 =

a+ b

2
.

The same technique can be used to analyze the stable states of the general
one-dimensional case. Let n units be arranged in a one-dimensional chain
whose respective weights are denoted by x1, x2, . . . , xn. The network is used to
chart the one-dimensional interval [a, b]. Assume that the weights are arranged
monotonically and in ascending order, i.e. a < x1 < x2 < · · · < xn < b. We
want to show that the expected values of the weights are given by

〈
xi
〉

= a+ (2i− 1)
b− a
2n

. (15.1)

All network weights are distributed as shown in Figure 15.12.

a b

(b − a)

n

(b − a)

2n

(b − a)

n

(b − a)

2n

x1 x2 x3 xn

Fig. 15.12. Distribution of the network weights in the interval [a, b]

The distribution is statistically stable for a one-dimensional Kohonen net-
work because the attraction on each weight of its domain is zero on average.
The actual weights oscillate around the expected values

〈
x1
〉
, . . . , 〈xn〉. Since,

in Kohonen learning, the weights stay bounded, it holds for i = 1, 2, . . . , n that〈
dxi

dt

〉
= 0 (15.2)

The learning algorithm does not modify the relative positions of the weights.
Equation (15.2) holds if the expected values

〈
x1
〉
, . . . , 〈xn〉 are distributed ho-

mogeneously, that is, in such a way that attraction from the right balances the
attraction from the left. This is only possible with the distribution given by
(15.1). Note that we did not make any assumptions on the form of the neigh-
borhood function (we effectively set it to zero). If the neighborhood function

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

15.3 Analysis of convergence 403

is taken into account, a small difference arises at both ends of the chain, be-
cause the attraction from one side of the neighborhood is not balanced by the
corresponding attraction from the other. This can be observed during training
of Kohonen networks, for example in the lower right diagram in Figure 15.7.

15.3.2 The two-dimensional case

Stable states for the two-dimensional case can be analyzed in a similar way.
Assume that a two-dimensional Kohonen network with n× n units is used to
map the interval [a, b]× [c, d]. Each unit has four immediate neighbors, with
the exception of the units at the borders (Figure 15.13).

w1
n1

w2
n1

N n1

w2
11

w1
11

w1
nn

w2
nn

N11

N nn

a b

c

d

Fig. 15.13. Two-dimensional map

Denote the unit in the lower left corner by N11 and the unit in the upper
right corner by Nnn. Unit N ij is located at row i and column j of the network.
Consider a monotonic ordering of the network weights, i.e.,

wij
1 < wik

1 if j < k (15.3)

and
wij

2 < wkj
2 if i < k, (15.4)

where wij
1 and wij

2 denote the two weights of unit N ij .
Kohonen learning is started with an ordered configuration of this type.

It is intuitively clear that the weights will distribute homogeneously in the
input domain. The two-dimensional problem can be broken down into two
one-dimensional problems. Let

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

404 15 Kohonen Networks

wj
1 =

1
n

n∑
i=1

wij
1

denote the average value of the weights of all units in the j-th column. Since
equation (15.4) holds, these average values are monotonically arranged, that
is, for the first coordinate we have

a < w1
1 < w2

1 < · · · < wn
1 < b.

If the average values are monotonically distributed, their expected values〈
wi

1

〉
will reach a homogeneous distribution in the interval [a, b]. Assum-

ing that the neighborhood function has been set to zero, the units’ weights
w11

1 , w
21
1 , . . . , w

n1
1 of the first column will oscillate around the average value〈

w1
1

〉
. The same considerations can be made for the average values of the

weights of each row of units. If the learning constant is small enough, the
initial distribution will converge to a stable state.

Unfortunately, to arrive at this ideal state it is first necessary to unfold
the randomly initialized Kohonen network. As Figure 15.8 shows, this process
can fail at an early stage. The question is, therefore, under which conditions
can such a planar network arrive at the unfolded state. Many theoreticians
have tried to give an answer, but a general solution remains to be found
[66, 91, 367].

15.3.3 Effect of a unit’s neighborhood

In the previous section we did not consider the effect of a unit’s neighborhood
on its final stable state. Assume that the neighborhood function of a unit is
given by

φ(i, k) =

⎧⎨
⎩

1 if i = k
1/2 if i = k ± 1
0 otherwise

Let a linear Kohonen network be trained with this neighborhood function.
The stable ordering that is eventually reached (Figure 15.14) does not divide
the input domain in equal segments. The stable mean values for x1 and x2

are −1/4 and 1/4 respectively (see Exercise 2).

-1 1

0

x1 x2

Fig. 15.14. Two weights in the interval [−1, 1]

The neighborhood function produces a concentration of units around the
center of the distribution. The exact pattern depends on the neighborhood

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

15.3 Analysis of convergence 405

function and the neighborhood radius. Strong coupling of the grid’s units at-
tracts them to its center. The correct learning strategy is therefore to start
training with a strong coupling, which is reduced gradually as learning pro-
gresses.

Fig. 15.15. Two-dimensional lattice being straightened out

In the case of a two-dimensional network (Figure 15.15), this training
strategy concentrates the network towards the center. However, the periph-
ery of the distribution attracts the network, unfolds it, and helps to achieve
convergence. A way to help this process is to initialize the network with small
weights (when the empirical data is centered at the origin).

15.3.4 Metastable states

In 1986 Cotrell and Fort showed that one-dimensional Kohonen networks con-
verge to an ordered state if the input is selected from a uniform distribution
[91]. Later Bouton and Pages extended this result for other distributions [66].
This has sometimes been interpreted as meaning that one-dimensional Koho-
nen networks always converge to a stable ordered state. However, this is only
true for the kind of learning rule used in the proof of the convergence results.
For a chain of weights w1, w2, . . . , wn, the weight updates are given by

wk = wk + γ(ξ − wk),

where k is equal to the index of the nearest weight to the input ξ and each
of its two neighbors (with the obligatory exceptions at both ends) and γ is a
learning constant. Note that this learning rule implies that the neighborhood
function does not decay from one position in the chain to the next. Usually,
however, a neighborhood function φ(i, k) is used to train the network and
the question arises whether under some circumstances the one-dimensional
Kohonen network could possibly converge to a disordered state. This is indeed
the case when the neighborhood function decays too fast.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

406 15 Kohonen Networks

2

w
2

1

w
1

3

w
30 1

Fig. 15.16. A disordered one-dimensional network

To see how these metastable states arise, consider a simple chain of three
units, which is started in the disordered combination in the interval [0, 1], as
shown in Figure 15.16. The chain will be in equilibrium if the expected value
of the total attraction on each weight is zero. Consider a simple neighborhood
function

φ(i, k) =

⎧⎨
⎩

1 if i = k
a if i = k ± 1
0 otherwise

and the learning rule

wk = wk + γφ(i, k)(ξ − wk),

where all variables have the same meaning as explained before and a is a real
positive constant. We will denote the total attractive “force” on each weight
by f1, f2, f3. In the configuration shown in Figure 15.16 the total attractions
are (see Exercise 4):

f1 = (−3
4
− a)w1 +

a

4
w2 + (

1
4

+
a

4
)w3 +

a

2
(15.5)

f2 =
a

4
w1 + (−3

4
− a)w2 + (

1
4

+
a

4
)w3 +

1
2

(15.6)

f3 =
1
4
w1 + (

1
4

+
a

4
)w2 + (−1

2
− 3a

4
)w3 +

a

2
(15.7)

This is a system of linear equations for the three weights w1, w2 and w3. The
associated “force” matrix is:

F =
1
4

⎛
⎝−a− 3 a 1 + a

a −a− 3 a+ 1
1 a+ 1 −3a− 2

⎞
⎠

The matrix F can be considered the negative Hesse matrix of a potential func-
tion U(w1, w2, w3). The solution is stable if the matrix −F is positive definite.
The solution of the system when a = 0, that is, when Kohonen units do not
attract their neighbors, is w1 = 1/6, w2 = 5/6, w3 = 1/2. This is a stable
disordered state. If a is increased slowly, the matrix of the system of linear
equations is still invertible and the solutions comply with the constraints of
the problem (each weight lies in the interval [0, 1]). For a = 0.01, for example,

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

15.3 Analysis of convergence 407

the solutions w1 = 0.182989, w2 = 0.838618, w3 = 0.517238 can be found nu-
merically. This is also a stable disordered state as can be proved (Exercise 4)
by computing the eigenvalues of the matrix −F , which are given by

λ1 =
1

3 + 2a

λ2 =
5 + 3a+

√
(5 + 3a)2 − 4(4 + 6a− a2)
2(4 + 6a− a2)

λ3 =
5 + 3a−√(5 + 3a)2 − 4(4 + 6a− a2)

2(4 + 6a− a2)
.

For small values of a all three eigenvalues are real and positive. This means
that −F is positive definite.

We can also numerically compute the maximum value of a for which it
is still possible to find metastable states. For a = 0.3 the stable solutions
no longer satisfy the constraints of the problem (w2 becomes larger than 1).
We should expect convergence to an ordered state for values of a above this
threshold.

The example of one-dimensional chains illustrates some of the problems as-
sociated with guaranteeing convergence of Kohonen networks. In the multidi-
mensional case care must be taken to ensure that the appropriate neighorhood
is chosen, that a good initialization is used and that the cooling scheduling
does not freeze the network too soon. And still another problem remains: that
of choosing the dimension of the model.

15.3.5 What dimension for Kohonen networks?

In many cases we have experimental data which is coded using n real values,
but whose effective dimension is much lower. Consider the case in which the
data set consists of the points in the surface of a sphere in three-dimensional
space. Although the input vectors have three components, a two-dimensional
Kohonen network will do a better job of charting this input space than a
three-dimensional one. Some researchers have proposed computing the effec-
tive dimension of the data before selecting the dimension of the Kohonen
network, since this can later provide a smoother approximation to the data.

The dimension of the data set can be computed experimentally by mea-
suring the variation in the number of data points closer to another data point
than a given ε, when ε is gradually increased or decreased. If, for example,
the data set lies on a plane in three-dimensional space and we select a data
point ξ randomly, we can plot the number of data points N(ε) not further
away from ξ than ε. This number should follow the power law N(ε) ≈ ε2. If
this is the case, we settle for a two-dimensional network. Normally, the way
to make this computation is to draw a plot of log(N(ε) against log(ε). The
slope of the regression curve as ε goes to zero is the fractal dimension of the
data set.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

408 15 Kohonen Networks

Finding the appropriate power law means that in some cases a function
has to be fitted to the measurements. Since the dimension of the data can
sometimes best be approximated by a fraction, we speak of the fractal di-
mension of the data. It has been shown experimentally that if the dimension
of the Kohonen network approaches the fractal dimension of the data, the
interpolation error is smaller than for other network sizes [410]. This can be
understood as meaning that the units in the network are used optimally to
approximate input space. Other methods of measuring the fractal dimension
of data are discussed by Barnsley [42].

15.4 Applications

Kohonen networks can adapt to domains with the most exotic structures and
have been applied in many different fields, as will be shown in the following
sections.

15.4.1 Approximation of functions

A Kohonen network can be used to approximate the continuous real function
f in the domain of definition [0, 1]× [0, 1]. The set P = {(x, y, f(x, y))|x, y ∈
[0, 1]} is a surface in three-dimensional space. We would like to adapt a planar
grid to this surface. In this case the set P is the domain which we try to map
with the Kohonen network.

After the learning algorithm is started, the planar network moves in the
direction of P and distributes itself to cover the domain. Figure 15.17 shows
the result of an experiment in which the function z = 5 sinx + y had to be
learned. The combinations of x and y were generated in a small domain. At
the end of the training process the network has “learned” the function f in
the region of interest.

The function used in the example above is the one which guarantees op-
timal control of a pole balancing system. Such a system consists of a pole (of
mass 1) attached to a moving car. The pole can rotate at the point of attach-
ment and the car can only move to the left or to the right. The pole should be
kept in equilibrium by moving the car in one direction or the other. The nec-
essary force to keep the pole in equilibrium is given by f(θ) = α sin θ+β dθ/dt
[368], where θ represents the angle between the pole and the vertical, and α
and β are constants. (Figure 15.18). For small values of θ a linear approxima-
tion can be used. Since a Kohonen network can learn the function f , it can
also be used to provide the automatic control for the pole balancing system.

When a combination of x and y is given (in this case θ and dθ/dt), the
unit (i, j) is found for which the Euclidian distance between its associated
weights w(i,j)

1 and w
(i,j)
2 and (θ, dθ/dt) is minimal. The value of the function

at this point is the learned w(i,j)
3 , that is, an approximation to the value of the

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

15.4 Applications 409

Fig. 15.17. Control surface of the balancing pole [Ritter et al. 1990]

θ

f

Fig. 15.18. A balancing pole

function f . The network is therefore a kind of look-up table of the values of
f . The table can be made as sparse or as dense as needed for the application
at hand. Using a table is in general more efficient than computing the func-
tion each time from scratch. If the function is not analytically given, but has
been learned using some input-output examples, Kohonen networks resemble
backpropagation networks. The Kohonen network can continue adapting and,
in this way, if some parameters of the system change (because some parts
begin to wear), such a modification is automatically taken into account. The
Kohonen network behaves like an adaptive table, which can be built using a
minimal amount of hardware. This has made Kohonen networks an interesting
choice in robotic applications.

15.4.2 Inverse kinematics

A second application of Kohonen networks is mapping the configuration space
of a mechanical arm using a two-dimensional grid. Assume that a robot arm

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

410 15 Kohonen Networks

with two joints, as shown in Figure 15.19, is used to reach to all points in
a table. The robot arm has two degrees of freedom, i.e., the angles α and β.
The network is trained using a feedback signal from the manipulator. The two-
dimensional Kohonen network is distributed homogenously in the quadratic
domain. Now the tip of the arm is positioned manually at randomly selected
points of the working surface. The weights of the Kohonen unit which is
nearest to this point are updated (and also the weights of the neighbors), but
the inputs for the update are the joints’ angles. The network therefore charts
the space of degrees of freedom. The parameters stored as weights at each
node represent the combination of angles needed to reach a certain point,
as shown in Figure 15.19. In this case the Kohonen network can again be
considered a parameter table. Figure 15.19 shows that if the robot arm must
be positioned at the selected point, it is only necessary to read the parameters
from the grid. Note that in this case we assumed that the learning process
avoids reaching the same point with a different parameter combination.

α

β

α β

Fig. 15.19. Robot arm (left) and trained network (right)

More interesting is the case where we want to displace the tip of the
manipulator from point A to point B. It is only necessary to find a path from
A to B on the grid. All units in this path provide the necessary parameters
for the movement. Positions in between can be interpolated from the data.

A

B

Fig. 15.20. Optimal path from A to B

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

15.5 Historical and bibliographical remarks 411

The problem can be made more difficult if obstacles are allowed in the
working surface. Figure 15.21 shows such a hurdle. If a Kohonen network is
trained, it charts the configuration space of the manipulator in such a way as
to avoid the forbidden zones. If we distribute the network in the working area
according to the stored parameters, the result is the one shown to the left of
Figure 15.21. The network itself is still a two-dimensional grid. If we want to
move the manipulator from A to B, we can plan the movement on the grid in
the way we discussed before. The actual path selection is the one shown on
the right of Figure 15.21. The manipulator moves to avoid the obstacle.

A B

Fig. 15.21. Obstacles in the work area

This method can only be employed if we have previously verified that
the edges of the network provide valid interpolations. It could be that two
adjacent nodes contain valid information, but the path between them leads to
a collision. Before using the network in the way discussed above, a previous
validation step should guarantee that the edges of the grid are collision-free.

The Kohonen network can be used only if the obstacles do not change their
positions. It is conceivable that if the changes occur very slowly, a fast learning
algorithm could adapt the network to the changing circumstances. Kohonen
networks behave in this kind of application as a generalized coordinate system.
Finding the shortest path in the network corresponds to finding the shortest
path in the domain of the problem, even when the movement performed by
the manipulator is rather complex and nonlinear.

15.5 Historical and bibliographical remarks

Many applications have been developed since Kohonen first proposed the kind
of networks which now bear his name. It is fascinating to see how such a sim-
ple model can offer plausible explanations for certain biological phenomena.
Kohonen networks have even been used in the field of combinatorics, for ex-
ample, to solve the Traveling Salesman Problem with the so-called elastic net
algorithm [117]. A ring of units is used to encircle the cities to be visited in
the Euclidian plane and Kohonen learning wraps this ring around them, so
that a round trip of nearly minimal length is found.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

412 15 Kohonen Networks

The first applications in the field of robotics were developed and perfected
in the 1980s. Kohonen has carried out some research on the application of
topology-preserving networks in such diverse fields as speech recognition and
structuring of semantic networks. The phonetic typewriter is a system based
on a Kohonen map of the space of phonemes. A word can be recognized by
observing the path in phoneme space reconstructed by the network [431].

Even if the original Kohonen model requires some non-biological assump-
tions (for example, the exchange of non-local information) there are ways to
circumvent this problem. Its most important features are its self-organizing
properties which arise from a very simple adaptation rule. Understanding the
mathematics of such self-organizing processes is a very active field of research
[222].

Exercises

1. Implement a Kohonen one-dimensional network and map a two-dimen-
sional square. You should get a Peano curve of the type discussed in this
chapter.

2. Prove that the neighborhood function of the linear network in Sect. 15.3.3
has a stable state at x1 = −1/4 and x2 = 1/4. Derive a general expression
for a linear chain of n elements and the same neighborhood function.

3. Is it possible for a two-dimensional Kohonen network in an ordered state
to become disordered after some iterations of the learning algorithm? Con-
sider the case of a two-dimensional domain.

4. Derive the expected values of f1, f2 and f3 given in equations (15.5),
(15.6), and (15.7).

5. Give an example of an obstacle in the working field of the robot arm
discussed in the text that makes an edge of the Kohonen network unusable,
although the obstacle is far away from the edge.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

16

Modular Neural Networks

In the previous chapters we have discussed different models of neural networks
– linear, recurrent, supervised, unsupervised, self-organizing, etc. Each kind of
network relies on a different theoretical or practical approach. In this chapter
we investigate how those different models can be combined. We transform
each single network in a module that can be freely intermixed with modules
of other types. In this way we arrive at the concept of modular neural networks.
Several general issues have led to the development of modular systems [153]:

• Reducing model complexity. As we discussed in Chap. 10 the way to reduce
training time is to control the degrees of freedom of the system.

• Incorporating knowledge. Complete modules are an extension of the ap-
proach discussed in Sect. 10.3.5 of learning with hints.

• Data fusion and prediction averaging. Committees of networks can be con-
sidered as composite systems made of similar elements (Sect. 9.1.6)

• Combination of techniques. More than one method or class of network can
be used as building block.

• Learning different tasks simultaneously. Trained modules may be shared
among systems designed for different tasks.

• Robustness and incrementality. The combined network can grow gradually
and can be made fault-tolerant.

Modular neural networks, as combined structures, have also a biological back-
ground: Natural neural systems are composed of a hierarchy of networks built
of elements specialized for different tasks. In general, combined networks are
more powerful than flat unstructured ones.

16.1 Constructive algorithms for modular networks

Before considering networks with a self-organizing layer, we review some tech-
niques that have been proposed to provide structure to the hidden layer of

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

414 16 Modular Neural Networks

feed-forward neural networks or to the complete system (as a kind of decision
tree).

16.1.1 Cascade correlation

An important but difficult problem in neural network modeling, is the se-
lection of the appropriate number of hidden units. The cascade correlation
algorithm, proposed by Fahlman and Lebiere [131], addresses this issue by
recruiting new units according to the residual approximation error. The algo-
rithm succeeds in giving structure to the network and reducing the training
time necessary for a given task [391].

Figure 16.1 shows a network trained and structured using cascade cor-
relation. Assume for the moment that a single output unit is required. The
algorithms starts with zero hidden units and adds one at a time according to
the residual error. The diagram on the right in Figure 16.1 shows the start
configuration. The output unit is trained to minimize the quadratic error.
Training stops when the error has leveled off. If the average quadratic error
is still greater than the desired upper bound, we must add a hidden unit and
retrain the network.

output

output

H1

output

H1 H2

trained weights

frozen weights

Fig. 16.1. The cascade correlation architecture

Denote the mean error of the network by Ē and the error for pattern
i = 1, 2, . . . , p, by Ei. A hidden unit is trained, isolated from the rest of the
network, to maximize the absolute value of the correlation between Vi − V̄
and Ei− Ē, where Vi denotes the unit’s output for the i-th pattern and V̄ its
average output. The quantity to be maximized is therefore

S = |
p∑

i=1

(Vi − V̂)(Ei − Ê)|. (16.1)

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

16.1 Constructive algorithms for modular networks 415

The motivation behind this step is to specialize the hidden unit to the de-
tection of the residual error of the network. The backpropagation algorithm
is applied as usual, taking care to deal with the sign of the argument of the
absolute value operator. One way of avoiding taking absolute values at all,
is to train a weight at the output of the hidden unit, so that it assumes the
appropriate sign (see Exercise 1).

Once the hidden unit H1 has been trained, i.e., when the correlation level
cannot be further improved, the unit is added to the network as shown in
Figure 16.1 (left diagram). The weights of the hidden unit are frozen. The
output unit receives information now from the input sites and from the hidden
unit H1. All the weights of the output unit are retrained until the error levels
off and we test if a new hidden unit is necessary. Any new hidden unit receives
an input from the input sites and from all other previously defined hidden
units. The algorithm continues adding hidden units until we are satisfied with
the approximation error.

The advantage of the algorithm, regarding learning time, is that in every
iteration a single layer of weights has to be trained. Basically, we only train
one sigmoidal unit at a time. The final network has more structure than the
usual flat feed-forward networks and, if training proceeds correctly, we will
stop when the minimum number of necessary hidden units has been selected.
To guarantee this, several hidden units can be trained at each step and the
one with the highest correlation selected for inclusion in the network [98].

In the case of more than one output unit, the average of the correlation
of all output units is maximized at each step. A summation over all output
units is introduced in equation (16.1).

16.1.2 Optimal modules and mixtures of experts

Cascade correlation can be considered a special case of a more general strategy
that consists in training special modules adapted for one task. As long as they
produce continuous and differentiable functions, it is possible to use them in
any backpropagation network. The learning algorithm is applied as usual, with
the parameters of the modules frozen.

A related approach used in classifier networks is creating optimal inde-
pendent two-class classifiers as building blocks for a larger network. Assume
that we are trying to construct a network that can classify speech data as
corresponding to one of 10 different phonemes. We can start training hidden
units that learn to separate one phoneme from another. Since the number of
different pairs of phonemes is 45, we have to train 45 hidden units. Training
proceeds rapidly, then the 45 units are put together in the hidden layer. The
output units (which receive inputs from the hidden units and from the original
data) can be trained one by one. As in cascade correlation, we do not need
to train more than a single layer of weights at each step. Moreover, if a new
category is introduced, for example a new phoneme, we just have to train new

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

416 16 Modular Neural Networks

hidden units for this new class and those already existing, add the new units
to the hidden layer, and retrain the output layer.

Note that the classifiers constructed using this approach still satisfy the
conditions necessary to potentially transform them into probability estima-
tors. The proof of Proposition 13 is completely general: no requirements are
put on the form of the classifier network other than enough plasticity.

A more general framework is the one proposed by Jacobs and Jordan with
their mixture of experts approach [218]. Given a training set consisting of p
pairs (x1,y1) . . . , (xp,yp), the complete network is built using several expert
subnetworks. Each one of them receives the input x and generates the output
y with probability

P (y|x, θi)

where θi is the parameter vector of the i-th expert. The output of each expert
subnetwork is weighted by a gating subnetwork which inspects the input x
and produces for m expert subnetworks the set of gating values g1, g2, . . . , gm.
They represent the probability that each expert network is producing the cor-
rect result. The final probability of producing y is given by the product of
each expert’s evaluation and its corresponding gating weight gi. The param-
eters of the combined model can be found by gradient descent or using an
Expectation Maximization (EM) algorithm proposed by Jordan and Jacobs
[227]. The mixtures of experts can be organized in different levels, like an op-
timal decision tree. The resulting architecture is called a Hierarchical Mixture
of Experts (HME).

16.2 Hybrid networks

In this section we consider some of the more promising examples of combined
networks, especially those which couple a self-organizing with a feed-forward
layer.

16.2.1 The ART architectures

Grossberg has proposed several different hybrid models, which should come
closer to the biological paradigm than pure feed-forward networks or standard
associative memories. His best-known contribution is the family of ART archi-
tectures (Adaptive Resonance Theory). The ART networks classify a stochas-
tic sequence of vectors in clusters. The dynamics of the network consists of
a series of automatic steps that resemble learning in humans. Specially phe-
nomena like one-shot learning can be recreated with this model.

Figure 16.2 shows the task to be solved by the network. The weight vec-
tors w1,w2, . . . ,wm represent categories in input space. All vectors located
inside the cone around each weight vector are considered members of a specific
cluster. The weight vectors are associated with computing units in a network.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

16.2 Hybrid networks 417

Each unit fires a 1 only for vectors located inside its associated cone of radius
r. The value r is inversely proportional to the “attention” parameter of the
unit. If r is small, the classification of input space is fine grained. A large r
produces a classification with low granularity, that is, with large clusters. The
network is trained to find the weight vectors appropriate for a given data set.

Once the weight vectors have been found, the network computes whether
new data can be classified in the existing clusters. If this is not the case (if,
for example, a new vector is far away from any of the existing weight vectors)
a new cluster is created, with a new associated weight vector. Figure 16.2
shows the weight vectors w1 and w2 with their associated cones of radius r.
If the new vector w3 is presented to the network, it is not recognized and a
new cluster is created, with this vector in the middle. The network preserves
its plasticity, because it can always react to unknown inputs, and its stability,
because already existing clusters are not washed out by new information. For
the scheme to work, enough potential weight vectors, i.e., computing units,
must be provided.

w

w

w

1

2

3

categories

attention
parameter

ρ

Fig. 16.2. Vector clusters and attention parameters

The ART-1 architecture was proposed by Grossberg to deal with binary
vectors [168]. It was generalized, as ART-2, to real-valued vectors [81]. Later
it was extended into the ART-3 model, whose dynamics is determined by
differential equations similar to the ones involved in the description of chemical
signals [82]. All three basic models have a similar block structure and the
classification strategy is in principle the same. In what follows, we give only
a simplified description of the ART-1 model. Some details have been omitted
from the diagram to simplify the discussion.

Figure 16.3 shows the basic structure of ART-1. There are two basic layers
of computing units. Layer F2 contains elements which fire according to the
“winner-takes-all” method. Only the element receiving the maximal scalar
product of its weight vector and the input fires a 1. In our example, the

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

418 16 Modular Neural Networks

categories

reset signal

–n

10 0 0

x1 x2 xn

2 22

00

w12 w22

ρ
ρ

ρ

1

1

1

at
te

nt
io

n

-1

-1

F

F1

2

Fig. 16.3. The ART-1 architecture

second element from the left in the F2 layer has just produced the output 1
and the other units remain silent. All weight vectors of the units in the F2

layer are equal at the beginning (all components set to 1) and differentiate
gradually as learning progresses.

Layer F1 receives binary input vectors from the input sites. The units
here have all threshold 2. This means that the attention unit (left side of
the diagram) can only be turned off by layer F2. As soon as an input vector
arrives it is passed to layer F1 and from there to layer F2. When a unit in layer
F2 has fired, the negative weight turns off the attention unit. Additionally,
the winning unit in layer F2 sends back a 1 through the connections between
layer F2 and F1. Now each unit in layer F1 becomes as input the corresponding
component of the input vector x and of the weight vector w. The i-th F1 unit
compares xi with wi and outputs the product xiwi. The reset unit receives
this information and also the components of x, weighted by ρ, the attention
parameter, so that it own computation is

ρ

n∑
i=1

xi − x ·w ≥ 0.

This corresponds to the test
x ·w∑n
i=1 xi

≤ ρ.

The reset unit fires only if the input lies outside the attention cone of the
winning unit. A reset signal is sent to layer F2, but only the winning unit is
inhibited. This in turn activates again the attention unit and a new round of
computation begins.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

16.2 Hybrid networks 419

As we can see there is resonance in the network only if the input lies close
enough to a weight vector w. The weight vectors in layer F2 are initialized
with all components equal to 1 and ρ is selected to satisfy 0 < ρ < 1. This
guarantees that eventually an unused vector will be recruited to represent
a new cluster. The selected weight vector w is updated by pulling it in the
direction of x. This is done in ART-1 by turning off all components in w which
are zeroes in x. In ART-2 the update step corresponds to a rotation of w in
the direction of x.

The purpose of the reset signal is to inhibit all units that do not resonate
with the input. A unit in layer F2, which is still unused, can be selected for
the new cluster containing x. In this way, a single presentation of an example
sufficiently different from previous data, can lead to a new cluster. Modifying
the value of the attention parameter ρ we can control how many clusters are
used and how wide they are.

In this description we have assumed that the layer F2 can effectively com-
pute the angular distance between x and w. This requires a normalization of
w, which can be made in substructures of layers F1 or F2, like for example a
so-called Grossberg layer [168, 169].

The dynamics of the ART-2 and ART-3 models is governed by differen-
tial equations. Computer simulations consume too much time. Consequently,
implementations using analog hardware or a combination of optical and elec-
tronic elements are more suited to this kind of model [462].

16.2.2 Maximum entropy

The strategy used by the ART models is only one of the many approaches
that have been proposed in the literature for the clustering problem. It has
the drawback that it tries to build clusters of the same size, independently of
the distribution of the data. A better solution would be to allow the clusters
to have varying radius (attention parameters in Grossberg terminology). A
popular approach in this direction is the maximum entropy method.

The entropy H of a data set of N points assigned to k different clusters
c1, c2, . . . , ck is given by

H = −
k∑

i=1

p(ci) log(p(ci)),

where p(ci) denotes the probability of hitting the i-th cluster, when an element
of the data set is picked at random. If all data is assigned to one cluster, then
H = 0. Since the probabilities add up to 1, the clustering that maximizes the
entropy is the one for which all cluster probabilities are identical. This means
that the clusters will tend to cover the same number of points.

A problem arises whenever the number of elements of each class is different
in the data set. Consider the case of unlabeled speech data: some phonemes
are more frequent than others and if a maximum entropy method is used,

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

420 16 Modular Neural Networks

the boundaries between clusters will deviate from the natural solution and
classify some data erroneously. Figure 16.4 illustrates this problem with a
simple example of three clusters. The natural solution seems obvious; the
maximum entropy partition is the one shown.

•

•
•

•

•

•

•

•

•

••
••

•

• •

•

•

Fig. 16.4. Maximum entropy clustering

This problem can be solved using a bootstrapped iterative algorithm, con-
sisting of the following steps:

Algorithm 16.2.1 Bootstrapped clustering

cluster : Compute a maximum entropy clustering with the training data. La-
bel the original data according to this clustering.

select : Build a new training set by selecting from each class the same number
of points (random selection with replacement). Go to the previous
step.

The training set for the first iteration is the original data set. Using this
algorithm, the boundaries between clusters are adjusted irrespective of the
number of members of each actual cluster and a more natural solution is
found.

16.2.3 Counterpropagation networks

Our second example of a hybrid model is that of counterpropagation net-
works, first proposed by Hecht-Nielsen [183]. In a certain sense, they are an
extension of Kohonen’s approach. The original counterpropagation networks
were designed to approximate a continuous mapping f and its inverse f−1

using two symmetric sections. We describe the essential elements needed to
learn an approximation of the mapping f .

Figure 16.5 shows the architecture of a counterpropagation network. The
input consists of an n-dimensional vector which is fed to a a hidden layer
consisting of h cluster vectors. The output layer consists of a single linear
associator (when learning a mapping f : IRn → IR). The weights between
hidden layer and output unit are adjusted using supervised learning.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

16.2 Hybrid networks 421

input sites

Kohonen
layer

linear associator

x1 x2 xnx3

z1 z2 zm

Fig. 16.5. Simplified counterpropagation network

The network learns in two different phases. Firstly, the hidden layer
is trained using stochastically selected vectors from input space. The hid-
den layer produces a clustering of input space that corresponds to an n-
dimensional Voronoi tiling (as shown in Figure 16.6). After this step, each
element of the hidden layer has specialized to react to a certain region of in-
put space. Note that the training strategy can be any of the known vector
quantization methods and that the hidden layer can be arranged in a grid
(Kohonen layer) or can consist of isolated elements. The output of the hidden
layer can be controlled in such a way that only the element with the highest
activation fires. The hidden layer is, in fact, a classification network.

y

z

x

z
i

Fig. 16.6. Function approximation with a counterpropagation network

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

422 16 Modular Neural Networks

Function approximation can be implemented by assigning a value to each
weight z1, z2, . . . , zm in the network of Figure 16.5. This corresponds to fixing
the value of the approximation for each cluster region, as shown in Figure 16.6.
The polygon with height zi in the diagram corresponds to the function ap-
proximation selected for this region. The second training step is the supervised
adjustment of the zi values. If hidden unit i fires when input vector x is pre-
sented, the quadratic error of the approximation is

E =
1
2
(zi − f(x))2

Straightforward gradient descent on this cost function provides the necessary
weight update

Δzi = −dE
dzi

= γ (f(x)− zi),

where γ is a learning constant. After several iterations of supervised learning
we expect to find a good approximation of the function f . Training of the hid-
den and the output layer can be intermixed, or can be made in sequence. The
counterpropagation network can be trivially extended to the case of several
output units.

16.2.4 Spline networks

The function approximation provided by a network with a clustering layer
can be improved by computing a local linear approximation to the objective
function. Figure 16.7 shows a network which has been extended with a hidden
layer of linear associators. Each cluster unit is used to activate or inhibit one
of the linear associators, which are connected to all input sites.

input sites

Kohonen layer
+ linear

associators

linear associator

...

x1 x2 xnx3

Fig. 16.7. Extended counterpropagation network

The clustering elements in the hidden layer are trained exactly as before.
Figure 16.8 shows the final Voronoi tiling of input space. Now, the linear asso-

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

16.2 Hybrid networks 423

ciators in the hidden layer are trained using the backpropagation algorithm.
For each selected input, exclusively one of the clustering units activates one
associator. Only the corresponding weights are trained. The net effect is that
the network constructs a set of linear approximations to the objective function
that are locally valid.

y

z

x

Fig. 16.8. Function approximation with linear associators

Figure 16.8 shows that the constructed approximation consists now of
differently oriented polygons. The new surface has a smaller quadratic error
than the approximation with horizontal tiles. The functional approximation
can be made more accurate just by adding new units to the hidden layer,
refining the Voronoi tiling in this way. The network can be trivially extended
to the case of more than one output unit.

Ritter has recently proposed to use splines as construction elements for the
function approximation. This is a generalization of the above approach, which
seems to require many fewer hidden units in the case of well-behaved func-
tions. Such spline networks have been applied to different pattern recognition
problems and in robotics [439].

A problem that has to be addressed when combining a self-organized hid-
den layer with a conventional output layer, is the interaction between the two
types of structures. Figure 16.9 shows an example in which the function to be
learned is much more variable in one region than another. If input space is
sampled homogeneously, the mean error at the center of the domain will be
much larger than at the periphery, where the function is smoother.

The general solution is sampling input space according to the variability of
the function, that is, according to its gradient. In this case the grid defined by,
for example, a two-dimensional Kohonen network is denser at the center than

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

424 16 Modular Neural Networks

Fig. 16.9. A function and its associated differential tiling of input space

at the periphery (Figure 16.9), right). However, since only one set of training
pairs is given, heuristic methods have to be applied to solve this difficulty (see
Exercise 4).

16.2.5 Radial basis functions

A variant of hybrid networks with a Kohonen or clustering layer consists in
using Gaussians as activation function of the units. The hidden layer is trained
in the usual manner, but the input is processed differently at each hidden unit.
All of them produce an output value which is combined by the linear associator
at the output. It is desirable that the unit whose weight vector lies closer to
the input vector fires more strongly than the other hidden units.

Moody and Darken [318] propose the architecture shown in Figure 16.10.
Each hidden unit j computes as output

gj(x) =
exp
(
(x −wj)2

/
2σ2

j

)∑
k exp

(
(x−wk)2

/
2σ2

k

)
where x is the input vector and w1,w2, . . . ,wm are the weight vectors of the
hidden units. The constants σi are selected in an ad hoc way and can be set
to the distance between the weight vector wi and its nearest neighbor.

Note that the output of each hidden unit is normalized by dividing it with
the sum of all other hidden outputs. This explains the horizontal connections
between units shown in Figure 16.10. The output of the hidden layer consists
therefore of normalized numbers.

The weights z1, z2, . . . , zm are determined using backpropagation. The
quadratic error is given by

E =
1
2
(

n∑
i

gi(x)zi−f(x))2.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

16.2 Hybrid networks 425

n input sites

Kohonen
layer (m units)

linear associator

z1 z2 zm

x1 x2 xnx3

Fig. 16.10. Hybrid network with RBFs

The necessary weight updates are therefore given by

Δzi = −dE
dzi

= γ gi(x)(f(x) −
n∑
i

gi(x)zi).

The mixture of Gaussians provides a continuous approximation of the ob-
jective function and makes unnecessary the computation of the maximum
excitation in the hidden layer. Figure 16.11 shows an example of a function
approximation with four Gaussians. The error can be minimized using more
hidden units.

Fig. 16.11. Function approximation with RBFs

The main difference between networks made of radial basis functions and
networks of sigmoidal units is that the former use locally concentrated func-
tions as building blocks whereas the latter use smooth steps. If the function to
be approximated is in fact a Gaussian, we need to arrange several sigmoidal

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

426 16 Modular Neural Networks

steps in order to delimit the region of interest. But if the function to be ap-
proximated is a smooth step, we need many Gaussians to cover the region
of interest. Which kind of activation function is more appropriate therefore
depends on the concrete problem at hand.

16.3 Historical and bibliographical remarks

To the extent that neural network research has been approaching maturity,
more sophisticated methods have been introduced to deal with complex learn-
ing tasks. Modular neural networks were used from the beginning, for example
in the classic experiments of Rosenblatt. However, the probabilistic and al-
gorithmic machinery needed to handle more structured networks has been
produced only in the last few years.

The original motivation behind the family of ART models [168] was in-
vestigating phenomena like short-term and long-term memory. ART networks
have grown in complexity and combine several layers or submodules with
different functions. They can be considered among the first examples of the
modular approach to neural network design.

Feldman et al. have called the search for algorithmic systems provided with
the “speed, robustness and adaptability typically found in biology” the “grand
challenge” of neural network research [137]. The path to its solution lies in
the development of structured connectionist architectures. Biology provides
here many sucessful examples of what can be achieved when modules are first
found and then combined in more complex systems.

Ultimately, the kind of combined systems we would like to build are those
in which symbolic rules are implemented and supported by a connectionist
model [135, 136]. There have been several attempts to build connectionist ex-
perts systems [151] and also connectionist reasoning systems [400]. A modern
example of a massively parallel knowledge based reasoning system is SHRUTI,
a system proposed by Shastri, and which has been implemented in parallel
hardware [289].

Exercises

1. Show how to eliminate the absolute value operation from equation (16.1)
in the cascade correlation algorithm, so that backpropagation can be ap-
plied as usual.

2. Compare the cascade correlation algorithm with standard backpropaga-
tion. Use some small problems as benchmarks (parity, decoder-encoder,
etc.).

3. Construct a counterpropagation network that maps the surface of a sphere
onto the surface of a torus (represented by a rectangle). Select the most

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

16.3 Historical and bibliographical remarks 427

appropriate coordinates. How must you train the network so that angles
are preserved? This is the Mercator projection used for navigation.

4. Propose a method to increase sampling in those regions of input space in
which the training set is more variable, in order to make a counterpropa-
gation network more accurate.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

17

Genetic Algorithms

17.1 Coding and operators

Learning in neural networks is an optimization process by which the error
function of a network is minimized. Any suitable numerical method can be
used for the optimization. Therefore it is worth having a closer look at the
efficiency and reliability of different strategies. In the last few years genetic
algorithms have attracted considerable attention because they represent a
new method of stochastic optimization with some interesting properties [163,
305]. With this class of algorithms an evolution process is simulated in the
computer, in the course of which the parameters that produce a minimum or
maximum of a function are determined. In this chapter we take a closer look
at this technique and explore its applicability to the field of neural networks.

17.1.1 Optimization problems

Genetic algorithms evaluate the target function to be optimized at some ran-
domly selected points of the definition domain. Taking this information into
account, a new set of points (a new population) is generated. Gradually the
points in the population approach local maxima and minima of the function.
Figure 17.1 shows how a population of points encloses a local maximum of the
target function after some iterations. Genetic algorithms can be used when no
information is available about the gradient of the function at the evaluated
points. The function itself does not need to be continuous or differentiable.
Genetic algorithms can still achieve good results even in cases in which the
function has several local minima or maxima.

These properties of genetic algorithms have their price: unlike traditional
random search, the function is not examined at a single place, construct-
ing a possible path to the local maximum or minimum, but many different
places are considered simultaneously. The function must be calculated for all
elements of the population. The creation of new populations also requires ad-
ditional calculations. In this way the optimum of the function is sought in

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

430 17 Genetic Algorithms

several directions simultaneously and many paths to the optimum are pro-
cessed in parallel. The calculations required for this feat are obviously much
more extensive than for a simple random search.

However, compared to other stochastic methods genetic algorithms have
the advantage that they can be parallelized with little effort. Since the cal-
culations of the function on all points of a population are independent from
each other, they can be carried out in several processors [164]. Genetic algo-
rithms are thus inherently parallel. A clear improvement in performance can
be achieved with them in comparison to other non-parallelizable optimization
methods.

Fig. 17.1. A population of points encircles the global maximum after some gener-
ations.

Compared to purely local methods (e.g., gradient descent) genetic algo-
rithms have the advantage that they do not necessarily remain trapped in a
suboptimal local maximum or minimum of the target function. Since informa-
tion from many different regions is used, a genetic algorithm can move away
from a local maximum or minimum if the population finds better function
values in other areas of the definition domain.

In this chapter we show how evolutionary methods are used in the search
for minima of the error function of neural networks. Such error functions have
special properties which make their optimization difficult. We will discuss the
extent to which genetic algorithms can overcome these difficulties.

Even without this practical motivation the analysis of genetic algorithms
is important, because in the course of evolution the networking pattern of
biological neural networks has been created and improved. Through an evolu-
tionary organization process nerve systems were continuously modified until
they attained an enormous complexity. Therefore, by studying artificial neural
networks and their relationship with genetic algorithms we can gain further
valuable insights for understanding biological systems.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

17.1 Coding and operators 431

17.1.2 Methods of stochastic optimization

Let us look at the problem of the minimization of a real function f of the
n variables x1, x2, . . . , xn. If the function is differentiable the minima can
often be found by direct analytical methods. If no analytical expression for
f is known or if f is not differentiable, the function can be optimized with
stochastic methods. The following are some well-known techniques:

Random search

The simplest form of random optimization is stochastic search. A starting
point x = (x1, x2, . . . , xn) is randomly generated and f(x1, x2, . . . , xn) is com-
puted. Then a direction is sought in which the value of the function decreases.
To do this a vector δ = (δ1, . . . , δn) is randomly generated and f is computed
at (x1 + δ1, . . . , xn + δn). If the value of the function at this point is lower
than at x = (x1, x2, . . . , xn) then (x1 + δ1, . . . , xn + δn) is taken as the new
search point and the algorithm is started again. If the new function value is
greater, a new direction is generated. The algorithm runs (within a predeter-
mined maximum number of attempts) until no further decreasing direction of
function values can be found.

The algorithm can be further improved by making the length of the direc-
tion vector δ decrease in time. Thus the minimum of the function is approxi-
mated by increasingly smaller steps.

Fig. 17.2. A local minimum traps the search process

The disadvantage of simple stochastic search is that a local minimum of
the function can steer the search in the wrong direction (Figure 17.2). How-
ever, this can be partially compensated by carrying out several independent
searches.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

432 17 Genetic Algorithms

Metropolis algorithm

Stochastic search can be improved using a technique proposed by Metropolis.
([304]). If a new search direction (δ1, . . . , δn) guarantees that the function
value decreases, it is used to update the search position. If the function in this
direction increases, it is still used with the probability p where

p =
1

1 + exp
[

1
α (f(x1 + δ1, . . . , xn + δn)− f(x1, . . . , xn))

]
The constant α approaches zero gradually. This means that the probability p
tends towards zero if the function f increases in the direction (δ1, . . . , δn). In
the final iterations of the algorithm only those directions in which the function
values decrease are actually taken.

This strategy can prevent the iteration process from remaining trapped in
suboptimal minima of the function f . With probability p > 0 an iteration can
take an ascending direction and possibly overcome a local minimum.

Bit-based descent methods

If the problem can be recoded so that the function f is calculated with the help
of a binary string (a sequence of binary symbols), then bit-based stochastic
methods can be used. For example, let f be the one-dimensional function
x �→ (1 − x)2. The positive real value x can be coded in a computer as a
binary number. The fixed-point coding of x in eight bits

x = b7b6b5b4b3b2b1b0

can be interpreted as follows: the first three bits b7, b6 and b5 code that part
of the value of x which is in front of the decimal point in the binary code. The
five bits b4 to b0 code the portion of the value of x after the point. Thus only
numbers whose absolute value is less than 8 are coded. An additional bit can
be used for the sign.

With this recoding f is a real function over all binary strings with
length eight. The following algorithm can be used: a randomly chosen ini-
tial string b7b6b5b4b3b2b1b0 is generated. The function f is then computed for
x = b7b6b5b4b3b2b1b0. A bit of the string is selected at random and flipped.
Let the new string be, for example, x′ = b′7b6b5b4b3b2b1b0. The function f is
computed at this new point. If the value of the function is lower than before,
the new string is accepted as the current string and the algorithm is started
again. The algorithm runs until no bit flip improves the value of the function
[103].

Strictly speaking this algorithm is only a special instance of stochastic
search. The only difference is that the directions which can be generated
are now fixed from the beginning. There are only eight possibilities which
correspond to the eight bits of the fixed-point representation. The precision of

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

17.1 Coding and operators 433

the approximation is also fixed from the beginning because with 8-bit fixed-
point coding only a certain maximum precision can be achieved. The search
space of the optimization method and the possible search direction are thus
discretized.

The method can be generalized for n-dimensional functions by recoding
the real values x1, x2, . . . , xn in n binary strings which are then appended
to form a single string, which is processed by the algorithm. The Metropolis
strategy can also be used in bit-based methods.

Bit-based optimization techniques are already very close to genetic algo-
rithms; these naive search methods work effectively in many cases and can
even outdo elaborate genetic algorithms [103]. If the function to be optimized
is not too complex, they reach the optimal minimum with substantially fewer
iteration steps than the more intricate algorithms.

17.1.3 Genetic coding

Genetic algorithms are stochastic search methods managing a population of
simultaneous search positions. A conventional genetic algorithm consists of
three essential elements:

• a coding of the optimization problem
• a mutation operator
• a set of information-exchange operators

The coding of the optimization problem produces the required discretization
of the variable values (for optimization of real functions) and makes their
simple management in a population of search points possible. Normally the
maximum number of search points, i.e., the population size, is fixed at the
beginning.

The mutation operator determines the probability with which the data
structures are modified. This can occur spontaneously (as in stochastic search)
or only when the strings are combined to generate a new population of search
points. In binary strings a mutation corresponds to a bit flip.

chain A

chain B

recombined
chain

splitting point

Fig. 17.3. An example of crossover

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

434 17 Genetic Algorithms

The information exchange operators control the recombination of the
search points in order to generate a new, better population of points at each
iteration step. Before recombining, the function to be optimized must be eval-
uated for all data structures in the population. The search points are then
sorted in the order of their function value, i.e., in the order of their so-called
fitness. In a minimization problem the points which are placed at the begin-
ning of the list are those for which the function value is lowest. Those points
for which the function to be minimized has the greatest function value are
placed at the end of the list. Following this sorting operation the points are
reproduced in such a way that the data structures at the beginning of the list
are selected with a higher probability than the ones at the end of the list. A
typical reproduction operator is crossover. Two strings A and B are selected
as “parents” and a cut-off position for both is selected at random. The new
string is formed so that the left side comes from one parent and the right
side from the other. This produces an interchange of the information stored
in each parent string. The whole process is reminiscent of genetic exchange in
living organisms. A favorable interchange can produce a string closer to the
minimum of the target function than each parent string by itself. We expect
the collective fitness of the population to increase in time. The algorithm can
be stopped when the fitness of the best string in the population no longer
changes.

For a more precise illustration of genetic algorithms we will now consider
the problem of string coding.

Optimization problems whose variables can be coded in a string are suit-
able for genetic algorithms. To this end an alphabet for the coding of the
information must be agreed upon. Consider, for example, the following prob-
lem: a keyboard is to be optimized by distributing the 26 letters A to Z over
26 positions. The learning time of various selected candidates is to be mini-
mized. This problem could only be solved by a multitude of experiments. A
suitable coding would be a string with 26 symbols, each of which can be one
of the 26 letters (without repeats). So the alphabet of the coding consists of
26 symbols, and the search space of the problem contains 26! different combi-
nations. For Asian languages the search space is even greater and the problem
correspondingly more difficult [162].

A binary coding of the optimization problem is ideal because in this way
the mutation and information exchange operators are simple to implement.
With neural networks, in which the parameters to be optimized are usually
real numbers, the definition of an adequate coding is an important problem.
There are two alternatives: floating-point or fixed-point coding. Both possibil-
ities can be used, whereby fixed-point coding allows more gradual mutations
than floating-point coding [221]. With the latter the change of a single bit in
the exponent of the number can cause a dramatic jump. Fixed-point coding
is usually sufficient for dealing with the parameters of neural networks (see
Sect. 8.2.3).

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

17.2 Properties of genetic algorithms 435

17.1.4 Information exchange with genetic operators

Genetic operators determine the way new strings are generated out of existing
ones. The mutation operator is the simplest to describe. A new string can
be generated by copying an old string position by position. However, during
copying each symbol in the string can be modified with a certain probability,
the mutation rate. The new string is then not a perfect copy and can be used
as a new starting point for a search operation in the definition domain of the
function to be optimized.

The crossover operator was described in the last section. With this oper-
ator portions of the information contained in two strings can be combined.
However an important question for crossover is at which exact places we are
allowed to partition the strings.

Both types of operator can be visualized in the case of function optimiza-
tion. Assume that the function x �→ x2 is to be optimized in the interval
[0, 1]. The values of the variable x can be encoded with the binary fixed-point
coding x = 0.b9b8b7b6b5b4b3b2b1b0. Thus there are 1024 different values of x
and only one of them optimizes the proposed quadratic function. The code
used discretizes the definition space of the function. The minimum distance
between consecutive values of x is 2−10.

A mutation of the i-th bit of the string 0.b9b8b7b6b5b4b3b2b1b0 produces
a change of x of δ = 2−i. Thus a new point x + δ is generated. In this case
the mutation corresponds to a stochastic search operation with variable step
length.

When the number x = 0.b9b8b7b6b5b4b3b2b1b0 is recombined with the num-
ber y = 0.a9a8a7a6a5a4a3a2a1a0, a cut-off position i is selected at random.
The new string, which belongs to the number z, is then:

z = 0.b9b8 · · · biai−1 · · · a0.

The new point z can also be written as z = x + δ, where δ is dependent on
the bit sequences of x and y. Crossover can therefore be interpreted as a fur-
ther variation of stochastic search. But note that in this extremely simplified
example any gradient descent method is much more efficient than a genetic
algorithm.

17.2 Properties of genetic algorithms

Genetic algorithms have made a real impact on all those problems in which
there is not enough information to build a differentiable function or where the
problem has such a complex structure that the interplay of different parame-
ters in the final cost function cannot be expressed analytically.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

436 17 Genetic Algorithms

17.2.1 Convergence analysis

The advantages of genetic algorithms first become apparent when a population
of strings is observed. Let f be the function x �→ x2 which is to be maximized,
as before, in the interval [0, 1]. A population of N numbers in the interval [0, 1]
is generated in 10-bit fixed-point coding. The function f is evaluated for each
of the numbers x1, x2, . . . , xN , and the strings are then listed in descending
order of their function values. Two strings from this list are always selected
to generate a new member of a new population, whereby the probability of
selection decreases monotonically in accordance with the ascending position
in the sorted list.

The computed list contains N strings which, for a sufficiently large N ,
should look like this:

1 0.1∗∗∗∗∗∗∗∗∗∗
1 0.1∗∗∗∗∗∗∗∗∗∗
...

...
1 0.0∗∗∗∗∗∗∗∗∗∗

The first positions in the list are occupied by strings in which the first bit after
the point is a 1 (i.e., the corresponding numbers lie in the interval [0.5, 1]). The
last positions are occupied by strings in which the first bit after the decimal
point is a 0. The asterisk stands for any bit value from 0 to 1, and the zero in
front of the point does not need to be coded in the strings. The upper strings
are more likely to be selected for a recombination, so that the offspring is
more likely to contain a 1 in the first bit than a 0. The new population is
evaluated and a new fitness list is drawn up. On the other hand, strings with
a 0 in the first bit are placed at the end of the list and are less likely to be
selected than the strings which begin with a 1. After several generations no
more strings with a 0 in the first bit after the decimal point are contained in
the population.

The same process is repeated for the strings with a zero in the second
bit. They are also pushed towards extinction. Gradually the whole population
converges to the optimal string 0.1111111111 (when no mutation is present).

With this quadratic function the search operation is carried out within a
very well-ordered framework. New points are defined at each crossover, but
steps in the direction x = 1 are more likely than steps in the opposite direction.
The step length is also reduced in each reproduction step in which the 0 bits
are eliminated from a position. When, for example, the whole population only
consists of strings with ones in the first nine positions, then the maximum
step length can only be 2−10.

The whole process strongly resembles simulated annealing. There, stochas-
tic jumps are also generated, whereby transitions in the maximization direc-
tion are more probable. In time the temperature constant decreases to zero,
so that the jumps become increasingly smaller until the system freezes at a
local maximum.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

17.2 Properties of genetic algorithms 437

John Holland [195] suggested the notion of schemata for the convergence
analysis of genetic algorithms. Schemata are bit patterns which function as
representatives of a set of binary strings. We already used such bit patterns
in the example above: the bit patterns can contain each of the three symbols
0, 1 or ∗. The schema ∗∗00∗∗, for example, is a representative of all strings
of length 6 with two zeros in the central positions, such as: 100000, 110011,
010010, etc.

During the course of a genetic algorithm the best bit patterns are gradually
selected, i.e., those patterns which minimize/maximize the value of the func-
tion to be optimized. Normal genetic algorithms consist of a finite repetition
of the three steps:

1. selection of the parent strings,
2. recombination,
3. mutation.

This raises the question: how likely is it that the better bit patterns survive
from one generation of a genetic algorithm to another? This depends on the
probability with which they are selected for the generation of new child strings
and with which they survive the recombination and mutation steps. We now
want to calculate this probability.

In the algorithm to be analyzed, the population consists of a set of N
binary strings of length � at time t. A string of length � which contains one of
the three symbols 0, 1, or � in each position is a bit pattern or schema. The
symbol � represents a 0 or a 1. The number of strings in the population in
generation t which contain the bit pattern H is called o(H, t). The diameter
of a bit pattern is defined as the length of the pattern’s shortest substring
that still contains all fixed bits in the pattern. For example, the bit pattern
∗∗1∗1∗∗ has diameter three because the shortest fragment that contains both
constant bits is the substring 1∗1 and its length is three. The diameter of a bit
pattern H is called d(H), with d(H) ≥ 1. It is important to understand that
a schema is of the same length as the strings that compose the population.

Let us assume that f has to be maximized. The function f is defined over
all binary strings of length � and is called the fitness of the strings. Two parent
strings from the current population are always selected for the creation of a
new string. The probability that a parent string Hj will be selected from N
strings H1, H2, . . . , HN is

p(Hj) =
f(Hj)∑N
i=1 f(Hi)

.

This means that strings with greater fitness are more likely to be selected
than strings with lesser fitness. Let fμ be the average fitness of all strings in
the population, i.e.,

fμ =
1
N

N∑
i=1

f(Hi).

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

438 17 Genetic Algorithms

The probability p(Hj) can be rewritten as

p(Hj) =
f(Hj)
Nfμ

.

The probability that a schema H will be passed on to a child string can be
calculated in the following three steps:

i) Selection

Selection with replacement is used, i.e., the whole population is the basis for
each individual parent selection. It can occur that the same string is selected
twice. The probability P that a string is selected which contains the bit pattern
H is:

P =
f(H1)
Nfμ

+
f(H2)
Nfμ

+ · · ·+ f(Hk)
Nfμ

,

where H1, H2, . . . , Hk represent all strings of the generation which contain
the bit pattern H . If there are no such strings, then P is zero.

The fitness f(H) of the bit pattern H in the generation t is defined as

f(H) =
f(H1) + f(H2) + · · ·+ f(Hk)

o(H, t)
.

Thus P can be rewritten as

P =
o(H, t)f(H)

Nfμ
.

The probability PA that two strings which contain pattern H are selected as
parent strings is given by

PA =
(
o(H, t)f(H)

Nfμ

)2

.

The probability PB that from two selected strings only one contains the pat-
tern H is:

PB = 2
o(H, t)f(H)

Nfμ

(
1− o(H, t)f(H)

Nfμ

)
.

ii) Recombination

For the recombination of two strings a cut-off point is selected between the
positions 1 and �− 1 and then a crossover is carried out. The probability W
that a schema H is transmitted to the new string depends on two cases. If
both parent strings contain H , then they pass on this substring to the new
string. If only one of the strings contains H , then the schema is inherited at

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

17.2 Properties of genetic algorithms 439

most half of the time. The substring H can also be destroyed with probability
(d(H)− 1)/(�− 1) during crossover. This means that

W ≥
(
o(H, t)f(H)

Nfμ

)2

+
2
2
o(H, t)f(H)

Nfμ

(
1− o(H, t)f(H)

Nfμ

)(
1− d(H)− 1

�− 1

)
.

The probability W is greater than or equal to the term on the right in the
above inequality, because in some favorable cases the bit string is not destroyed
by crossover (one parent string contains H and the other parent part of H).
To simplify the discussion we will not examine all these possibilities. The
inequality for W can be further simplified to

W ≥ o(H, t)f(H)
Nfμ

(
1− d(H)− 1

�− 1

(
1− o(H, t)f(H)

Nfμ

))
.

iii) Mutation

When two strings are recombined, the information contained in them is copied
bit by bit to the child string. A mutation can produce a bit flip with the prob-
ability p. This means that a schema H with b(H) fixed bits will be preserved
after copying with probability (1−p)b(H). If a mutation occurs the probability
W of the schema H being passed on to a child string changes according to
W ′, where

W ′ ≥ o(H, t)f(H)
Nfμ

(
1− d(H)− 1

�− 1

(
1− o(H, t)f(H)

Nfμ

))
(1 − p)b(H).

If in each generation N new strings are produced, the expected value of the
number of strings which contain H in the generation t+ 1 is NW ′, that is

〈o(H, t+ 1)〉 ≥ o(H, t)f(H)
fμ

(
1− d(H)− 1

�− 1

(
1− 0(H, t)f(H)

Nfμ

))
(1− p)b(H).

(17.1)
Equation (17.1) or slight variants thereof are known in the literature by the
name “schema theorem” [195, 163]. This result is interpreted as stating that
in the long run the best bit patterns will diffuse to the whole population.

17.2.2 Deceptive problems

The schema theorem has to be taken with a grain of salt. There are some
functions in which finding the optimal bit patterns can be extremely difficult
for a genetic algorithm. This happens in many cases when the optimal bits in
the selected coding exhibit some kind of correlation. Consider the following
function of n variables,

(x1, x2, . . . , xn) �→ x2
1 + · · ·+ x2

n

x2
1 + ε

+ · · ·+ x2
1 + · · ·+ x2

n

x2
n + ε

,

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

440 17 Genetic Algorithms

where ε is a small positive constant. The minimum of this function is located
at the origin and any gradient descent method would find it immediately.
However if the n parameters are coded in a single string using 10 bits, any time
one of these parameters approaches the value zero, the value of the function
increases. It is not possible to approach the origin following the direction
of the axes. This means that only correlated mutations of the n parameters
are favorable, so that the origin is reached through the diagonal valleys of
the fitness function. The probability of such coordinated mutations is very
small when the number of parameters n and the number of bits used to code
each parameter increases. Figure 17.4 shows the shape of the two-dimensional
version of this problematic function.

0
10

20
30

40

0

10

20

30

40
0

20

40

60

80

100

120

Fig. 17.4. A deceptive function

Functions which “hide” the optimum from genetic algorithms have been
called deceptive functions by Goldberg and other authors. They mislead the
GA into pursuing false leads to the optimum, which in many cases is only
reached by pure luck.

There has been much research over the last few years on classifying the
kinds of function which should be easy for a genetic algorithm to optimize
and those which should be hard to deal with. Holland and Mitchell defined so-
called “royal road” functions [314], which are defined in such a way that several
parameters x1, x2, . . . , xn are coded contiguously and the fitness function f is
just a sum of n functions of each parameter, that is,

f(x1, x2, . . . , xn) = f1(x1) + f2(x2) + · · ·+ fn(xn).

When these functions are optimized, genetic algorithms rapidly find the nec-
essary values for each parameter. Mutation and crossover are both beneficial.
However, mere addition of a further function f ′ of the variables x1 and x2

can slow down convergence [141]. This happens because the additional term
tends to select contiguous combinations of x1 and x2. If the contribution from

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

17.2 Properties of genetic algorithms 441

f ′(x1, x2) to the fitness function is more important than the contribution from
f3(x3), some garbage bits at the coding positions for x3 can become attached
to the strings with the optimum values for x1 and x2. They then get a “free
ride” and become selected more often. That is why they are called hitch-hiking
bits [142].

Some authors have argued in favor of the building block hypothesis to ex-
plain why GAs do well in some circumstances. According to this hypothesis
a GA finds building blocks which are then combined through the generations
in order to reach the optimal solution. But the phenomena we just pointed
out, and the correlations between the optimization parameters, sometimes
preclude altogether the formation of these building blocks. The hypothesis
has received some strong criticism in recent years [166, 141].

17.2.3 Genetic drift

Equation (17.1) giving the expected number of strings which inherit a schema
H shows the following: schemata with above average fitness and small diam-
eter will be selected more often, so that we expect them to diffuse to the
population at large. The equation also shows that when the mutation rate is
too high (p ≈ 1) schemata are destroyed. The objective of having mutations
is to bring variability into the population and extend it over the whole defi-
nition domain of the fitness function. New unexplored regions can be tested.
This tendency to explore can be controlled by regulating the magnitude of the
mutation rate. So-called metagenetic algorithms encode the mutation rate or
the length of stochastic changes to the points in the population in the individ-
ual bit strings associated with each point. In this way the optimal mutation
rate can be sought simultaneously with the optimum of the fitness function
to accelerate the convergence speed.

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 17.5. Genetic drift in a population after 1000 and 3000 generations

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

442 17 Genetic Algorithms

Equation (17.1) also shows that when a schema H is overrepresented in a
population, it can diffuse even when its fitness f(H) is not different from the
average fitness fμ. In this case(

1− d(H)− 1
�− 1

(
1− o(H, t)f(H)

Nfμ

))
=
(

1− d(H)− 1
�− 1

(
1− o(H, t)

N

))
.

Schemata with a large factor o(H, t)/N will be less disturbed by crossover.
The algorithm then converges to the schema H without any good reason other
than the fact that the schema is already over-represented in the population. In
biology this is called genetic drift because it represents a random walk in search
space. Figure 17.5 shows the result of an experiment in which a population of
two-dimensional points was randomly generated in the domain [0, 1] × [0, 1].
A constant fitness function was used and no mutations were allowed, only re-
combinations. One could think that under these circumstances the population
would expand and occupy random positions in the whole definition domain.
After 100 generations the population had moved to just one side of the square
and after 3000 generations it had merged to just three points. This symmetry
breaking comes from an initial bias in the bit combinations present in the
original population.

Losing bit patterns during the run of the GA is what a GA is all about,
otherwise the population would never reach a consensus about the optimal
region to be explored. This loss of information becomes problematic when
the function to be optimized exhibits many flat regions. Bit patterns that
would be needed for later convergence steps can be lost. Mutation tries to
keep the balance between these two contradictory objectives, exploration and
convergence. Finding the right mix of both factors depends on the particular
problem and has to be left to the practitioner. Some alternatives are the
metagenetic algorithms already mentioned or a broader set of recombination
operators, such as crossover with the simultaneous inversion of one or both
of the inherited string pieces. This corresponds to a massive mutation of the
coded string and brings new variability into the population.

The loss of variability in the long run can be compared to the controlled
lowering of the temperature constant in simulated annealing. In a less variable
population, parent and child strings are very similar and searching is mostly
done locally. Crossover by itself leads to this kind of controlled convergence
to a region in search space.

17.2.4 Gradient methods versus genetic algorithms

Genetic algorithms offer some interesting properties to offset their high com-
putational cost. We can mention at least three of them: a) GAs explore the
domain of definition of the target function at many points and can thus es-
cape from local minima or maxima; b) the function to be optimized does not
need to be given in a closed analytic form – if the process being analyzed is

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

17.3 Neural networks and genetic algorithms 443

too complex to describe in formulas, the elements of the population are used
to run some experiments (numerical or in the laboratory) and the results are
interpreted as their fitness; c) since evaluation of the target function is inde-
pendent for each element of the population, the parallelization of the GA is
quite straightforward. A population can be distributed on several processors
and the selection process carried out in parallel. The kinds of recombination
operator define the type of communication needed between the processors.

Straightforward parallelization and the possibility of their application in
ill-defined problems makes GAs attractive. De Jong has emphasized that GAs
are not function optimizers of the kind studied in numerical analysis [105].
Otherwise their range of applicability would be very narrow. As we already
mentioned, in many cases a naive hill-climber is able to outperform complex
genetic algorithms. The hill-climber is started n times at n different positions
and the best solution is selected. A combination of a GA and hill-climbing
is also straightforward: the elements in the population are selected in “Dar-
winian” fashion from generation to generation, but can become better by
modifying their parameters in “Lamarckian” way, that is, by performing some
hill-climbing steps before recombining. Davis [103] showed that many popular
functions used as benchmarks for genetic algorithms can be optimized with a
simple bit climber (stochastic bit-flipping). In six out of seven test functions
the bit climber outperformed two variants of a genetic algorithm. It was three
times faster than an efficient GA and twenty-three times faster than an ineffi-
cient version. Ackley [8, 9] arrived at similar results when he compared seven
different optimization methods. Depending on the test function one or the
other minimization strategies emerged victorious. These results only confirm
what numerical analysts have known for a long time: there is no optimal op-
timization method, it all depends on the problem at hand. Even if this is so,
the attractiveness of easy parallelization is not diminished. If no best method
exists, we can at least parallelize those we have.

17.3 Neural networks and genetic algorithms

Our interest in genetic algorithms for neural networks has two sources: is it
possible to use this kind of approach to find the weights in a network? And
even more important: is it possible to let networks evolve so that they find an
optimal topology? The question of network topology is one of those problems
for which no closed-form fitness function over all possible configurations can
be given. We just propose a topology and let the network run, change the
topology again and look at the results. Before going into the details we have to
look at some specific characteristics of neural networks which seem to preclude
the use of genetic algorithms.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

444 17 Genetic Algorithms

17.3.1 The problem of symmetries

Before genetic algorithms can be used to minimize the error function of neu-
ral networks, an appropriate code must be designed. Usually the weights
of the network are floating-point numbers. Assume that the m weights
w1, w2, . . . , wm have been coded and arranged in a string. The target function
for the GA is the error of the network for a given training set. The code for
each parameter could consist of 20 bits, and in that case all network param-
eters could be represented by a string of 20m bits. These strings are then
processed in the usual way.

1

0

-1

2

1

2
1

0

2

-1
2

1

0

1

0

0

1

0

Fig. 17.6. Equivalent networks (weight permutation)

However, the target function exhibits some “deceptive” characteristics in
this case. The basic problem is the high number of symmetries of the error
function, which arise because the parameters of multilayered networks can be
permuted without affecting the network function. The two networks shown in
Figure 17.6 are equivalent, since they produce the same output for the same in-
puts. In both networks the functionality of the hidden units was interchanged.
However, the arrangement of the coded parameters in a string looks very dif-
ferent. Because of the symmetries of the error function the number of local
minima is high. The population of network parameters then disperses over
different regions and examines different incompatible combinations. Crossover
under these circumstances will almost certainly lead nowhere or converge very
slowly when the population has drifted to a definite region of weight space.

Some authors’ experiments have also shown that coding of the network pa-
rameters has an immediate effect on the convergence speed [317]. They have
found that fixed-point coding is usually superior to floating-point coding of
the parameters. Care must also be taken not to divide the strings through
the middle of some parameter. It is usually better to respect the parame-
ter boundaries so that crossover only combines the parameters but does not
change the bit representation of each one.

Helping the genetic algorithm to respect good parameter combinations for
a computing unit is an important problem. The simplest strategy is to find a
good enumeration of the weights in a network that keeps related weights near
each other in the coding string. When crossover is applied on such strings

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

17.3 Neural networks and genetic algorithms 445

α

α

α

α

α

α

α

α

α

1

2

3

4

5 6

7

8

9

Fig. 17.7. Sequencing of the network parameters

there is a higher probability that related parameters are held together in the
new string. The weights of the incoming edges into a unit constitute a logical
entity and an enumeration like the one shown in Figure 17.7 can help a GA
to converge on a good solution. The subindex of each weight shows which
place it occupies in the coding string. This simple idea can be used with any
network topology, but has obvious limits.

Modifications of the individual weights can be produced only by mutation.
The mutations can be produced by copying not the value α to the child string
but α+ε, where ε is a random number of small absolute value. This produces
the necessary variability of the individual parameters. The mutations produce
a random walk of the network weights in weight space. The selection method
of the GA separates good from bad mutations and we expect the population
to stabilize at a local minimum.

17.3.2 A numerical experiment

Figure 17.8 shows a network for the encoding-decoding problem with 8 input
bits. The input must be reproduced at the output, and only one of the in-
put bits is a one, the others are zero. The hidden layer is the bottleneck for
transmission of input to output. One possible solution is to encode the input
in three bits at the hidden layer, but other solutions also exist.

The 48 weights of the network and the 11 bits were encoded in a string
with 59 floating-point numbers. Crossover through the middle of parameters
was avoided and in this case a fixed-point coding is not really necessary.
Mutation was implemented as described above, not by bit flips but by adding
some stochastic deviation. Figure 17.9 shows the evolution of the error curve.
After 5350 generations a good parameter combination was found, capable of
keeping the total error for all 8 output lines under 0.05. The figure also shows
the average error for the whole population and the error for the best parameter
combination in each generation.

This is an example of a small network in which the GA does indeed con-
verge to a solution. Some authors have succeeded in training much larger net-
works [448]. However, as we explained before, in the case of such well-defined
numerical optimization problems direct hill climbing methods are usually bet-
ter.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

446 17 Genetic Algorithms

x1

x

x

x

x

x

x

x

2

3

5

6

7

8

4

Fig. 17.8. An 8-bit encoder-decoder

0

1

2

3

4

5

6

7

8

500 1500 2500 3500 4500

error

generations

5350

average error

best network

Fig. 17.9. Error function at each generation: population average and best network

Braun has shown how to optimize the network topology using genetic
algorithms [69]. He introduces order into the network by defining a fitness
function f made of several parts: one proportional to the approximation er-
ror, and another proportional to the length of the network edges. The nodes
are all fixed in a two-dimensional plane and the network is organized in lay-
ers. The fitness function is minimized using a genetic algorithm. Edges with
small weights are dropped stochastically. Smaller networks are favored in the
course of evolution. The two-dimensional mapping is introduced to avoid de-

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

17.3 Neural networks and genetic algorithms 447

stroying good solutions when reproducing the population, as happens when
the network symmetries are not considered.

17.3.3 Other applications of GAs

One field in which GAs seem to be a very appropriate search method is game
theory. In a typical mathematical game some rules are defined and the reward
for the players after each move is given by a certain pay-off function. Math-
ematicians then ask what is the optimal strategy, that is, how can a player
maximize his pay-off. In many cases the cumulative effect of the pay-off func-
tion cannot be expressed analytically and the only possibility is to actually
play the game and compare the results using different strategies. An unknown
function must be optimized and this is done with a computer simulation. Since
the range of possible strategies is so large only a few variants are tested.

This is where GAs take over. A population of “players” is generated and
a tournament is held. The strategy of each player must be coded in a data
structure that can be recombined and mutated. Each round of the tourna-
ment is used to compute the pay-off for each strategy and the best players
provide more genes for the next generation. Axelrod [36] did exactly this for
the problem known as the prisoner’s dilemma. In this game between two play-
ers, each one decides independently whether he wants to cooperate with the
other player or betray him. There are four possibilities each time: a) both play-
ers cooperate; b) the first cooperates, the second betrays; c) the first betrays,
the second cooperates; and c) both players betray each other. The pay-off for
each of the four combinations is shown in Figure 17.10. The letters C and B
stand for “cooperation” and “betrayal” respectively.

C D

C

D

first player

second
player

3

3

0

5

5

0

1

1

Fig. 17.10. Pay-off matrix for the prisoner’s dilemma

The pay-off matrix shows that there is an incentive to commit treachery.
The pay-off when one of the players betrays the other, who wants to cooperate,
is 5. Moreover, the betrayed player does not get any pay-off at all. But if both

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

448 17 Genetic Algorithms

players betray, the pay-off for both is just 1 point. If both players cooperate
each one gets 3 points.

If the game is played only once, the optimal strategy is betraying. From
the viewpoint of each player the situation is the following: if the other player
cooperates, then the pay-off can be maximized by betraying. And if the other
player betrays, then at least one point can be saved by committing treachery
too. Since both viewpoints are symmetrical, both players betray.

However, the game becomes more complicated if it is repeated an indefinite
number of times in a tournament. Two players willing to cooperate can reap
larger profits than two players betraying each other. In that case the players
must keep a record of the results of previous games with the same partner
in order to adapt to cooperative or uncooperative adversaries. Axelrod and
Hamilton [35] held such a tournament in which a population of players oper-
ated with different strategies for the iterated prisoner’s dilemma. Each player
could store only the results of the last three games against each opponent and
the players were paired randomly at each iteration of the tournament. It was
surprising that the simplest strategy submitted for the tournament collected
the most points. Axelrod called it “tit for tat” (TFT) and it consists in just
repeating the last move of the opponent. If the adversary cooperated the last
time, cooperation ensues. If the adversary betrayed, he is now betrayed. Two
players who happen to repeat some rounds of cooperation are better off than
those that keep betraying. The TFT strategy is initialized by offering coop-
eration to a yet unknown player, but responds afterwards with vengeance for
each betrayal. It can thus be exploited no more than once in a tournament.

For the first tournament, the strategies were submitted by game theo-
rists. In a second experiment the strategies were generated in the computer
by evolving them over time [36]. Since for each move there are four possible
outcomes of the game and only the last three moves were stored, there are
64 possible recent histories of the game against each opponent. The strategy
of each player can be coded simply as a binary vector of length 64. Each
component represents one of the possible histories and the value 1 is inter-
preted as cooperation in the next move, whereas 0 is interpreted as betrayal.
A vector of 64 ones, for example, is the coding for a strategy which always co-
operates regardless of the previous game history against the opponent. After
some generations of a tournament held under controlled conditions and with
some handcrafted strategies present, TFT emerged again as one of the best
strategies. Other strategies with a tendency to cooperate also evolved.

17.4 Historical and bibliographical remarks

At the end of the 1950s and the beginning of the 1960s several authors indepen-
dently proposed the use of evolutionary methods for the solution of optimiza-
tion problems. Goldberg summarized this development from the American

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

17.4 Historical and bibliographical remarks 449

perspective [163]. Fraser, for example, studied the optimization of polynomi-
als, borrowing his methods from genetics. Other researchers applied GAs in
the 1960s to the solution of such diverse problems as simulation, game theory,
or pattern recognition. Fogel and his coauthors studied the problems of mu-
tating populations of finite state automata and recombination, although they
stopped short of using the crossover operator [139].

John Holland was the first to try to examine the dynamic of GAs and
to formulate a theory of their properties [195]. His book on the subject is a
classic to this day. He proposed the concept of schemata and applied statistical
methods to the study of their diffusion dynamics. The University of Michigan
became one of the leading centers in this field through his work.

In other countries the same ideas were taking shape. In the 1960s Rechen-
berg [358] and Schwefel [394] proposed their own version of evolutionary com-
putation, which they called evolution strategies. Some of the problems that
were solved in this early phase were, for example, hard hydrodynamic opti-
mization tasks, such as finding the optimal shape of a rocket booster. Schwefel
experimented with the evolution of the parameters of the genetic operators,
maybe the first instance of metagenetic algorithms [37]. In the 1980s Rechen-
berg’s lab in Berlin solved many other problems such as the optimal profile
of wind concentrators and airplane wings.

Koza and Rice showed that it is possible to optimize the topology of neural
networks [260]. Their methods make use of the techniques developed by Koza
to breed Lisp programs, represented as trees of terms. Crossover exchanges
whole branches of two trees in this kind of representation. Belew and coau-
thors [51] examined the possibility of applying evolutionary computation to
connectionist learning problems.

There has been much discussion recently on the merits of genetic algo-
rithms for static function optimization [105]. Simple minded hill-climbing al-
gorithms seem to outperform GAs when the function to be optimized is fixed.
Baluja showed in fact that for a large set of optimization problems GAs do
not offer a definitive advantage when compared to other optimization heuris-
tics, either in terms of total function evaluations or in quality of the solutions
[40]. More work must be still done to determine under which situations (dy-
namic enviroments, for example) GAs offer a definitive advantage over other
optimization methods.

The prisoner’s dilemma was proposed by game-theoreticians in the 1950s
and led immediately to many psychological experiments and mathematical
arguments [350]. The research of Axelrod on the iterated prisoner’s dilemma
can be considered one of the milestones in evolutionary computation, since it
opened this whole field to the social scientists and behavior biologists, who
by the nature of their subject had not transcended the level of qualitative
descriptions [104, 453]. The moral dilemma of the contradiction between al-
truism and egoism could now be modeled in a quantitative way, although
Axelrod’s results have not remained uncontested.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

450 17 Genetic Algorithms

Exercises

1. How does the schema theorem (17.1) change when a crossover probability
pc is introduced? This means that with probability pc, crossover is used
to combine two strings, otherwise one of the parent strings is copied.

2. Train a neural network with a genetic algorithm. Let the number of
weights increase and observe the running time.

3. Propose a coding method for a metagenetic algorithm that lets the mu-
tation rate and the crossover probability evolve.

4. The prisoner’s dilemma can be implemented on a cellular automaton. The
players occupy one square of a two-dimensional grid and interact with their
closest neighbors. Simulate this game in the computer and let the system
evolve different strategies.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

18

Hardware for Neural Networks

18.1 Taxonomy of neural hardware

This chapter concludes our analysis of neural network models with an overview
of some hardware implementations proposed in recent years. In the first chap-
ter we discussed how biological organisms process information. We are now
interested in finding out how best to process information using electronic de-
vices which in some way emulate the massive parallelism of the biological
world. We show that neural networks are an attractive option for engineering
applications if the implicit parallelism they offer can be made explicit with
appropriate hardware. The important point in any parallel implementation
of neural networks is to restrict communication to local data exchanges. The
structure of some of those architectures, such as systolic arrays, resembles
cellular automata.

There are two fundamentally different alternatives for the implementation
of neural networks: a software simulation in conventional computers or a spe-
cial hardware solution capable of dramatically decreasing execution time. A
software simulation can be useful to develop and debug new algorithms, as
well as to benchmark them using small networks. However, if large networks
are to be used, a software simulation is not enough. The problem is the time
required for the learning process, which can increase exponentially with the
size of the network. Neural networks without learning, however, are rather un-
interesting. If the weights of a network were fixed from the beginning and were
not to change, neural networks could be implemented using any programming
language in conventional computers. But the main objective of building spe-
cial hardware is to provide a platform for efficient adaptive systems, capable
of updating their parameters in the course of time. New hardware solutions
are therefore necessary [54].

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

452 18 Hardware for Neural Networks

18.1.1 Performance requirements

Neural networks are being used for many applications in which they are more
effective than conventional methods, or at least equally so. They have been
introduced in the fields of computer vision, robot kinematics, pattern recogni-
tion, signal processing, speech recognition, data compression, statistical anal-
ysis, and function optimization. Yet the first and most relevant issue to be
decided before we develop physical implementations is the size and computing
power required for the networks.

The capacity of neural networks can be estimated by the number of weights
used. Using this parameter, the complexity of the final implementation can
be estimated more precisely than by the number of computing units. The
number of weights also gives an indication of how difficult it will be to train
the network. The performance of the implementation is measured in connec-
tions per second (cps), that is, by the number of data chunks transported
through all edges of the network each second. Computing a connection re-
quires the transfer of the data from one unit to another, multiplying the data
by the edge’s weight in the process. The performance of the learning algorithm
is measured in connection updates per second (cups). Figure 18.1 shows the
number of connections and connection updates per second required for some
computationally intensive applications. The numbered dots represent the per-
formance and capacity achieved by some computers when executing some of
the reported neural networks applications.

1

2

5

8

4

3

13

11

10
14

6

712

9sp
ee

ch

vis
ion

-1

vis
ion

-2
signal processing

10 10 103 6 9

number of connections

co
nn

ec
tio

ns
 p

er
 s

ec
on

d

10

10

10

1012

9

6

3

1 : PC/AT
2 : SUN 3
3 : VAX
4 : Symbolics
5 : ANZA
6 : Delta 1
7 : Transputer
8 : Mark III, V
9 : Odyssey
10: MX-1/16
11: CM-2 (64K)
12: Warp (10)
13: Butterfly (64)
14: CRAY XMP 1-2

•
•
•

••

•
•

•
•

•
•

•

••

Fig. 18.1. Performance and capacity of different implementations of neural net-
works and performance requirements for some applications [Ramacher 1991]

Figure 18.1 shows that an old personal computer is capable of achiev-
ing up to 10Kcps, whereas a massively parallel CM-2 with 64K processors is

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

18.1 Taxonomy of neural hardware 453

capable of providing up to 10 Mcps of computing power. With such perfor-
mance we can deal with speech recognition in its simpler form, but not with
complex computer vision problems or more sophisticated speech recognition
models. The performance necessary for this kind of application is of the order
of Giga-cps. Conventional computers cannot offer such computing power with
an affordable price-performance ratio. Neural network applications in which
a person interacts with a computer require compact solutions, and this has
been the motivation behind the development of many special coprocessors.
Some of them are listed in Figure 18.1, such as the Mark III or ANZA boards
[409].

A pure software solution is therefore not viable, yet it remains open
whether an analog or a digital solution should be preferred. The next sec-
tions deal with this issue and discuss some of the systems that have been
built, both in the analog and the digital world.

18.1.2 Types of neurocomputers

To begin with, we can classify the kinds of hardware solution that have been
proposed by adopting a simple taxonomy of hardware models. This will sim-
plify the discussion and help to get a deeper insight into the properties of
each device. Defining a taxonomy of neurocomputers requires consideration
of three important factors:

• the kind of signals used in the network,
• the implementation of the weights,
• the integration and output functions of the units.

The signals transmitted through the network can be coded using an analog or a
digital model. In the analog approach, a signal is represented by the magnitude
of a current, or a voltage difference. In the digital approach, discrete values are
stored and transmitted. If the signals are represented by currents or voltages,
it is straightforward to implement the weights using resistances or transistors
with a linear response function for a certain range of values. In the case of a
digital implementation, each transmission through one of the network’s edges
requires a digital multiplication.

These two kinds of network implementations indicate that we must dif-
ferentiate between analog and digital neurocomputers. Figure 18.2 shows this
first level of classification and some successive refinements of the taxonomy.
Hybrid neurocomputers are built combining analog and digital circuits.

The analog approach offers two further alternatives: the circuits can be
built using electronic or optical components. The latter alternative has been
studied and has led to some working prototypes but not to commercial prod-
ucts, where electronic neurocomputers still dominate the scene.

In the case of a digital implementation, the first two subdivisions in Fig-
ure 18.2 refer to conventional parallel or pipelined architectures. The networks
can be distributed in multiprocessor systems, or it can be arranged for the

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

454 18 Hardware for Neural Networks

Analog

Digital

von-Neumann multiprocessor

Vector processors

Systolic arrays

ring

2d-grid

torus

Special designs

electronic components

optical components

superscalar

SIMD

Fig. 18.2. Taxonomy of neurosystems

training set to be allocated so that each processor works with a fraction of
the data. Neural networks can be efficiently implemented in vector processors,
since most of the necessary operations are computations with matrices. Vector
processors have been optimized for exactly such operations.

A third digital model is that of systolic arrays. They consist of regular
arrays of processing units, which communicate only with their immediate
neighbors. Input and output takes place at the boundaries of the array [207].
They were proposed to perform faster matrix-matrix multiplications, the kind
of operation in which we are also interested for multilayered networks.

The fourth and last type of digital system consists of special chips of the
superscalar type or systems containing many identical processors to be used
in a SIMD (single instruction, multiple data) fashion. This means that all
processors execute the same instruction but on different parts of the data.

Analog systems can offer a higher implementation density on silicon and
require less power. But digital systems offer greater precision, programming
flexibility, and the possibility of working with virtual networks, that is, net-
works which are not physically mapped to the hardware, making it possible
to deal with more units. The hardware is loaded successively with different
portions of the virtual network, or, if the networks are small, several networks
can be processed simultaneously using some kind of multitasking.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

18.2 Analog neural networks 455

18.2 Analog neural networks

In the analog implementation of neural networks a coding method is used in
which signals are represented by currents or voltages. This allows us to think
of these systems as operating with real numbers during the neural network
simulation.

18.2.1 Coding

When signals are represented by currents, it is easy to compute their addi-
tion. It is only necessary to make them meet at a common point. One of
the Kirchhoff laws states that the sum of all currents meeting at a point is
zero (outgoing currents are assigned a negative sign). The simple circuit of
Figure 18.3 can be used to add I1 and I2, and the result is the current I3.

I

I I

1

2 3

Fig. 18.3. Addition of electric current

The addition of voltage differences is somewhat more complicated. If two
voltage differences V1 and V2 have to be added, the output line with voltage
V1 must be used as the reference line for voltage V2. This simple principle
cannot easily be implemented in real circuits using several different potentials
V1, V2, . . . , Vn. The representation of signals using currents is more advanta-
geous in this case. The integration function of each unit can be implemented
by connecting all incoming edges to a common point. The sum of the currents
can be further processed by each unit.

R

R

R

R

1

2

3

4

Fig. 18.4. Network of resistances

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

456 18 Hardware for Neural Networks

The weighting of the signal can be implemented using variable resistances.
Rosenblatt used this approach in his first perceptron designs [185]. If the
resistance is R and the current I, the potential difference V is given by Ohm’s
law V = RI. A network of resistances can simulate the necessary network
connections and the resistors are the adaptive weights we need for learning
(Figure 18.4).

Several analog designs for neural networks were developed in the 1970s
and 1980s. Carver Mead’s group at Caltech has studied different alternatives
with which the size of the network and power consumption can be minimized
[303]. In Mead’s designs transistors play a privileged role, especially for the
realization of so-called transconductance amplifiers. Some of the chips devel-
oped by Mead have become familiar names, like the silicon retina and the
silicon cochlea.

Karl Steinbuch proposed at the end of the 1950s a model for associative
learning which he called the Lernmatrix [414]. Figure 18.5 shows one of the
columns of his learning matrix. It operated based on the principles discussed
above.

...

x

x

x

x

1

2

3

n

w 1

w

w

w

2

3

n

F

Fig. 18.5. A column of the Lernmatrix

The input x1, x2, . . . , xn is transmitted as a voltage through each of the in-
put lines. The resistances w1, w2, . . . , wn transform the voltage into a weighted
current. Several of these columns allow a vector-matrix product to be com-
puted in parallel. Using such an array (and a special kind of nonlinearity)
Steinbuch was able to build the first associative memory in hardware.

18.2.2 VLSI transistor circuits

Some VLSI circuits work with field effect transistors made of semiconduc-
tors. These are materials with a nonlinear voltage-current response curve. The
nonlinear behavior makes them especially suitable for the implementation of
digital switches.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

18.2 Analog neural networks 457

source

control electrode

sink

n + n+

isolating layer

Fig. 18.6. Diagram of a field effect transistor (FET)

Figure 18.6 shows the structure of a typical field effect transistor. The
source and the sink are made of n+ semiconductors, which contain a surplus
of positive charge produced by carefully implanted impurities in the semicon-
ductor crystal. A current can flow between source and sink only when the
control electrode is positively charged above a certain threshold. Electrons
are attracted from the source to the control electrode, but they also reach
the sink by diffusing through the gap between source and sink. This closes
the circuit and a current flows through the transistor. A potential difference
is thus transformed into a current. The voltage difference is applied between
source and control electrode, but the current that represents the signal flows
between source and sink.

Let Vg be the potential at the control electrode, Vs the potential at the
sink and Vgs the potential difference between control electrode and source.
Assume further that Vds is the potential difference between source and sink.
It can be shown [303] that in this case the current I through the transistor is
given by

I = I0 ecVg−Vs(1− eVds),

where I0 and c are constants. The approximation I = I0 ecVg−Vs is valid for
large enough negative Vds. In this case the output current depends only on Vg

and Vs.
It is possible to design a small circuit made of FETs capable of multiplying

the numerical value of a voltage by the numerical value of a potential difference
(Figure 18.7).

The three transistors T1, T2 and Tb are interconnected in such a way that
the currents flowing through all of them meet at a common point. This means
that I1 + I2 = Ib. But since

I1 = I0ecV1−V and I2 = I0ecV2−V ,

it is true that
Ib = I1 + I2 = I0e−V (ecV1 + ecV 2).

Some additional algebraic steps lead to the following equation

I1 − I2 = Ib
ecV1 − ecV2

ecV1 + ecV2
= Ib tanh

c(V1 − V2)
2

.

This equation shows that a potential difference V1 − V2 produces a nonlinear
result I1 − I2. Using the circuit in Figure 18.7 we can implement the output

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

458 18 Hardware for Neural Networks

V

I1 I2

T1 T2V1 V2

Ib

TbVb

Fig. 18.7. Transconductance amplifier (Mead 1989)

function of a unit. Remember that the hyperbolic tangent is just the symmet-
ric sigmoid used in backpropagation networks. For small values of x it holds
that tanh(x) ≈ x. In this case for small values of V1 − V2 we get

I1 − I2 =
cIb
2

(V1 − V2).

The circuit operates as a multiplier. The magnitude of the current Ib is mul-
tiplied by the magnitude of the potential difference V1 − V2, where we only
require Ib > 0. An analog multiplier for two numbers with arbitrary sign
requires more components and a more sophisticated design, but the basic
construction principle is the same. An example is the Gilbert multiplier used
in many VLSI circuits.

The above discussion illustrates how FETs can be used, and are in fact be-
ing used, to implement the main computations for hardware models of neural
networks, that is, the weighting of signals, their integration, and the compu-
tation of the nonlinear output.

18.2.3 Transistors with stored charge

A possible alternative to the kind of components just discussed is to use
floating gate transistors for an analog implementation of the multiplication
operation. A problem with the circuits discussed above is that the numbers to
be multiplied must be encoded as voltages and currents. The numerical value
of the weights must be transformed into a potential difference, which must be
kept constant as long as no weight update is performed. It would be simpler

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

18.2 Analog neural networks 459

to store the weights using an analog method in such a way that they could be
used when needed. This is exactly what floating gate transistors can achieve.

Figure 18.8 shows the scheme of such a transistor. The structure resembles
that of a conventional field effect transistor. The main visible difference is the
presence of a metallic layer between the control electrode and the silicon base
of the transistor. This metallic layer is isolated from the rest of the transistor
in such a way that it can store a charge just as a capacitor. The metallic layer
can be charged by raising the potential difference between the control electrode
and the source by the right amount. The charge stored in the metallic layer
decays only slowly and can be stored for a relatively long time [185].

control electrode

sinksource

floating gate

Fig. 18.8. Diagram of a floating gate transistor

A floating gate transistor can be considered as one which includes an
analog memory. The stored charge modifies the effectiveness of the control
electrode. The current which flows through source and sink depends linearly
(in a certain interval) on the potential difference between them. The propor-
tionality constant is determined by the stored charge. The potential difference
is therefore weighted before being transformed into a current. Learning is very
simple to implement: weight updates correspond to changes in the amount of
charge stored. Even if the power source is disconnected the magnitudes of the
weights remain unchanged.

18.2.4 CCD components

Floating gate transistors represent the weights by statically stored charges. A
different approach consists in storing charges dynamically, as is done with the
help of charge coupled devices (CCDs). Computation of the scalar product
of a weight and an input vector can be arranged in such a way that the
respective components are used sequentially. The weights, which are stored
dynamically, can be kept moving in a closed loop. At a certain point in the
loop, the magnitudes of the weights are read and multiplied by the input. The
accumulated sum is the scalar product needed.

Figure 18.9 shows a CCD circuit capable of transporting charges. A chain
of electrodes is built on top of a semiconductor base. Each electrode receives
the signal of a clock. The clock pulses are synchronized in such a way that at

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

460 18 Hardware for Neural Networks

every discrete time t just one of the electrodes reaches its maximum potential.
At the next time step t+1 only the neighbor to the right reaches the maximum
potential and so on. A chargeQ is stored in the semiconductor material, which
has been treated in order to create on its surface potential wells aligned with
the electrodes. The charge stored in a potential well diffuses gradually (as
shown for t = 1.5), but if the next electrode reaches its maximum before the
charge has completely diffused, it is again collected as a charge packet in its
potential well. One or more stored charge packets can move from left to right
in this CCD circuit. If the chain of electrodes is arranged in a closed loop, the
stored charge can circulate indefinitely.

Clk 1
Clk 2
Clk 3

Q

Q

electrodes

t = 1.5

t = 2

t = 1

Fig. 18.9. CCD transport band

Figure 18.10 shows a very interesting design for an associative memory
with discrete weights. The matrix of weights is stored in the n CCD linear
transport arrays shown on the left. Each row of the weight matrix is stored
in one of the arrays. At the end of the line a weight is read in every cycle and
is transformed into a digital number using an A/D converter. The transport
chain to the right stores the momentary states of the units (0 or 1). In each
cycle a state is read and it is multiplied by each of the n weights from the
CCD arrays to the left. Since the states and weights are single bits, an AND
gate is enough. The partial products are kept in the accumulators for n cycles.
At the end of this period of time the circuit has computed n scalar products
which are stored in the n accumulators. A threshold function now converts the
scalar products in the new unit states, which are then stored on the vertical
CCD array.

Very compact arithmetic and logical units can be built using CCD tech-
nology. The circuit shown in Figure 18.10 is actually an example of a hybrid
approach, since the information is handled using analog and digital coding.
Although much of the computation is done serially, CCD components are fast
enough. The time lost in the sequential computation is traded off against the

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

18.3 Digital networks 461

.

.

.

.

.

.

.

.

.

weights AND accumulator threshold

digital circuit

CCD delay lines

unit 1

unit 2

unit 3

unit n

unit
outputs

w w w...nn n,n-1 n1

Fig. 18.10. Associative memory in CCD technology

simplicity of the design. The circuit works synchronously, because information
is transported at discrete points in time.

18.3 Digital networks

In digital neurocomputers signals and network parameters are encoded and
processed digitally. The circuits can be made to work with arbitrary precision
just by increasing the word length of the machine. Analog neurocomputers are
affected by the strong variation of the electrical characteristics of the transis-
tors, even when they have been etched on the same chip [303]. According to
the kind of analog component, the arithmetic precision is typically limited to 8
or 9 bits [185]. Analog designs can be used in all applications that can tolerate
statistical deviations in the computation and that do not require more than
the precision just mentioned, as is the case, for example, in computer vision.
If we want to work with learning algorithms based on gradient descent, more
precision is required.

There is another reason for the popularity of digital solutions in the neuro-
computing field: our present computers work digitally and in many cases the
neural network is just one of the pieces of a whole application. Having every-
thing in the same computer makes the integration of the software easier. This
has led to the development of several boards and small machines connected
to a host as a neural coprocessor.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

462 18 Hardware for Neural Networks

18.3.1 Numerical representation of weights and signals

If a neural network is simulated in a digital computer, the first issue to be
decided is how many bits should be used for storage of the weights and signals.
Pure software implementations use some kind of floating-point representation,
such as the IEEE format, which provides very good numerical resolution at the
cost of a high investment in hardware (for example for the 64-bit representa-
tions). However, floating-point operations require more cycles to be computed
than their integer counterparts (unless very complex designs are used). This
has led most neurocomputer designers to consider fixed-point representations
in which only integers are used and the position of the decimal point is man-
aged by the software or simple additional circuits. If such a representation
is used, the appropriate word length must be found. It must not affect the
convergence of the learning algorithms and must provide enough resolution
during normal operation. The classification capabilities of the trained net-
works depend on the length of the bit representation [223].

Some researchers have conducted series of experiments to find the appro-
priate word length and have found that 16 bits are needed to represent the
weights and 8 to represent the signals. This choice does not affect the con-
vergence of the backpropagation algorithm [31, 197]. Based on these results,
the design group at Oregon decided to build the CNAPS neurocomputer [175]
using word lengths of 8 and 16 bits (see Sect. 8.2.3).

Experience with some of the neurocomputers commercially available shows
that the 8- and 16-bit representations provide enough resolution in most,
but not in all cases. Furthermore, some complex learning algorithms, such as
variants of the conjugate gradient methods, require high accuracy for some
of the intermediate steps and cannot be implemented using just 16 bits [341].
The solution found by the commercial suppliers of neurocomputers should
thus be interpreted as a compromise, not as the universal solution for the
encoding problem in the field of neurocomputing.

18.3.2 Vector and signal processors

Almost all models of neural networks discussed in the previous chapters re-
quire computation of the scalar product of a weight and an input vector.
Vector and signal processors have been built with this type of application in
mind and are therefore also applicable for neurocomputing.

A vector processor, such as a CRAY, contains not only scalar registers
but also vector registers, in which complete vectors can be stored. To perform
operations on them, they are read sequentially from the vector registers and
their components are fed one after the other to the arithmetic units. It is
characteristic for vector processors that the arithmetic units consist of several
stages connected in a pipeline. The multiplier in Figure 18.11, for example,
performs a single multiplication in 10 cycles. If the operand pairs are fed
sequentially into the multiplier, one pair in each cycle, at the end of cycle 10

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

18.3 Digital networks 463

one result has been computed, another at the end of cycle 11, etc. After a
start time of 9 cycles a result is produced in every cycle. The partial results
can be accumulated with an adder. After 9 + n cycles the scalar product has
been computed.

. . .

. . .

cycles

1011

cycles
stages

1 2 3 4 5 6 7 8 9 10x1x2xn

y1y2yn

n −1 1 0

x1y1x2y2

Fig. 18.11. Multiplier with 10 pipeline sections

The principle of vector processors has been adopted in signal processors,
which always include fast pipelined multipliers and adders. A multiplication
can be computed simultaneously with an addition. They differ from vector
processors in that no vector registers are available and the vectors must be
transmitted from external memory modules. The bottleneck is the time needed
for each memory access, since processors have become extremely fast com-
pared to RAM chips [187]. Some commercial neurocomputers are based on
fast signal processors coupled to fast memory components.

18.3.3 Systolic arrays

An even greater speedup of the linear algebraic operations can be achieved
with systolic arrays. These are regular structures of VLSI units, mainly one-
or two-dimensional, which can communicate only locally. Information is fed at
the boundaries of the array and is transported synchronously from one stage
to the next. Kung gave these structures the name systolic arrays because of
their similarity to the blood flow in the human heart. Systolic arrays can
compute the vector-matrix multiplication using fewer cycles than a vector
processor. The product of an n-dimensional vector and an n × n matrix can
be computed in 2n cycles. A vector processor would require in the order of n2

cycles for the same computation.
Figure 18.12 shows an example of a two-dimensional systolic array capable

of computing a vector-matrix product. The rows of the matrix

W =
(
c d
e f

)

are used as the input from the top into the array. In the first cycle c and
d constitute the input. In the second cycle e and f are fed into the array,
but displaced by one unit to the right. We want to multiply the vector (a, b)

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

464 18 Hardware for Neural Networks

with the matrix W. The vector (a, b) is fed into the array from the left. Each
unit in the systolic array multiplies the data received from the left and from
above and the result is added to the data transmitted through the diagonal
link from the neighbor located to the upper left. Figure 18.12 shows which
data is transmitted through which links (for different cycles). After two cycles,
the result of the vector-matrix multiplication is stored in the two lower units
to the right. Exactly the same approach is used in larger systolic arrays to
multiply n-dimensional vectors and n× n matrices.

a

b

dc

ac

b

d

e f

ae f

b

ac

bd
+ac

a ae

bf
+ae

Fig. 18.12. Planar systolic array for vector-matrix multiplication

The systolic array used in the above example can be improved by con-
necting the borders of the array to form a torus. The previous vector-matrix
multiplication is computed in this case, as shown in Figure 18.13. In general it
holds that in order to multiply an n-dimensional vector with an n×n matrix,
a systolic array with n(2n−1) elements is needed. A torus with n×n elements
can perform the same computation. Therefore when systolic arrays are used
for neurocomputers, a toroidal architecture is frequently selected.

a

b

dc

ac

b

d

ef

ae
f

ac

bd
+ac

a ae

bf
+ae

b

Fig. 18.13. Systolic array with toroidal topology

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

18.3 Digital networks 465

An interesting systolic design is the one developed by Siemens (Fig-
ure 18.14). It consists of a two-dimensional array of multipliers. The links
for the transmission of weights and data are 16 bits wide. The array shown in
the figure can compute the product of four weights and four inputs. Each mul-
tiplier gets two arguments which are then multiplied. The result is transmitted
to an adder further below in the chain. The last adder eventually contains the
result of the product of the four-dimensional input with the four-dimensional
weight vector. The hardware implementation does not exactly correspond to
our diagram, since four links for the inputs and four links for the weights are
not provided. Just one link is available for the inputs and one for the weights,
but both links operate by multiplexing the input data and the weights, that
is, they are transmitted sequentially in four time frames. Additional hardware
in the chip stores each weight as needed for the multiplication and the same
is done for the inputs. In this way the number of pins in the final chip could
be dramatically reduced without affecting performance [354]. This kind of
multiplexed architecture is relatively common in neurocomputers [38].

AcAc

multi-
plier

A

A

A

A

A

A

A

A

A

A

A

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

A

weights

input 1

input 2

input 3

input 4

Ac Ac

output 1 output 2 output 3 output 4

Fig. 18.14. Systolic array for 4 scalar product chains

The systolic chips manufactured by Siemens (MA16) can be arranged in
even larger two-dimensional arrays. Each MA16 chip is provided with an exter-
nal memory in order to store some of the network’s weights. The performance

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

466 18 Hardware for Neural Networks

promised by the creators of the MA16 should reach 128 Gcps for a 16 × 16
systolic array [354]. This kind of performance could be used, for example, in
computer vision tasks. Siemens started marketing prototypes of the Synapse
neurocomputer in 1995.

18.3.4 One-dimensional structures

The hardware invested in two-dimensional systolic arrays is in many cases
excessive for the vector-matrix multiplication. This is why some researchers
have proposed using one-dimensional systolic arrays in order to reduce the
complexity of the hardware without losing too much performance [438, 263].

In a systolic ring information is transmitted from processor to processor
in a closed loop. Each processor in the ring simulates one of the units of the
neural network. Figure 18.15 shows a ring with four processors. Assume that
we want to compute the product of the 4 × 4 weight matrix W = {wij}
with the vector xT = (x1, x2, . . . , xn), that is, the vector Wx. The vector x is
loaded in the ring as shown in the figure. In each cycle each processor accesses
a weight from its local memory (in the order shown in Figure 18.15) and gets a
number from its left neighbor. The weight is multiplied by xi and the product
is added to the number received from the left neighbor. The number from
the left neighbor is the result of the previous multiply-accumulate operation
(the ring is initialized with zeros). The reader can readily verify that after four
cycles (a complete loop) the four small processors contain the four components
of the vector Wx.

11

w22

w12

w42

w32

w33

w23

w13

w43

w44

w34

w24

w14

w11

w41

w31

w21

x 1 x 2 x 3 x4

x
1

w
22x 2w 33x3w

44x4
w

Fig. 18.15. Systolic array computing the product of W and x

It is not necessary for the units in the ring to be fully-fledged processors.
They can be arithmetic units capable of multiplying and adding and which
contain some extra registers. Such a ring can be expanded to work with larger
matrices just by including additional nodes.

For the backpropagation algorithm it is also necessary to multiply vectors
with the transpose of the weight matrix. This can be implemented in the

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

18.3 Digital networks 467

w22

w12

w42

w32

w33

w23

w13

w43

w44

w34

w24

w14

w11

w41

w31

w21

x 1 x 2 x 3 x4
x

1 x
2

x
3

x4

Fig. 18.16. Systolic array computing the product of the transpose W and x

same ring by making some changes. In each cycle the number transmitted to
the right is xi and the results of the multiplication are accumulated at each
processor. After four cycles the components of the product WTx are stored
at each of the four units.

A similar architecture was used in the Warp machine designed by Pomer-
leau and others at Princeton [347]. The performance reported was 17 Mcps.
Jones et al. have studied similar systolic arrays [226].

Another machine of a systolic type is the RAP (Ring Array Processor)
developed at the International Computer Science Institute in Berkeley. The
processing units consist of signal processors with a large local memory [321].
The weights of the network are stored at the nodes in the local memories. The
performance reported is 200–570 Mcps using 10 processor nodes in a ring. It
is significant that the RAP has been in constant use for the last five years at
the time of this writing. It seems to be the neural computer with the largest
accumulated running time.

signal
processor

memory

signal
processor

memory

signal
processor

memory

communication
buffer

RAP node

...

Fig. 18.17. Architecture of the Ring Array Processor

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

468 18 Hardware for Neural Networks

Figure 18.17 shows the architecture of the RAP. The local memory of each
node is used to store a row of the weight matrix W, so that each processor can
compute the scalar product of a row with the vector (x1, x2, . . . , xn)T. The
input vector is transmitted from node to node. To compute the product WTx
partial products are transmitted from node to node in systolic fashion. The
weight updates can be made locally at each node. If the number of processors
is lower than the dimension of the vector and matrix rows, then each processor
stores two or more rows of the weight matrix and computes as much as needed.
The advantage of this architecture compared to a pure systolic array is that
it can be implemented using off-the-shelf components. The computing nodes
of the RAP can also be used to implement many other non-neural operations
needed in most applications.

18.4 Innovative computer architectures

The experience gained from implementations of neural networks in conven-
tional von Neumann machines has led to the development of complete mi-
croprocessors especially designed for neural networks applications. In some
cases the SIMD computing model has been adopted, since it is relatively easy
to accelerate vector-matrix multiplications significantly with a low hardware
investment. Many authors have studied optimal mappings of neural network
models onto SIMD machines [275].

18.4.1 VLSI microprocessors for neural networks

In SIMD machines the same instruction is executed by many processors using
different data. Figure 18.18 shows a SIMD implementation of a matrix-vector
product. A chain of n multipliers is coupled to n adders. The components of a
vector x1, x2, . . . , xn are transmitted sequentially to all the processors. At each
cycle one of the columns of the matrix W is transmitted to the processors.
The results of the n multiplications are accumulated in the adders and at the
same time the multipliers begin to compute the next products. For such a
computation model to work efficiently it is necessary to transmit n arguments
from the memory to the arithmetic units at each cycle. This requires a very
wide instruction format and a wide bus.

The Torrent chip completed and tested at Berkeley in the course of 1995
has a SIMD architecture in each of its vector pipelines [440] and was the first
vector processor on a single chip. The chip was designed for neural network
but also for other digital signal processing tasks. It consists of a scalar unit
compatible with a MIPS-II 32-bit integer CPU. A fixed point coprocessor is
also provided.

Figure 18.19 shows a block diagram of the chip. It contains a register file for
16 vectors, each capable of holding 32 elements, each of 32 bits. The pipeline
of the chip is superscalar. An instruction can be assigned to the CPU, the

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

18.4 Innovative computer architectures 469

multiplier

adder

w
21

w
22

w
2n

...

w
n1

w
n2

w
nn

...

w
11

w
12

w
1n

...

...

x x x
1 2 n...

Fig. 18.18. SIMD model for vector-matrix multiplication

Vector memory unit (VMP) or any of two vector processing units (VP0 and
VP1). The vector units can add, shift, and do conditional moves. Only VP0
can multiply. The multipliers in VP0 perform 16×16→ 32 bit multiplications.
The vector memory operations provided allow efficient loading and storage of
vectors.

Interesting is that all three vector functional units are composed of 8 par-
allel pipelines. This means that the vector is striped along the 8 pipelines.
When all three vector units are saturated, up to 24 operations per cycle are
being executed.

Due to its compatibility with the MIPS series, the scalar software can be
compiled with the standard available tools. The reported performance with
45 MHz is 720 Mflops [33].

In the Torrent the weight matrix is stored outside the VLSI chip. In the
CNAPS (Connected Network of Adaptive Processors) built and marketed
by Adaptive Solutions, the weights are stored in local memories located in
the main chip [175]. The CNAPS also processes data in SIMD fashion. Each
CNAPS chip contains 64 processor nodes together with their local memory.

Figure 18.20 shows the basic structure of the CNAPS chips, which have
been built using Ultra-VLSI technology: more than 11 million transistors have
been etched on each chip. Every one of them contains 80 processor nodes, but
after testing only 64 are retained to be connected in a chain [176]. The 64
nodes receive the same input through two buses: the instruction bus, necessary
to coordinate the 64 processing units, and the input bus. This has a width
of only 8 bits and transmits the outputs of the simulated units to the other
units. The weights are stored locally at each node. The programmer can define
any computation strategy he or she likes, but usually what works best is
to store all incoming weights in a unit in the local memory, as well as all
outgoing weights (necessary for the backpropagation algorithm). The output
bus, finally, communicates the output of each unit to the other units.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

470 18 Hardware for Neural Networks

I-Cache

scalar unit

vector
memory
pipeline

SIP

vector
registers

scalar
bus

address
bus

VMP

data
bus

conditional move
clip

shift right
add

multiply
shift + logic

logic
shift left

add
shift right

clip
conditional move

32

128

28

VP0

VP1

Fig. 18.19. Torrent block diagram [Asanovic et al. 95]

Figure 18.21 shows a block diagram of a processor node. A multiplier, an
adder, and additional logical functions are provided at each node. The register
file consists of 32 16-bit registers. The local memory has a capacity of 4Kb. The
structure of each node resembles a RISC processor with additional storage.
Using one of the chips with 64 processing nodes it is possible to multiply an
8-bit input with 64 16-bit numbers in parallel. Several CNAPS chips can be
connected in a linear array, so that the degree of parallelism can be increased
in quanta of 64 units. As in any other SIMD processor it is possible to test
status flags and switch-off some of the processors in the chain according to
the result of the test. In this way an instruction can be executed by a subset
of the processors in the machine. This increases the flexibility of the system.
A coprocessor with 4 CNAPS chips is capable of achieving 5 Gcps and 944
Mcups.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

18.4 Innovative computer architectures 471

PN0 PN1 PN63

8

31

8

inter-PN-
bus

output bus

input bus

PN-instruction

Fig. 18.20. CNAPS-Chip with 64 processor nodes (PN)

register
32 x 16

memory
addressing

memory
for

weights
4Kbyte

A-

B-

shift +
logic

adder multiplier

1

1

output

output bus

input bus
PN-instruction

input

Fig. 18.21. Structure of a processor node

18.4.2 Optical computers

The main technical difficulty that has to be surmounted in neural networks,
and other kinds of massively parallel systems, is the implementation of com-
munication channels. A Hopfield network with 1000 units contains half a mil-
lion connections. With these large topologies we have no alternative but to
work with virtual networks which are partitioned to fit on the hardware at
hand. This is the approach followed for the digital implementations discussed
in the last section. Optical computers have the great advantage, compared
to electronic machines, that the communication channels do not need to be
hard-wired. Signals can be transmitted as light waves from one component to

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

472 18 Hardware for Neural Networks

the other. Also, light rays can cross each other and this does not affect the
information they are carrying. The energy needed to transmit signals is low,
since there is no need to consider the capacity of the transmitting medium, as
in the case of metal cables. Switching times of up to 30 GHz can be achieved
with optical elements [296].

SLM (50%) SLM (10%)

I 0,5 I 0,05 I

I

I

I + I1

2

1

2
multiplication

addition

fan out

Fig. 18.22. Optical implementation of multiplication, addition, and signal splitting

Using optical signals it is possible to implement basic logic operations in a
straightforward way. To do this, SLMs (Spatial Light Modulators) are used.
These are optical masks which can be controlled using electrodes. According
to the voltage applied the SLM becomes darker and reduces the amount of
transmitted light when a light ray is projected onto the mask. A light signal
projected onto an SLM configured to let only 50% of the light through loses
half its intensity. This can be interpreted as multiplication of the number
1 by the number 0.5. A chain of multiplications can be computed almost
“instantly” by letting the light ray go through several SLMs arranged in a
stack. The light coming out has an intensity proportional to the product of
the darkness ratios of the SLMs.

Addition of optical signals can be implemented by reducing two light sig-
nals to a single one. This can be done using lenses, prisms, or any other devices
capable of dealing with light rays. A signal can be split in two or more using
crystals or certain lens types. Figure 18.22 shows possible realizations of some
operations necessary to implement optical computers.

Using these techniques all linear algebraic operations can be computed in
parallel. To perform a vector-matrix or a matrix-vector multiplication it is only
necessary to use an SLM that has been further subdivided into n×n fields. The
darkness of each field must be adjustable, although in some applications it is

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

18.4 Innovative computer architectures 473

w

w

w
w

w

w

w

w

w

w

w

w

w

w

w

w

11

21

31

41

12

22

32

42

43

33

23

13

14

24

34

44

x

x

x

x y
y

y

y1

2

3

4

1

2

3

4

SLMinput vector

result

Fig. 18.23. Matrix-vector multiplication with an SLM mask

possible to use constant SLM masks. Each field represents one of the elements
of the weight matrix and its darkness is adjusted according to its numerical
value. The vector to be multiplied with the weight matrix is projected onto
the SLM in such a way that the signal x1 is projected onto the first row of
the SLM matrix, x2 onto the second row and so on. The outcoming light is
collected column by column. The results are the components of the product
we wanted to compute.

Fig. 18.24. Optical implementation of the backpropagation algorithm

Many other important operations can be implemented very easily using
optical computers [134]. Using special lenses, for example, it is possible to
instantly compute the Fourier transform of an image. Some pattern recogni-
tion problems can be solved more easily taking the image from the spatial to
the frequency domain (see Chap. 12). Another example is that of feedback

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

474 18 Hardware for Neural Networks

systems of the kind used for associative memories. Cellular automata can be
also implemented using optical technology. Figure 18.24 shows a diagram of
an experiment in which the backpropagation algorithm was implemented with
optical components [296].

The diagram makes the main problem of today’s optical computers evi-
dent: they are still too bulky and are mainly laboratory prototypes still waiting
to be miniaturized. This could happen if new VLSI techniques were developed
and new materials discovered that could be used to combine optical with elec-
tronic elements on the same chips. However, it must be kept in mind that just
40 years ago the first transistor circuits were as bulky as today’s optical de-
vices.

18.4.3 Pulse coded networks

All of the networks considered above work by transmitting signals encoded
analogically or digitally. Another approach is to implement a closer simulation
of the biological model by transmitting signals as discrete pulses, as if they
were action potentials. Biological systems convey information from one neuron
to another by varying the firing rate, that is, by something similar to frequency
modulation. A strong signal is represented by pulses produced with a high
frequency. A feeble signal is represented by pulses fired with a much lower
frequency. It is not difficult to implement such pulse coding systems in analog
or digital technology.

Tomlinson et al. developed a system which works with discrete pulses [430].
The neurochip they built makes use of an efficient method of representing
weights and signals. Figure 18.25 shows an example of the coding of two
signals using asynchronous pulses.

16 cycles

A

B

0.25

0.50

1 2 3 4

1 2 3 4 5 6 7 8

Fig. 18.25. Pulse coded representation of signals

Assume that two signals A and B have the respective numerical values
0.25 and 0.5. All signals are represented by pulses in a 16-cycles interval. A
generator produces square pulses randomly, but in such a way that for signal
A, a pulse appears in the transmitted stream a quarter of the time. In the case
of B, a pulse is produced half of the time. The pulse trains are uncorrelated

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

18.4 Innovative computer architectures 475

to each other. This is necessary in order to implement the rest of the logic
functions. A decoder can reconstruct the original numbers just by counting
the number of pulses in the 16-cycle interval.

The product of the two numbers A and B can be computed using a single
AND gate. As shown in Figure 18.26, the two pulse streams are used as the
input to the AND gate. The result is a pulse chain containing only 0.25×0.5×
16 pulses. This corresponds to the number 0.25× 0.5, that is, the product of
the two arguments A and B. This is of course only a statistical result, since
the number of pulses can differ from the expected average, but the accuracy
of the computation can be increased arbitrarily by extending the length of
the coding interval. Tomlinson found in his experiments that 256 cycles were
good enough for most of the applications they considered. This corresponds,
more or less, to a signal resolution of 8 bits.

AND
A

B

Fig. 18.26. Multiplication of two pulse coded numbers

The integration and nonlinear output function of a unit can be computed
using an OR gate. If two numbers A and B are coded as indicated and are
used as arguments, the result is a train of pulses which corresponds to the
number C = 1 − (1 − A)(1 − B). This means that we always get a one as
the result, except in the case where both pulse trains contain zeroes. This
happens with probability (1−A)(1−B). The result C corresponds to a kind
of summation with an upper saturation bound which restricts the output to
the interval [0, 1]. Ten pulse-coded numbers A1, A2, . . . , A10 can be integrated
using an OR gate. For small values of Ai the result is

C = 1− (1− A1) · · · (1−A10) ≈ 1− (1−
10∑

i=1

Ai) ≈
10∑

i=1

Ai.

It can be shown that for larger magnitudes of the signal and a wide enough
coding interval, the approximation

C = 1− exp(−
10∑

i=1

Ai)

holds. This function has the shape of a squashing function similar to the
sigmoid.

The kind of coding used does not allow us to combine negative and positive
signals. They must be treated separately. Only when the activation of a unit

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

476 18 Hardware for Neural Networks

has to be computed do we need to combine both types of signals. This requires
additional hardware, a problem which also arises in other architectures, for
example in optical computers.

How to implement the classical learning algorithms or their variants us-
ing pulse coding elements has been intensively studied . Other authors have
built analog systems which implement an even closer approximation to the
biological model, as done for example in [49].

18.5 Historical and bibliographical remarks

The first attempts to build special hardware for artificial neural networks
go back to the 1950s in the USA. Marvin Minsky built a system in 1951
that simulated adaptive weights using potentiometers [309]. The perceptron
machines built by Rosenblatt are better known. He built them from 1957 to
1958 using Minsky’s approach of representing weights by resistances in an
electric network.

Rosenblatt’s machines could solve simple pattern recognition tasks. They
were also the first commercial neurocomputers, as we call such special hard-
ware today. Bernard Widrow and Marcian Hoff developed the first series of
adaptive systems specialized for signal processing in 1960 [450]. They used
a special kind of vacuum tube which they called a memistor. The European
pioneers were represented by Karl Steinbuch, who built associative memories
using resistance networks [415].

In the 1970s there were no especially important hardware developments
for neural networks, but some attempts were made in Japan to actually build
Fukushima’s cognitron and neocognitron [144, 145].

Much effort was invested in the 1980s to adapt conventional multiprocessor
systems to the necessities of neural networks. Hecht-Nielsen built the series of
Mark machines, first using conventional microprocessors and later by devel-
oping special chips. Some other researchers have done a lot of work simulating
neural networks in vector computers or massively parallel systems.

The two main fields of hardware development were clearly defined in the
middle of the 1980s. In the analog world the designs of Carver Mead and his
group set the stage for further developments. In the digital world many alter-
natives were blooming at this time. Zurada gives a more extensive description
of the different hardware implementations of neural networks [469].

Systolic arrays were developed by H. T. Kung at Carnegie Mellon in the
1970s [263]. The first systolic architecture for neural networks was the Warp
machine built at Princeton. The RAP and Synapse machines, which are not
purely systolic designs, nevertheless took their inspiration from the systolic
model.

But we are still awaiting the greatest breakthrough of all: when will optical
computers become a reality? This is the classical case of the application, the

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

18.5 Historical and bibliographical remarks 477

neural networks, waiting for the machine that can transform all their promises
into reality.

Exercises

1. Train a neural network using floating-point numbers with a limited preci-
sion for the mantissa, for example 12 bits. This can be implemented easily
by truncating the results of arithmetic operations. Does backpropagation
converge? What about other fast variations of backpropagation?

2. Show how to multiply two n×n matrices using a two-dimensional systolic
array. How many cycles are needed? How many multipliers?

3. Write the pseudocode for the backpropagation algorithm for the CNAPS.
Assume that each processor node is used to compute the output of a single
unit. The weights are stored in the local memory of the PNs.

4. Propose an optical system of the type shown in Figure 18.23, capable of
multiplying a vector with a matrix W, represented by an SLM, and also
with its transpose.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

478 18 Hardware for Neural Networks

.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

References

1. Aarts, E., and J. Korst (1989), Simulated Annealing and Boltzmann Machines,
John Wiley, Chichester, UK.

2. Abu-Mostafa, Y., and J. St. Jacques (1985), “Information Capacity of the
Hopfield Model”, IEEE Transactions on Information Theory, Vol. IT–31, No.
4, pp. 461–464.

3. Abu-Mostafa, Y. (1986), “Neural Networks for Computing”?, in: [Denker
1986], pp. 1–6.

4. Abu-Mostafa, Y. (1989), “The Vapnik-Chervonenkis Dimension: Information
Versus Complexity in Learning”, Neural Computation, Vol. 1, pp. 312–317.

5. Abu-Mostafa, Y. (1990), “Learning from Hints in Neural Networks”, Journal

of Complexity, Vol. 6, pp. 192–198.
6. Abu-Mostafa, Y. (1993), “Hints and the VC Dimension”, Neural Computa-

tion, Vol. 5, No. 2, pp. 278–288.
7. Ackley, D., G. Hinton, and T. Sejnowski (1985), “A Learning Algorithm for

Boltzmann Machines”, Cognitive Science, Vol. 9, pp. 147–169.
8. Ackley, D. (1987a), A Connectionist Machine for Genetic Hillclimbing,

Kluwer, Boston, MA.
9. Ackley, D. (1987b), “An Empirical Study of Bit Vector Function Optimiza-

tion”, in: [Davis 1987], pp. 170–204.
10. Agmon, S. (1954), “The Relaxation Method for Linear Inequalities”, Cana-

dian Journal of Mathematics, Vol. 6, No. 3, pp. 382–392.
11. Aho, A., J. Hopcroft, and J. Ullman (1974), The Design and Analysis of

Computer Algorithms, Addison-Wesley, Reading, MA.
12. Ainsworth, W. (1988), Speech Recognition by Machine, Peter Peregrinus, Lon-

don.
13. Akiyama, Y., A. Yamashita, M. Kajiura, and H. Aiso (1989), “Combinatorial

Optimization with Gaussian Machines”, in: [IEEE 1989], Vol. I, pp. 533–540.
14. Albert, A. (1972), Regression and the Moore-Penrose Pseudoinverse, Aca-

demic Press, New York.
15. Albrecht, R. F., C. R. Reeves, and N. C. Steele (eds.) (1993), Artificial Neural

Nets and Genetic Algorithms, Springer-Verlag, Vienna.
16. Aleksander, I., and H. Morton (1990), An Introduction to Neural Computing,

Chapman and Hall, London.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

432 References

17. Aleksander, I. (1991), “Connectionism or Weightless Neurocomputing”?, in:
[Kohonen et al. 1991], pp. 991–1000.

18. Aleksander, I., and J. Taylor (eds.) (1992), Artificial Neural Networks 2, El-
sevier Science Publishers, Amsterdam.

19. Alexandrow, P. (ed.) (1983), Die Hilbertschen Probleme, Akademische Ver-
lagsgesellschaft, Leipzig.

20. Almeida, L. B. (1987), “A Learning Rule for Asynchronous Perceptrons with
Feedback in a Combinatorial Environment”, in: [IEEE 1987], Vol. II, pp. 609–
618.

21. Alon, N., and J. Bruck (1991), “Explicit Construction of Depth–2 Majority
Circuits for Comparison and Addition”, IBM Tech. Report RJ8300, San Jose,
CA.

22. Amaldi, E. (1991), “On the Complexity of Training Perceptrons”, in: [Koho-
nen et al. 1991], pp. 55–60.

23. Amari, S. (1977), “Neural Theory of Association and Concept Formation”,
Biological Cybernetics, Vol. 26, pp. 175–185.

24. Amit, D., H. Gutfreund, and H. Sompolinsky (1985), “Storing Infinite Num-
bers of Patterns in a Spin-Glass Model of Neural Networks”, Physical Review

Letters, Vol. 55, No. 14, pp. 1530–1533.
25. Amit, D. (1989), Modeling Brain Function: The World of Attractor Neural

Networks, Cambridge University Press, Cambridge, UK.
26. Anderson, J., and E. Rosenfeld (1988), Neurocomputing: Foundations of Re-

search, MIT Press, Cambridge, MA.
27. Arbib, M. (1987), Brains, Machines and Mathematics, Springer-Verlag, New

York.
28. Arbib, M. (ed.) (1995), The Handbook of Brain Theory and Neural Networks,

MIT Press, Cambridge, MA.
29. Armstrong, M. (1983), Basic Topology, Springer-Verlag, Berlin.
30. Arrowsmith, D., and C. Place (1990), An Introduction to Dynamical Systems,

Cambridge University Press, Cambridge, UK.
31. Asanovic, K., and N. Morgan (1991), “Experimental Determination of Pre-

cision Requirements for Back-Propagation Training of Artificial Neural Net-
works”, International Computer Science Institute, Technical Report TR–91-
036, Berkeley, CA.

32. Asanovic, K., J. Beck, B. Kingsbury, P. Kohn, N. Morgan, and J. Wawrzynek
(1992), “SPERT: A VLIW/SIMD Microprocessor for Artificial Neural Net-
work Computations”, International Computer Science Institute, Technical Re-
port, TR–91-072, Berkeley, CA.

33. Asanovic, K., J. Beck, B. Irissou, B. Kingsbury, N. Morgan and J. Wawrzynek
(1995), “The T0 Vector Microprocessor”, Hot Chips VII, Stanford University,
August.

34. Ashton, W. (1972), The Logit Transformation, Charles Griffin & Co., London.
35. Axelrod, R., and W. Hamilton (1981), “The Evolution of Cooperation”, Sci-

ence, Vol. 211, pp. 1390–1396.
36. Axelrod, R. (1987), “The Evolution of Strategies in the Iterated Prisoner’s

Dilemma”, in: [Davis 1987], pp. 32–41.
37. Bäck, T., F. Hoffmeister, and H. P. Schwefel (1991), “A Survey of Evolution

Strategies”, in: [Belew and Booker 1991], pp. 2–9.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

References 433

38. Bailey, J., and D. Hammerstrom (1988), “Why VLSI Implementations of As-
sociative VLCNs Require Connection Multiplexing”, in: [IEEE 1988], Vol. II,
pp. 173–180.

39. Baldi, P., and Y. Chauvin (1994), “Smooth On-Line Learning Algorithms for
Hidden Markov Models”, Neural Computation, Vol. 6, No. 2, pp. 307–318.

40. Baluja, S. (1995), “An Empirical Comparison of Seven Iterative and Evo-
lutionary Function Optimization Heuristics”, Technical Report CMU-CS-95-
193, Carnegie Mellon University.

41. Bandemer, H., and S. Gottwald (1989), Einführung in Fuzzy-Methoden,
Akademie-Verlag, Berlin.

42. Barnsley, M. (1988), Fractals Everywhere, Academic Press, London.
43. Battiti, R. (1992), “First- and Second-Order Methods for Learning: Between

Steepest Descent and Newton’s Method”, Neural Computation, Vol. 4, pp.
141–166.

44. Baum, E., and D. Haussler (1989), “What Size Network Gives Valid Gener-
alization”, Neural Computation, Vol. 1, pp. 151–160.

45. Baum, E. (1990a), “On Learning a Union of Half Spaces”, Journal of Com-

plexity, Vol. 6, pp. 67–101.
46. Baum, E. (1990b), “The Perceptron Algorithm is Fast for Nonmalicious Dis-

tributions”, Neural Computation, Vol. 2, pp. 248–260.
47. Baum, L. E. (1972), “An Inequality and Associated Maximization Technique

in Statistical Estimation for Probabilistic Functions of Markov Processes”,
Inequalities III, Academic Press, New York, pp. 1–8.

48. Becker, S., and Y. le Cun (1989), “Improving the Convergence of Back-
Propagation Learning with Second Order Methods”, in: [Touretzky et al.
1989], pp. 29–37.

49. Beerhold, J., M. Jansen, and R. Eckmiller (1990), “Pulse-Processing Neural
Net Hardware with Selectable Topology and Adaptive Weights and Delays”,
in: [IEEE 1990], Vol. II, pp. 569–574.

50. Belew, R., and L. Booker (eds.) (1991), Proceedings of the Fourth Interna-

tional Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo,
CA.

51. Belew, R., J. McInerney, and N. Schraudolph (1992), “Evolving Networks:
Using the Genetic Algorithm with Connectionist Learning”, in: [Langton et
al. 1992], pp. 511–547.

52. Bennett, C. (1973), “Logical Reversibility of Computation”, IBM Journal of

Research and Development, Vol. 17, No. 6, pp. 525–532.
53. Bergerson, K., and D. Wunsch (1991), “A Commodity Trading Model Based

on a Neural Network-Expert System Hybrid”, in: [IEEE 1991], Vol. I, pp.
289–293.

54. Bessière, P., A. Chams, A. Guerin, J. Herault, C. Jutten, and J. Lawson
(1991), “From Hardware to Software: Designing a Neurostation”, in: [Ra-
macher, Rückert 1991], pp. 311–335.

55. Bezdek, J., and S. Pal. (1992), “Fuzzy Models for Pattern Recognition –
Background, Significance and Key Points”, in: Bezdek, J. and Pal. S. (eds.),
Fuzzy Models for Pattern Recognition, IEEE Press, New Jersey, pp. 1–28.

56. Bischof, H., and W. G. Kropatsch (1993), “Neural Networks Versus Image
Pyramids”, in: [Albrecht et al. 1993], pp. 145–153.

57. Bischof, H. (1994), Pyramidal Neural Networks, PhD Thesis, Technical Report
IfA-TR–93–2, Technical University of Vienna.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

434 References

58. Bishop, C. (1992), “Exact Calculation of the Hessian Matrix for the Multilayer
Perceptron”, Neural Computation, Vol. 4, pp. 494–501.

59. Blashfield, R., M. Aldenderfer, and L. Morey (1982), “Cluster Analysis Soft-
ware”, in: P. Krishnaiah, and L. Kanal (eds.), Handbook of Statistics 2, North-
Holland, Amsterdam, pp. 245–266.

60. Block, H. (1962), “The Perceptron: A Model for Brain Functioning”, Reviews

of Modern Physics, Vol. 34, pp. 123–135. Reprinted in: [Anderson and Rosen-
feld 1988].

61. Blum, A., and R. Rivest (1988), “Training a 3-Node Neural Network is
NP-Complete”, Proceedings of the 1988 Annual Workshop on Computational

Learning Theory, pp. 9–18.
62. Bolc, L., and P. Borowik (1992), Many-Valued Logics I, Springer-Verlag,

Berlin.
63. Boltjanskij, V., and V. Efremovic (1986), Anschauliche kombinatorische

Topologie, Deutscher Verlag der Wissenschaften, Berlin.
64. Borgwardt, K. H. (1987), The Simplex Method – A Probability Analysis,

Springer-Verlag, Berlin.
65. Bourlard, H., and N. Morgan (1993), Connectionist Speech Recognition.

Kluwer, Boston, MA.
66. Bouton, C., M. Cottrell, J. Fort, and G. Pagés (1992), “Self-Organization

and Convergence of the Kohonen Algorithm”, in: Mathematical Foundations

of Artificial Neural Networks, Sion, September 14–19.
67. Boyer, C. (1968), A History of Mathematics, Princeton University Press,

Princeton.
68. Boynton, R. (1979), Human Color Vision, Holt, Rinehart and Winston, New

York.
69. Braun, H. (1994), “ENZO-M: A Hybrid Approach for Optimizing Neural Net-

works by Evolution and Learning”, in: Y. Davidor et al. (eds.) (1994), Parallel

Problem Solving from Nature, Springer-Verlag, Berlin, pp. 440–451.
70. Brockwell, R., and R. Davis (1991), Time Series: Theory and Methods,

Springer-Verlag, New York.
71. Bromley, K., S. Y. Kung, and E. Swartzlander (eds.) (1988), Proceedings of

the International Conference on Systolic Arrays, Computer Society Press,
Washington.

72. Brown, A. (1991), Nerve Cells and Nervous Systems, Springer-Verlag, Berlin.
73. Brown, T., and S. Chattarji (1995), “Hebbian Synaptic Plasticity”, in: [Arbib

1995], pp. 454–459.
74. Bruck, J. (1990), “On the Convergence Properties of the Hopfield Model”,

Proceedings of the IEEE, Vol. 78, No. 10, pp. 1579–1585.
75. Bruck, J., and J. Goodman (1990), “On the Power of Neural Networks for

Solving Hard Problems”, Journal of Complexity, Vol. 6, pp. 129–135.
76. Bryson, A. E., and Y. C. Ho (1969), Applied Optimal Control, Blaisdell,

Waltham, MA.
77. Buhmann, J. (1995), “Data Clustering and Learning”, in: [Arbib 1995], pp.

278–282.
78. Burnod, Y. (1990), An Adaptive Neural Network: The Cerebral Cortex,

Prentice-Hall, London.
79. Byrne, J., and W. Berry (eds.) (1989), Neural Models of Plasticity, Academic

Press, San Diego, CA.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

References 435

80. Cantoni, V., and M. Ferreti (1994), Pyramidal Architectures for Computer

Vision, Plenum Press, New York.
81. Carpenter, G., and S. Grossberg (1987), “ART 2: Self-Organization of Stable

Category Recognition Codes for Analog Input Patterns”, Applied Optics, Vol.
26, pp. 4919–4930.

82. Carpenter, G., and S. Grossberg (1990), “ART 3: Hierarchical Search Us-
ing Chemical Transmitters in Self-Organizing Pattern Recognition Architec-
tures”, Neural Networks, Vol. 3, pp. 129–152.

83. Carpenter, G., and S. Grossberg (1991), Pattern Recognition by Self-Organiz-

ing Neural Networks, MIT Press, Cambridge, MA.
84. Chalmers, D. J. (1990), “The Evolution of Learning: An Experiment in Ge-

netic Connectionism”, Proceedings of the 1990 Connectionist Models Summer

School, Morgan Kaufmann, San Mateo, CA.
85. Charniak, E. (1991), “Bayesian Networks Without Tears”, AI Magazine, Vol.

12, No. 4, pp. 50–63.
86. Chatfield, C. (1991), The Analysis of Time Series, Chapman and Hall, Lon-

don.
87. Connor, J., and L. Atlas (1991), “Recurrent Neural Networks and Time Series

Prediction”, in: [IEEE 1991], Vol. I, pp. 301–306.
88. Cook, S. (1971), “The Complexity of Theorem Proving Procedures”, Proceed-

ings of the ACM Symposium on Theory of Computing, ACM, New York, pp.
151–158.

89. Cooper, L. (1973), “A Possible Organization of Animal Memory and Learn-
ing”, in: Lundquist, B., and S. Lundquist (eds.), Proceedings of the Nobel

Symposium on Collective Properties of Physical Systems, New York, Aca-
demic Press, pp. 252–264.

90. Cotter, N., and T. Guillerm (1992), “The CMAC and a Theorem of Kol-
mogorov”, Neural Networks, Vol. 5, No. 2, pp. 221–228.

91. Cottrell, M., and J. Fort (1986), “A Stochastic Model of Retinotopy: A Self-
Organizing Process”, Biological Cybernetics, Vol. 53, pp. 405–411.

92. Courant, R., K. Friedrichs, and H. Lewy (1928), “Über die partiellen Dif-
ferenzengleichungen der mathematischen Physik”, Mathematische Annalen,
Vol. 100, pp. 32–74.

93. Courant, R. (1943), “Variational Methods for the Solution of Problems of
Equilibrium and Vibrations”, Bulletin of the American Mathematical Society,
Vol. 49, No. 1, pp. 1–23.

94. Cowan, J. (1995), “Fault Tolerance”, in: [Arbib 1995], pp. 390–395.
95. Crick, F. (1994), The Astonishing Hypothesis – The Scientific Search for the

Soul, Charles Scribner’s Sons, New York.
96. Croarken, M. (1990), Early Scientific Computing in Britain, Clarendon Press,

Oxford.
97. Cronin, J. (1987), Mathematical Aspects of Hodgkin-Huxley Theory, Cam-

bridge University Press, Cambridge, UK.
98. Crowder, R. (1991), “Predicting the Mackey-Glass Time Series with Cascade

Correlation Learning”, in: [Touretzky 1991], pp. 117-123.
99. Darius, F., and R. Rojas (1994), “Simulated Molecular Evolution or Computer

Generated Artifacts?”, Biophysical Journal, Vol. 67, pp. 2120–2122.
100. DARPA (1988), DARPA Neural Network Study, AFCEA International Press,

Fairfax, VA.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

436 References

101. David, I., R. Ginosar, and M. Yoeli (1992), “An Efficient Implementation of
Boolean Functions as Self-Timed Circuits”, IEEE Transactions on Comput-

ers, Vol. 41, No. 1, pp. 2–11.
102. Davis, L. (1987), Genetic Algorithms and Simulated Annealing, Morgan Kauf-

mann, Los Altos, CA.
103. Davis, L. (1991), “Bit-Climbing, Representational Bias, and Test Suite De-

sign”, in: [Belew and Booker 1991], pp. 18–23.
104. Dawkins, R. (1989), The Selfish Gene, Oxford University Press, Oxford, UK.
105. De Jong, K. (1993), “Genetic Algorithms are NOT Function Optimizers”, in:

Whitley (ed.), Foundations of Genetic Algorithms 2, Morgan Kaufmann, San
Mateo, CA, pp. 5–17.

106. Deller, J., J. Proakis, and J. Hansen (1993), Discrete Time Processing of

Speech Signals, Macmillan, Toronto.
107. Denker, J. (ed.) (1986), Neural Networks for Computing, AIP Conference

Proceeding Series, No. 151, American Institute of Physics.
108. DeStefano, J. (1990), “Logistic Regression and the Boltzmann Machine”, in:

[IEEE 1990], Vol. III, pp. 199–204.
109. Deutsch, D. (1985), “Quantum Theory, the Church-Turing Principle and the

Universal Quantum Computer”, Proceedings of the Royal Society of London

A, Vol. 400, pp. 97–117.
110. Devroye, L., and T. Wagner (1982), “Nearest Neighbor Methods in Discrim-

ination”, in: P. Krishnaiah, and L. Kanal (eds.), Handbook of Statistics 2,
North-Holland, Amsterdam, pp. 193–197.

111. Dowling, J. (1987), The Retina: An Approachable Part of the Brain, Harvard
University Press, Cambridge, MA.

112. Doyle, P., and J. Snell (1984), Random Walks and Electric Networks, The
Mathematical Association of America, Washington.

113. Drago, G. P., and S. Ridella (1992), “Statistically Controlled Activation
Weight Initialization (SCAWI)”, IEEE Transactions on Neural Networks, Vol.
3, No. 4, pp. 627–631.

114. Dreyfus, H., and S. Dreyfus (1988), “Making a Mind Versus Modeling the
Brain: Artificial Intelligence Back at a Branchpoint”, in: [Graubard 1988],
pp. 15–44.

115. Dreyfus, S. (1962), “The Numerical Solution of Variational Problems”, Jour-

nal of Mathematical Analysis and Applications, Vol. 5, No. 1, pp. 30–45.
116. Dreyfus, S. E. (1990), “Artificial Neural Networks, Backpropagation and the

Kelley-Bryson Gradient Procedure”, Journal of Guidance, Control and Dy-

namics, Vol. 13, No. 5, pp. 926–928.
117. Durbin, R., and D. Willshaw (1987), “An Analogue Approach to the Travel-

ling Salesman Problem Using an Elastic Net Method”, Nature, Vol. 326, pp.
689–691.

118. Durbin, R., C. Miall, and G. Mitchison (eds.) (1989), The Computing Neuron,
Addison-Wesley, Wokingham, UK.

119. Eberhart, R., and R. Dobbins (eds.) (1990), Neural Network PC Tools, Aca-
demic Press, San Diego, CA.

120. Eckmiller, R., and C. von der Malsburg (eds.) (1988), Neural Computers,
Springer-Verlag, Berlin.

121. Eckmiller, R., G. Hartmann, and G. Hauske (eds.) (1990), Parallel Processing

in Neural Systems and Computers, North Holland, Amsterdam.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

References 437

122. Eckmiller, R., N. Goerke, and J. Hakala (1991), “Neural Networks for Internal
Representation of Movements in Primates and Robots”, in: [Mammone, Zeevi
1991], pp. 97–112.

123. Eckmiller, R. (1994), “Biology Inspired Pulse-Processing Neural Nets with
Adaptive Weights and Delays – Concept Sources from Neuroscience vs. Ap-
plications in Industry and Medicine”, in: [Zurada et al. 1994], pp. 276–284.

124. Edelman, G. (1987), Neural Darwinism: The Theory of Neuronal Group Se-

lection, Basic Books, New York.
125. Efron, B. (1979), “Bootstrap Methods: Another Look at the Jackknife”, The

Annals of Statistics, Vol. 7, pp. 1–26.
126. Efron, B., and G. Gong (1983), “A Leisurely Look at the Bootstrap, the

Jackknife, and Cross-Validation”, The American Statistician, Vol. 37, No. 1,
pp. 36–48.

127. Efron, B., and R. Tibshirani (1993), An Introduction to the Bootstrap, Chap-
man & Hall, New York.

128. Eigen, M. (1992), Stufen zum Leben: Die frühe Evolution im Visier der

Molekularbiologie, Piper, Munich.
129. Evesham, H. (1986), “Origins and Development of Nomography”, Annals of

the History of Computing, Vol. 8, No. 4, pp. 324–333.
130. Fahlman, S. (1989), “Faster Learning Variations on Back-Propagation: An

Empirical Study”, in: [Touretzky et al. 1989], pp. 38–51.
131. Fahlman, S., and C. Lebiere (1990), “The Cascade Correlation Learning Ar-

chitecture”, Technical Report CMU-CS-90-100, Carnegie Mellon University.
132. Farhat, N., D. Psaltis, A. Prata, and E. Paek (1985), “Optical Implementation

of the Hopfield Model”, Applied Optics, Vol. 24, pp. 1469–1475.
133. Fausett, L. (1994), Fundamentals of Neural Networks – Architectures, Algo-

rithms and Applications, Prentice Hall, Englewood Cliffs, NJ.
134. Feitelson, D. (1988), Optical Computing: A Survey for Computer Scientists,

MIT Press, Cambridge, MA.
135. Feldman, J., and D. Ballard (1982), “Connectionist Models and Their Prop-

erties”, Cognitive Science, Vol. 6, No. 3, pp. 205–254.
136. Feldman, J., M. Fanty, N. Goddard, and K. Lyne (1988), “Computing With

Structured Connectionist Networks”, Communications of the ACM, Vol. 31,
No. 2, pp. 170–187.

137. Feldman, J., L. Cooper, C. Koch, R. Lippman, D. Rumelhart, D. Sabbah, and
D. Waltz (1990), “Connectionist Systems”, in: J. Traub (ed.), Annual Review

of Computer Science, Vol. 4, pp. 369–381.
138. Feynman, R. (1963), The Feynman Lectures on Physics, Addison-Wesley,

Reading, MA.
139. Fogel, L. J., A. J. Owens, and M. J. Walsh (1966), Artificial Intelligence

Through Simulated Evolution, John Wiley & Sons, New York.
140. Fontanari, J. F., and R. Meir (1991), “Evolving a Learning Algorithm for the

Binary Perceptron”, Network – Computation in Neural Systems, Vol. 2, No.
4, pp. 353–359.

141. Forrest, S., and M. Mitchell (1993), “What Makes a Problem Hard for a Ge-
netic Algorithm? Some Anomalous Results and their Explanation”, Machine

Learning, Vol. 13, No. 2–3, pp. 285–319.
142. Forrest, S., and M. Mitchell (1993), “Relative Building-Block Fitness and the

Building Block Hypothesis”, in: [Whitley 1993], pp. 109–126.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

438 References

143. Fredkin, E., and T. Toffoli (1982), “Conservative Logic”, International Jour-

nal of Theoretical Physics, Vol. 21, No. 3–4, pp. 219–253.
144. Fukushima, K. (1975), “Cognitron: A Self-Organizing Multilayered Neural

Network Model”, Biological Cybernetics, Vol. 20, pp. 121–136.
145. Fukushima, K., S. Miyake, and T. Ito (1983), “Neocognitron: A Neural Net-

work Model for a Mechanism of Visual Pattern Recognition”, IEEE Transac-

tions on Systems, Man, and Cybernetics, Vol. 13, pp. 826–834.
146. Fukushima, K., N. Wake (1991), “Handwritten Alphanumeric Character

Recognition by the Neocognitron”, IEEE Transactions on Neural Networks,
Vol. 2, No. 3, pp. 355–365.

147. Fukushima, N., M. Okada, and K. Hiroshige (1994), “Neocognitron with Dual
C-Cell Layers”, Neural Networks, Vol. 7, No. 1, pp. 41–47.

148. Furst, M., J. B. Saxe, and M. Sipser (1981), “Parity, Circuits and the
Polynomial-Time Hierarchy”, 22nd Annual Symposium on Foundations of

Computer Science, IEEE Society Press, Los Angeles, CA, pp. 260–270.
149. Gaines, B. (1977), “Foundations of Fuzzy Reasoning”, in: [Gupta, Saridis,

Gaines 1977].
150. Gallant, A., and H. White (1988), “There Exists a Neural Network That Does

Not Make Avoidable Mistakes”, in: [IEEE 1988], Vol. I, pp. 657–664.
151. Gallant, S. (1988), “Connectionist Expert Systems”, Communications of the

ACM, Vol. 31, No. 2, pp. 152–169.
152. Gallant, S. I. (1990), “Perceptron-Based Learning Algorithms”, IEEE Trans-

actions on Neural Networks, Vol. 1, No. 2, pp. 179–191.
153. Gallinari, P. (1995), “Training of Modular Neural Net Systems”, in: [Arbib

1995], pp. 582–585.
154. Gandy, R. (1988), “The Confluence of Ideas in 1936”, in: [Herken 1988], pp.

55–111.
155. Gardner, E. (1987), “Maximum Storage Capacity in Neural Networks”, Eu-

rophysics Letters, Vol. 4, pp. 481–485.
156. Garey, M., and D. Johnson (1979), Computers and Intractability: A Guide to

the Theory of NP-Completeness, W. H. Freeman, New York.
157. Gass, S. (1969), Linear Programming, McGraw-Hill, New York.
158. Geman, S., and D. Geman (1984), “Stochastic Relaxation, Gibbs Distribu-

tions, and the Bayesian Restoration of Images”, IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, Vol. 6, pp. 721–741.
159. Gersho, A., and R. Gray (1992), Vector Quantization and Signal Compression,

Kluwer, Boston, MA.
160. Gibbons, A., and W. Rytter (1988), Efficient Parallel Algorithms, Cambridge

University Press, Cambridge, UK.
161. Glickstein, M. (1988), “The Discovery of the Visual Cortex”, Scientific Amer-

ican, Vol. 259, No. 3, pp. 84–91.
162. Glover, D. (1987), “Solving a Complex Keyboard Configuration Problem

Through Generalized Adaptive Search”, in: [Davis 1987], pp. 12–31.
163. Goldberg, D. (1989), Genetic Algorithms in Search, Optimization, and Ma-

chine Learning, Addison-Wesley, Reading, MA.
164. Gorges-Schleuter, M. (1989), “ASPARAGOS: An Asynchronous Parallel Ge-

netic Optimization Strategy”, Proceedings of the Second International Con-

ference on Genetic Algorithms, pp. 422–427.
165. Graubard, S. (1988), The Artificial Intelligence Debate, MIT Press, Cam-

bridge, MA.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

References 439

166. Grefenstette, J. (1993), “Deception Considered Harmful”, in: [Whitley 1993],
pp. 75–92.

167. Griffith, J. (1971), Mathematical Neurobiology: An Introduction to the Math-

ematics of the Nervous System, Academic Press, London.
168. Grossberg, S. (1976), “Adaptive Pattern Classification and Universal Pattern

Recoding: I. Parallel Development and Coding of Neural Feature Detectors”,
Biological Cybernetics, Vol. 23, pp. 121–134.

169. Grossberg, S. (1988), “Nonlinear Neural Networks: Principles, Mechanisms,
and Architectures”, Neural Networks, Vol. 1, pp. 17–61.

170. Gupta, M., G. Saridis, and B. Gaines (1977), Fuzzy Automata and Decision

Processes, North-Holland, New York.
171. Gupta, M. (1977), “Fuzzy-ism, the First Decade”, in: [Gupta, Saridis, Gaines

1977].
172. Hall, L., and A. Kandel (1986), Designing Fuzzy Expert Systems, Verlag TÜV

Rheinland, Cologne.
173. Hameroff, S. R. (1987), Ultimate Computing – Biomolecular Consciousness

and Nanotechnology, North-Holland, Amsterdam.
174. Hameroff, S. R., J. E. Dayhoff, R. Lahoz-Beltra, A. V. Samsonovich, and S.

Rasmussen (1992), “Conformational Automata in the Cytoskeleton”, Com-

puter, Vol. 25, No. 11, pp. 30–39.
175. Hammerstrom, D. (1990), “A VLSI Architecture for High-Performance, Low-

Cost, On-Chip Learning”, in: [IEEE 1990], Vol. II, pp. 537–544.
176. Hammerstrom, D., and N. Nguyen (1991), “An Implementation of Kohonen’s

Self-Organizing Map on the Adaptive Solutions Neurocomputer”, in: [Koho-
nen et al. 1991], pp. 715–720.

177. Hamming, R. (1987), Information und Codierung, VCH, Weinheim.
178. Haken, H. (1988), Information and Self-Organization, Springer-Verlag, Berlin.
179. Haken, H. (1991), Synergetic Computers and Cognition, Springer-Verlag,

Berlin.
180. Hartley, H. O. (1961), “The Modified Gauss-Newton Method for the Fitting

of Non-Linear Regression Functions by Least Squares”, Technometrics, Vol.
3, pp. 269–280.

181. Hays, W. (1988), Statistics, Holt, Rinehart and Winston, Fort Worth, TX.
182. Hebb, D. (1949), The Organization of Behavior, John Wiley, New York.
183. Hecht-Nielsen, R. (1987a), “Counterpropagation Networks”, Applied Optics,

Vol. 26, pp. 4979–4984.
184. Hecht-Nielsen, R. (1987b), “Kolmogorov’s Mapping Neural Network Exis-

tence Theorem”, in: [IEEE 1987], Vol. II, pp. 11–14.
185. Hecht-Nielsen, R. (1990), Neurocomputing, Addison-Wesley, Reading, MA.
186. Hecht-Nielsen, R. (1992), “The Munificence of High-Dimensionality”, in:

[Aleksander, Taylor 1992], pp. 1017–1030.
187. Hennessy, J., and D. Patterson (1990), Computer Architecture: A Quantitative

Approach, Morgan Kaufmann, San Mateo, CA.
188. Herken, R. (1988), The Universal Turing Machine: A Half Century Survey,

Kammerer & Unverzagt, Hamburg.
189. Hertz, J., A. Krogh, and R. Palmer (1991), Introduction to the Theory of

Neural Computation, Addison-Wesley, Redwood City, CA.
190. Hille, B. (1984), Ionic Channels of Excitable Membranes, Sinauer Associates

Inc., Sunderland, UK.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

440 References

191. Hinton, G., T. Sejnowski, and D. Ackley (1984), “Boltzmann-Machines: Con-
strained Satisfaction Networks that Learn”, CMU-CS-84-119, Carnegie Mel-
lon University.

192. Hodges, A. (1983), Alan Turing: The Enigma of Intelligence, Counterpoint,
London.

193. Hoekstra, J. (1991), “(Junction) Charge-Coupled Device Technology for Ar-
tificial Neural Networks”, in: [Ramacher, Rückert 1991], pp. 19–46.

194. Hoffmann, N. (1991), Simulation neuronaler Netze, Vieweg, Braunschweig.
195. Holland, J. (1975), Adaptation in Natural and Artificial Systems: An Intro-

ductory Analysis with Applications to Biology, Control and Artificial Systems,
The University of Michigan Press, Ann Arbor, MI.

196. Holmes, J. (1991), Sprachsynthese und Spracherkennung, Oldenbourg, Mu-
nich.

197. Holt, J., and T. Baker (1991), “Back Propagation Simulations Using Limited
Precision Calculations”, in: [IEEE 1991], Vol. II, pp. 121–126.

198. Hopfield, J. (1982), “Neural Networks and Physical Systems with Emergent
Collective Computational Abilities”, Proceedings of the National Academy of

Sciences, Vol. 79, pp. 2554–2558.
199. Hopfield, J. (1984), “Neurons with Graded Response Have Collective Com-

putational Properties Like those of Two-State Neurons”, Proceedings of the

National Academy of Sciences, Vol. 81, pp. 3088–3092.
200. Hopfield, J., and D. Tank (1985), “Neural Computations of Decisions in Op-

timization Problems”, Biological Cybernetics, Vol. 52, pp. 141–152.
201. Hopfield, J., and D. Tank (1986), “Computing with Neural Circuits”, Science,

Vol. 233, pp. 625–633.
202. Horgan, J. (1994), “Can Science Explain Consciousness?”, Scientific Ameri-

can, Vol. 271, No. 1, pp. 88–94.
203. Hornik, K., M. Stinchcombe, and H. White (1989), “Multilayer Feedforward

Networks are Universal Approximators”, Neural Networks, Vol. 2, pp. 359–
366.

204. Hornik, K. (1991), “Approximation Capabilities of Multilayer Perceptrons”,
Neural Networks, Vol. 4, pp. 251–257.

205. Hubel, D. (1989), Auge und Gehirn: Neurobiologie des Sehens, Spektrum der
Wissenschaft, Heidelberg.

206. Hush, D., J. Salas, and B. Horne (1991), “Error Surfaces for Multilayer Per-
ceptrons”, in: [IEEE 1991], Vol. I, pp. 759–764.

207. Hwang, K., and F. Briggs (1985), Computer Architecture and Parallel Pro-

cessing, McGraw-Hill, New York.
208. Hyman, S., T. Vogl, K. Blackwell, G. Barbour, J. Irvine, and D. Alkon (1991),

“Classification of Japanese Kanji Using Principal Component Analysis as a
Preprocessor to an Artificial Neural Network”, in: [IEEE 1991], Vol. I, pp.
233–238.

209. IEEE (1987), IEEE International Conference on Neural Networks, San Diego,
CA, June.

210. IEEE (1988), IEEE International Conference on Neural Networks, San Diego,
CA, July.

211. IEEE (1990), IEEE International Joint Conference on Neural Networks, San
Diego, CA, June.

212. IEEE (1991), IEEE International Joint Conference on Neural Networks, Seat-
tle, WA, July.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

References 441

213. Irie, B., and S. Miyake (1988), “Capabilities of Three-Layered Perceptrons”,
in: [IEEE 1988], Vol. I, pp. 641–648.

214. Ising, E. (1925), “Beitrag zur Theorie des Ferromagnetismus”, Zeitschrift für

Physik, Vol. 31, No. 253.
215. Iwata, A., Y. Nagasaka, S. Kuroyagani, and N. Suzumura (1991), “Realtime

ECG Data Compression Using Dual Three Layered Neural Networks for a
Digital Holter Monitor”, Proceedings of the 1991 International Conference on

Artificial Neural Networks, Finland, pp. 1673–1676.
216. Jabri, M., and B. Flower (1991), “Weight Perturbation: an Optimal Archi-

tecture and Learning Technique for Analog VLSI Feedforward and Recurrent
Multilayer Networks”, Neural Computation, Vol. 3, No. 4, pp. 546–565

217. Jacobs, R. A. (1988), “Increased Rates of Convergence through Learning Rate
Adaptation”, Neural Networks Vol. 1, pp. 295–307.

218. Jacobs, R., M. Jordan, S. Nowlan, and G. Hinton (1991), “Adaptive Mixtures
of Local Experts”, Neural Computation, Vol. 3, pp. 79–87.

219. Jagota, A. (1995), “An Exercises Supplement to the Introduction to the The-
ory of Neural Computation”, University of Memphis, FTP document.

220. Jain, A. (1989), Fundamentals of Digital Image Processing, Prentice-Hall,
London.

221. Janikow, C., and Z. Michalewicz (1991), “An Experimental Comparison of
Binary and Floating Point Representations in Genetic Algorithms”, in: [Belew
and Booker 1991], pp. 31–36.

222. Jetschke, G. (1989), Mathematik der Selbstorganisation, Vieweg, Braun-
schweig.

223. Ji, C., and D. Psaltis (1991), “The Capacity of Two Layer Network with
Binary Weights”, in: [IEEE 1991], Vol. II, pp. 127–132.

224. Johnson, D. (1987), “More Approaches to the Traveling Salesman Guide”,
Nature, Vol. 330.

225. Jolliffe, I. (1986), Principal Component Analysis, Springer-Verlag, New York.
226. Jones, S., K. Sammut, Ch. Nielsen, and J. Staunstrup (1991), “Toroidal Neu-

ral Network: Architecture and Processor Granularity Issues”, in: [Ramacher,
Rückert 1991], pp. 229–254.

227. Jordan, M., and R. Jacobs (1994), “Hierarchical Mixtures of Experts and the
EM Algorithm”, Neural Computation, Vol. 6, pp. 181–214.

228. Judd, J. S. (1988), “On the Complexity of Loading Shallow Neural Networks”,
Journal of Complexity, Vol. 4, pp. 177–192.

229. Judd, J. S. (1990), Neural Network Design and the Complexity of Learning,
MIT Press, Cambridge, MA.

230. Judd, J. S. (1992), “Why are Neural Networks so Wide”, in: [Aleksander,
Taylor 1992], Vol. 1, pp. 45–52.

231. Kamp, Y., and M. Hasler (1990), Recursive Neural Networks for Associative

Memory, John Wiley, New York.
232. Kandel, A. (1986), Fuzzy Mathematical Techniques with Applications, Addi-

son-Wesley, Reading, MA.
233. Kanerva, P. (1988), Sparse Distributed Memory, MIT Press, Cambridge, MA.
234. Kanerva, P. (1992), “Associative-Memory Models of the Cerebellum”, in:

[Aleksander, Taylor 1992], pp. 23–34.
235. Karayiannis, N., and A. Venetsanopoulos (1993), Artificial Neural Networks

– Learning Algorithms, Performance Evaluation, and Applications, Kluwer,
Boston, MA.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

442 References

236. Karmarkar, N. (1984), “A New Polynomial Time Algorithm for Linear Pro-
gramming”, Combinatorica, Vol. 4, No. 4, pp. 373–381.

237. Karp, R. (1972), “Reducibility Among Combinatorial Problems”, in: R.
Miller, and J. Thatcher (eds.), Complexity of Computer Computations,
Plenum Press, New York, pp. 85–104.

238. Karpinski, M., and T. Werther (1993), “VC Dimension and Uniform Learn-
ability of Sparse Polynomials and Rational Functions”, SIAM Journal on

Computing, Vol. 22, No. 6, pp. 1276–1285.
239. Kaufmann, A. (1977), “Progress in Modeling of Human Reasoning by Fuzzy

Logic”, in: [Gupta, Saridis, Gaines 1977], pp. 11–17.
240. Kaufmann, A., and M. Gupta (1988), Fuzzy Mathematical Models in Engi-

neering and Management Science, North-Holland, Amsterdam.
241. Kelley, H. J. (1960), “Gradient Theory of Optimal Flight Paths”, ARS Jour-

nal, Vol. 30, No. 10, pp. 947–954.
242. Keyes, R. (1982), “Communication in Computation”, International Journal

of Theoretical Physics, Vol. 21, No. 3–4, pp. 263–273.
243. Keynes, R. (1988), “Ionenkanäle in Nervenmembranen”, in: [Gehirn und Ner-

vensystem 1988], pp. 14–19.
244. Khachiyan, L. G. (1979), “A Polynomial Algorithm in Linear Programming”,

translated in: Soviet Mathematics Doklady, Vol. 20, pp. 191–194.
245. Kimoto, T., K. Asakawa, M. Yoda, and M. Takeoka (1990), “Stock-Market

Prediction System with Modular Neural Networks”, in: [IEEE 1990], Vol. I,
pp. 1–6.

246. Kirkpatrick, S., C. Gelatt, and M. Vecchi (1983), “Optimization by Simulated
Annealing”, Science, Vol. 220, pp. 671–680.

247. Klee, V., and G. L. Minty (1972), “How Good is the Simplex Algorithm”, in:
O. Shisha (ed.), Inequalities III, Academic Press, New York, pp. 159–179.

248. Klir, G., and T. Folger (1988), Fuzzy Sets, Uncertainty and Information,
Prentice-Hall, Englewood Cliffs, NJ.

249. Klopf, A. (1989), “Classical Conditioning Phenomena Predicted by a Drive-
Reinforcement Model of Neuronal Function”, in: [Byrne, Berry 1989], pp.
104–132.

250. Koch, C., J. Marroquin, and A. Yuille (1986), “Analog ‘Neuronal’ Networks
in Early Vision”, Proceedings of the National Academy of Sciences, Vol. 83,
pp. 4263–4267.

251. Koch, C., and I. Segev (eds.) (1989), Methods in Neuronal Modeling: From

Synapses to Networks, MIT Press, Cambridge, MA.
252. Köhle, M. (1990), Neurale Netze, Springer-Verlag, Vienna.
253. Kohonen, T. (1972), “Correlation Matrix Memories”, IEEE Transactions on

Computers, Vol. C-21, pp. 353–359.
254. Kohonen, T. (1982), “Self-Organized Formation of Topologically Correct Fea-

ture Maps”, Biological Cybernetics, Vol. 43, pp. 59–69.
255. Kohonen, T. (1984), Self-Organization and Associative Memory, Springer-

Verlag, Berlin.
256. Kohonen, T., K. Mäkisara, O. Simula, and J. Kangas (eds.) (1991), Artificial

Neural Networks, North-Holland, Amsterdam.
257. Kojima, M., N. Megiddo, T. Noma, and A. Yoshise (1991), A Unified Approach

to Interior Point Algorithms for Linear Complementarity Problems, Springer-
Verlag, Berlin.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

References 443

258. Kosko, B. (1988), “Bidirectional Associative Memories”, IEEE Transactions

on Systems, Man, and Cybernetics, Vol. 18, pp. 49–60.
259. Kosko, B. (1992), Neural Networks and Fuzzy Systems: A Dynamical Systems

Approach to Machine Intelligence, Prentice-Hall, London.
260. Koza, J., and J. Rice (1991), “Genetic Generation of Both the Weights and

Architecture for a Neural Network”, in: [IEEE 1991], Vol. II, pp. 397–404.
261. Kramer, A., and A. Sangiovanni-Vincentelli (1989), “Efficient Parallel Learn-

ing Algorithms for Neural Networks”, in: R. Lippmann, J. Moody, and D.
Touretzky (eds.) (1989), Advances in Neural Information Processing Systems,
Vol. 1, Morgan Kaufmann, pp. 40–48.

262. Kuffler, S., and J. Nicholls (1976), From Neuron to Brain: A Cellular Approach

to the Function of the Nervous System, Sinauer, Sunderland, UK.
263. Kung, H. T. (1988), “Systolic Communication”, in: [Bromley, Kung, Swartz-

lander 1988], pp. 695–703.
264. Kung, S. Y., and J. N. Hwang (1988), “Parallel Architectures for Artificial

Neural Nets”, in: [IEEE 1988], Vol. II, pp. 165–172.
265. Lamb, G. (1980), Elements of Soliton Theory, John Wiley, New York.
266. Langton, C., C. Taylor, J. Farmer, and S. Rasmussen (eds.) (1992), Artificial

Life II, Addison-Wesley, Redwood City, CA.
267. Lassen, N., D. Ingvar, and E. Skinhoj (1988), “Hirnfunktion und Hirndurch-

blutung”, in: [Gehirn und Nervensystem 1988], pp. 135–143.
268. Lavington, S. (1982), “The Manchester Mark 1”, in: [Sewiorek et al. 1982],

pp. 107–109.
269. Le Cun, Y. (1985), “Une Procédure d’Apprentissage pour Réseau à Seuil

Asymétrique”, in: Cognitiva 85: A la Frontiere de l’Intelligence Artificielle

des Sciences de la Conaissance des Neurosciences, Paris, pp. 599–604.
270. Legendi, T., and T. Szentivanyi (eds.) (1983), Leben und Werk von John von

Neumann, Bibliographisches Institut, Mannheim.
271. Lewis, P. M., and C. L. Coates (1967), Threshold Logic, John Wiley & Sons,

New York, 1967.
272. Lim, M., and Y. Takefuji (1990), “Implementing Fuzzy Rule-Based Systems

on Silicon Chips”, IEEE Expert, Vol. 5, No. 1, pp. 31–45.
273. Lin, C.-T., and C. Lee (1991), “Neural-Network-Based Fuzzy Logic Control

and Decision System”, IEEE Transactions on Computers, Vol. 40, No. 12, pp.
1320–1336.

274. Lin, S., and B. Kernighan (1973), “An Effective Heuristic Algorithm for the
Traveling Salesman Problem”, Operations Research, Vol. 21, pp. 498–516.

275. Lin, W.-M., V. Prasanna, and W. Przytula (1991), “Algorithmic Mapping of
Neural Network Models onto Parallel SIMD Machines”, IEEE Transactions

on Computers, Vol. 40, No. 12, pp. 1390–1401.
276. Linsker, R. (1988), “Self-Organization in a Perceptual Network”, Computer,

March, pp. 105–117.
277. Lisboa, P. G., and S. J. Perantonis (1991), “Complete Solution of the Local

Minima in the XOR Problem”, Network – Computation in Neural Systems,
Vol. 2, No. 1, pp. 119–124.

278. Liu, S., J. Wu, and C. Li (1990), “Programmable Optical Threshold Logic
Implementation with an Optoelectronic Circuit”, Optics Letters, Vol. 15, No.
12, pp. 691–693.

279. Lorentz, G. (1976), “The 13-th Problem of Hilbert”, Proceedings of Symposia

in Pure Mathematics, Vol. 28, pp. 419–430.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

444 References

280. Lovell, D. R. (1994), The Neocognitron as a System for Handwritten Charac-

ter Recognition: Limitations and Improvements, PhD Thesis, Department of
Electrical and Computer Engineering, University of Queensland.

281. Maas, H. L. van der, P. F. M. J. Verschure, and P. C. M. Molenaar (1990),
“A Note on Chaotic Behavior in Simple Neural Networks”, Neural Networks,
Vol. 3, pp. 119–122.

282. MacQueen, J. (1967), “Some Methods for Classification and Analysis of Multi-
Variate Observations”, in: Proceedings of the 5th Berkeley Symposium on

Mathematical Statistics and Probability, University of California Press, Berke-
ley, CA, pp. 281–297.

283. Mahowald, M., and C. Mead (1991), “The Silicon Retina”, Scientific Ameri-

can, Vol. 264, No. 5, pp. 40–47.
284. Malsburg, C. von der (1973), “Self-Organization of Orientation Sensitive Cells

in the Striate Cortex”, Kybernetik, Vol. 14, pp. 85–100.
285. Malsburg, C. von der (1986), “Frank Rosenblatt: Principles of Neurodynam-

ics, Perceptrons and the Theory of Brain Mechanisms”, in: [Palm, Aertsen
1986].

286. Mamdani, E. (1977), “Applications of Fuzzy Set Theory to Control Systems:
A Survey”, in: [Gupta, Saridis, Gaines 1977], pp. 77–88.

287. Mammone, R. J., and Y. Zeevi (eds.) (1991), Neural Networks: Theory and

Applications, Academic Press, Boston, MA.
288. Mammone, R. J. (1994) (ed.), Artificial Neural Networks for Speech and Vi-

sion, Chapman & Hall, London.
289. Mani, D., and L. Shastri (1994), “Massively Parallel Real-Time Reasoning

with Very Large Knowledge Bases – An Interim Report”, International Com-
puter Science Institute, Technical Report, TR-94-031, Berkeley, CA.

290. Mansfield, A. (1991), “Comparison of Perceptron Training by Linear Pro-
gramming and by the Perceptron Convergence Procedure”, in: [IEEE 1991],
Vol. II, pp. 25–30.

291. Margarita, S. (1991), “Neural Networks, Genetic Algorithms and Stock Trad-
ing”, [Kohonen et al. 1991], pp. 1763–1766.

292. Marquardt, D. W. (1963), “An Algorithm for the Least-Squares Estimation
of Nonlinear Parameters”, Journal of the Society for Industrial and Applied

Mathematics, Vol. 11, No. 2, pp. 431–441.
293. Marr, D. (1982), Vision – A Computational Investigation into the Human

Representation and Processing of Visual Information, W. H. Freeman, San
Francisco, CA.

294. Martini, H. (1990), Grundlagen der Assoziativen Speicherung, BI Wis-
senschaftsverlag, Mannheim.

295. Matthews, G. G. (1991), Cellular Physiology of Nerve and Muscle, Blackwell
Scientific Publications, Boston, MA.

296. McAulay, A. (1991), Optical Computer Architectures: The Application of Op-

tical Concepts to Next Generation Computers, John Wiley, New York.
297. McCorduck, P. (1979), Machines Who Think: A Personal Inquiry into the

History and Prospects of Artificial Intelligence, W. H. Freeman, New York.
298. McCulloch, W., and W. Pitts (1943), “A Logical Calculus of the Ideas Imma-

nent in Nervous Activity”, Bulletin of Mathematical Biophysics, Vol. 5, pp.
115–133.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

References 445

299. McCulloch, W., and W. Pitts (1947), “How We Know Universals: the Per-
ception of Auditory and Visual Forms”, Bulletin of Mathematical Biophysics,
Vol. 9, pp. 127–147.

300. McCulloch, W. (1960), “The Reliability of Biological Systems”, reprinted in:
Collected Works of Warren S. McCulloch (1989), Intersystems Publications,
Salinas, Vol. 4, pp. 1193–1210.

301. McCulloch, W. (1974), “Recollections of the Many Sources of Cybernetics”,
reprinted in: Collected Works of Warren S. McCulloch (1989), Intersystems
Publications, Salinas, Vol. 1, pp. 21–49.

302. Mead, C., and L. Conway (1980), Introduction to VLSI Systems, Addison-
Wesley, Reading, MA.

303. Mead, C. (1989), Analog VLSI and Neural Systems, Addison-Wesley, Reading,
MA.

304. Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller (1953),
“Equation of State Calculations for Fast Computing Machines”, Journal of

Chemical Physics, Vol. 21, pp. 1087–1092.
305. Michalewicz, Z. (1996), Genetic Algorithms + Data Structures = Evolution

Programs, 3rd Edition, Springer-Verlag, Berlin.
306. Mikhailov, A. (1990), Foundations of Synergetics I: Distributed Active Sys-

tems, Springer-Verlag, Berlin.
307. Mikhailov, A., and A. Loskutov (1991), Foundations of Synergetics II: Com-

plex Patterns, Springer-Verlag, Berlin.
308. Milner, P. (1993), “The Mind and Donald O. Hebb”, Scientific American,

Vol. 268, No. 1, pp. 124–129.
309. Minsky, M. (1954), Neural Nets and the Brain: Model Problem, Dissertation,

Princeton University, Princeton.
310. Minsky, M. (1956), “Some Universal Elements for Finite Automata”, in:

[Shannon and McCarthy 1956], pp. 117–128.
311. Minsky, M. (1967), Computation: Finite and Infinite Machines, Prentice-Hall,

Englewood Cliffs, NJ.
312. Minsky, M., and S. Papert (1969), Perceptrons: An Introduction to Compu-

tational Geometry, MIT Press, Cambridge, MA.
313. Minsky, M. (1985), The Society of Mind, Simon and Schuster, New York.
314. Mitchell, M., S. Forrest, and J. H. Holland (1992), “The Royal Road for Ge-

netic Algorithms: Fitness Landscapes and GA Performance”, in: F. J. Varela,
and P. Bourgine (eds.),Toward a Practice of Autonomous Systems. Proceed-

ings of the First European Conference on Artificial Life, MIT Press, Cam-
bridge, MA, pp. 245–254.

315. Møller, M. (1993), Efficient Training of Feed-Forward Neural Networks, PhD
Thesis, Aarhus University, Denmark.

316. Montague, P. R. (1993), “The NO Hypothesis”, in: B. Smith, and G. Adelman
(eds.), Neuroscience Year – Supplement 3 to the Encyclopedia of Neuroscience,
Birkhäuser, Boston, MA, pp. 100–102.

317. Montana, D., and L. Davis (1989), “Training Feedforward Neural Networks
Using Genetic Algorithms”, Proceedings of the Eleventh IJCAI, Morgan Kauf-
mann, San Mateo, CA, pp. 762–767.

318. Moody, J., and C. Darken (1989), “Learning with Localized Receptive Fields”,
in: [Touretzky et al. 1989], pp. 133–143.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

446 References

319. Moody, J. (1994), “Prediction Risk and Architecture Selection for Neural
Networks”, in: V. Cherkassky, J. H. Friedman, and H. Wechsler (eds.), From

Statistics to Neural Networks: Theory and Pattern Recognition Applications,
NATO ASI Series F, Vol. 136, Springer-Verlag, Berlin.

320. Morell, P., and W. Norton (1988), “Myelin”, in: [Gehirn und Nervensystem
1988], pp. 64–74.

321. Morgan, N., J. Beck, E. Allman, and J. Beer (1990), “RAP: A Ring Array
Processor for Multilayer Perceptron Applications”, Proceedings IEEE Inter-

national Conference on Acoustics, Speech, & Signal Processing, Albuquerque,
pp. 1005–1008.

322. Müller, B., J. Reinhardt, and T. M. Strickland (1995), Neural Networks: An

Introduction, 2nd Edition, Springer-Verlag, Berlin.
323. Myers, R. (1990), Classical and Modern Regression with Applications, PWS-

Kent Publishing Company, Boston, MA.
324. Natarajan, B. (1991), Machine Learning – A Theoretical Approach, Morgan

Kaufmann, San Mateo, CA.
325. Neher, E., and B. Sakmann (1992), “The Patch Clamp Technique”, Scientific

American, Vol. 266, No. 3, pp. 28–35.
326. Neumann, J. von (1956), “Probabilistic Logic and the Synthesis of Reliable

Organisms From Unreliable Components”, in: [Shannon and McCarthy 1956],
pp. 43–98.

327. Ng, K., and B. Abramson (1990), “Uncertainty Management in Expert Sys-
tems”, IEEE Expert, April, pp. 29–47.

328. Nguyen, D., and B. Widrow (1989), “Improving the Learning Speed of 2-Layer
Neural Networks by Choosing Initial Values of Adaptive Weights”, IJCNN,
pp. III–21–26.

329. Nilsson, N. (1965), Learning Machines, Morgan Kaufmann, San Mateo, CA,
New Edition, 1990.

330. Odom, M., and R. Sharda (1990), “A Neural Network for Bankruptcy Pre-
diction”, in: [IEEE 1990], Vol. II, pp. 163–168.

331. Oja, E. (1982), “A Simplified Neuron Model as a Principal Component Ana-
lyzer”, Journal of Mathematical Biology, Vol. 15, pp. 267–273.

332. Oja, E. (1989), “Neural Networks, Principal Components, and Subspaces”,
International Journal of Neural Systems, Vol. 1, pp. 61–68.

333. Palm, G. (1980), “On Associative Memory”, Biological Cybernetics, Vol. 36,
pp. 19–31.

334. Palm, G., and A. Aertsen (eds.) (1986), Brain Theory, Springer-Verlag, Berlin.
335. Parberry, I. (1994), Circuit Complexity and Neural Networks, MIT Press,

Cambridge, MA.
336. Park, S., and K. Miller (1988), “Random Number Generators: Good Ones are

Hard to Find”, Communications of the ACM, Vol. 31, No. 10, pp. 1192–1201.
337. Parker, D. (1985), “Learning Logic”, Technical Report TR–47, Center for

Computational Research in Economics and Management Science, MIT, Cam-
bridge, MA.

338. Penrose, R. (1989), The Emperor’s New Mind: Concerning Computers, Minds

and the Laws of Physics, Oxford University Press, Oxford.
339. Perrone, M. P., and L. N. Cooper (1994), “When Networks Disagree: Ensem-

ble Methods for Hybrid Neural Networks”, in: [Mammone 1994], pp. 126–142.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

References 447

340. Pfister, M., and R. Rojas (1993), “Speeding-up Backpropagation – A Com-
parison of Orthogonal Techniques”, International Joint Conference on Neural

Networks, Nagoya, Japan, pp. 517–523.
341. Pfister, M. (1995), Hybrid Learning Algorithms for Neural Networks, PhD

Thesis, Free University Berlin.
342. Pineda, F. (1987), “Generalization of Backpropagation to Recurrent Neural

Networks”, Physical Review Letters, Vol. 18, pp. 2229–2232.
343. Platt, J. C., and A. Barr (1987), “Constrained Differential Optimization”, in:

D. Anderson (ed.), Neural Information Processing Systems 1987, American
Institute of Physics, New York, pp. 612–621.

344. Plaut, D., S. Nowlan, and G. Hinton (1986), “Experiments on Learning by
Back Propagation”, Technical Report CMU-CS–86–126, Carnegie Mellon Uni-
versity, Pittsburgh, PA.

345. Plaut, D., and T. Shallice (1994), “Word Reading in Damaged Connectionist
Networks: Computational and Neuropsychological Implications”, in: [Mam-
mone 1994], pp. 294–323.

346. Pollard, W. (1986), Bayesian Statistics for Evaluation Research, Sage Publi-
cations, London.

347. Pomerleau, D., G. Gusciora, D. Touretzky, and H. T. Kung (1988), “Neural
Network Simulation at Warp Speed: How We Got 17 Million Connections Per
Second”, in: [IEEE 1988], Vol. II, pp. 143–150.

348. Posner, M. (1978), Chronometric Explorations of Mind, Lawrence Erlbaum,
Hillsdale, NJ.

349. Poston, T., C. Lee, Y. Choie, and Y. Kwon (1991), “Local Minima and Back
Propagation”, in: [IEEE 1991], Vol. II, pp. 173–176.

350. Poundstone, W. (1993), Prisoner’s Dilemma, Oxford University Press, Ox-
ford.

351. Prechelt, L. (1994), “A Study of Experimental Evaluations of Neural Network
Learning Algorithms: Current Research Practice”, Technical Report 19/94,
University of Karlsruhe.

352. Psaltis, D., K. Wagner, and D. Brady (1987), “Learning in Optical Neural
Computers”, in: [IEEE 1987], Vol. III, pp. 549–555.

353. Rabiner, L., and J. Bing-Hwang (1993), Fundamentals of Speech Recognition,
Prentice-Hall International, London.

354. Ramacher, U. (1991), “Guidelines to VLSI Design of Neural Nets”, in: [Ra-
macher, Rückert 1991], pp. 1–17.

355. Ramacher, U., and U. Rückert (1991), VLSI Design of Neural Networks,
Kluwer, Boston, MA.

356. Ramacher, U., J. Beichter, W. Raab, J. Anlauf, N. Bruels, U. Hachmann,
and M. Wesseling (1991), “Design of a 1st Generation Neurocomputer”, in:
[Ramacher, Rückert 1991], pp. 271–310.

357. Ramón y Cajal, S. (1990), New Ideas on the Structure of the Nervous Sys-

tem in Man and Vertebrates, MIT Press, Cambridge, MA, translation of the
French edition of 1894.

358. Rechenberg, I. (1973), Evolutionsstrategie: Optimierung technischer Systeme

nach Prinzipien der biologischen Evolution, Frommann-Holzboog, Stuttgart.
359. Rehkaemper, G. (1986), Nervensysteme im Tierreich: Bau, Funktion und Ent-

wicklung, Quelle & Meyer, Heidelberg.
360. Reichert, H. (1990), Neurobiologie, Georg Thieme, Stuttgart.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

448 References

361. Reingold, E., J. Nievergelt, and N. Deo (1977), Combinatorial Algorithms:

Theory and Practice, Prentice-Hall, Englewood Cliffs, NJ.
362. Rescher, N. (1969), Many-Valued Logic, McGraw-Hill, New York.
363. Revuz, D. (1975), Markov Chains, North-Holland, Amsterdam.
364. Reyneri, L., and E. Filippi (1991), “An Analysis on the Performance of Sil-

icon Implementations of Backpropagation Algorithms for Artificial Neural
Networks”, IEEE Transactions on Computers, Vol. 40, No. 12, pp. 1380–1389.

365. Richard, M. D., and R. P. Lippmann (1991), “Neural Network Classifiers
Estimate a posteriori Probabilities”, Neural Computation, Vol. 3, No. 4, pp.
461–483.

366. Riedmiller, M., and H. Braun (1993), “A Direct Adaptive Method for Faster
Backpropagation Learning: the Rprop Algorithm”, in: IEEE International

Conference on Neural Networks, San Francisco, CA, pp. 586-591.
367. Ritter, H., and K. Schulten (1988), “Convergence Properties of Kohonen’s

Topology Conserving Maps”, Biological Cybernetics, Vol. 60, pp. 59.
368. Ritter, H., T. Martinetz, and K. Schulten (1990), Neuronale Netze: Eine

Einführung in die Neuroinformatik selbstorganisierender Netzwerke, Addison-
Wesley, Bonn.

369. Robel, A. (1995), “Using Neural Models for Analyzing Time Series of Nonlin-
ear Dynamical Systems”, Systems Analysis Modelling Simulation, Vol. 18–19,
pp. 289–292.

370. Rojas, R. (1992), Visualisierung von neuronalen Netzen, Technical Report B
91–20, Department of Mathematics, Free University Berlin.

371. Rojas, R. (1993), “Backpropagation in General Networks”, Joint Meeting of

the AMS and MAA, San Antonio, 13–16 January.
372. Rojas, R., and M. Pfister (1993), “Backpropagation Algorithms”, Technical

Report B 93, Department of Mathematics, Free University Berlin.
373. Rojas, R. (1993), Theorie der neuronalen Netze, Springer-Verlag, Berlin.
374. Rojas, R. (1993), “A Graphical Proof of the Backpropagation Learning Algo-

rithm”, in: V. Malyshkin (ed.), Parallel Computing Technologies, PACT 93,
Obninsk, Russia.

375. Rojas, R. (1994), “Who Invented the Computer? – The Debate from the
Viewpoint of Computer Architecture”, in: Gautschi, W. (ed.), Mathematics

of Computation 1943–1993, Proceedings of Symposia on Applied Mathematics,
AMS, pp. 361–366.

376. Rojas, R. (1994), “Oscillating Iteration Paths in Neural Networks Learning”,
Computers & Graphics”, Vol. 18, No. 4, pp. 593–597.

377. Rojas, R. (1996), “A Short Proof of the Posterior Probability Property of
Classifier Neural Networks”, Neural Computation, Vol. 8, pp. 41–43.

378. Rosenblatt, F. (1958), “The Perceptron: a Probabilistic Model for Information
Storage and Organization in the Brain”, Psychological Review, Vol. 65, pp.
386–408. Reprinted in: [Anderson and Rosenfeld 1988].

379. Rosenblatt, F. (1960), Cornell Aeronautical Laboratory Report No. VG–1196-
G4, February.

380. Rosser, J. (1984), “Highlights of the History of the Lambda-Calculus”, Annals

of the History of Computing, Vol. 6, No. 4, pp. 337–349.
381. Rubner, J., and K. Schulten (1990), “Development of Feature Detectors by

Self-Organization”, Biological Cybernetics, Vol. 62, pp. 193–199.
382. Rumelhart, D., and J. McClelland (1986), Parallel Distributed Processing,

MIT Press, Cambridge, MA.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

References 449

383. Rumelhart, D., G. Hinton, and R. Williams (1986), “Learning Internal Rep-
resentations by Error Propagation”, in: [Rumelhart, McClelland 1986], pp.
318–362.

384. Rumelhart, D., G. Hinton, and J. McClelland (1986), “A General Framework
for Parallel Distributed Processing”, in: [Rumelhart, McClelland 1986], pp.
45–76.

385. Rumelhart, D., and D. Zipser (1986), “Feature Discovery by Competitive
Learning”, in: [Rumelhart, McClelland 1986], pp. 151–193.

386. Salomon, R. (1992), Verbesserung konnektionistischer Lernverfahren, die nach

der Gradientenmethode arbeiten, PhD Thesis, Technical University of Berlin.
387. Sanger, T. (1989), “Optimal Unsupervised Learning in a Single-Layer Linear

Feedforward Neural Network”, Neural Networks, Vol. 2, pp. 459–473.
388. Saskin, J. (1989), Ecken, Flächen, Kanten: Die Eulersche Charakteristik,

Deutscher Verlag der Wissenschaften, Berlin.
389. Schaffer, J. D., D. Whitley, and L. J. Eshelman (1992), “Combinations of

Genetic Algorithms and Neural Networks: A Survey of the State of the Art”,
International Workshop on Combinations of Genetic Algorithms and Neural

Networks, IEEE Computer Society Press, Los Alamitos, CA, pp. 1–37.
390. Scheller, F., and F. Schubert (1989), Biosensoren, Birkhäuser, Basel.
391. Schiffmann, W., M. Joost, and R. Werner (1993), “Comparison of Optimized

Backpropagation Algorithms”, in: M. Verleysen (ed.), European Symposium

on Artificial Neural Networks, Brussels, pp. 97–104.
392. Schöning, U. (1987), Logik für Informatiker, BI Wissenschaftsverlag, Mann-

heim.
393. Schuster, H. (1991), Nonlinear Dynamics and Neuronal Networks, Proceed-

ings of the 63rd W. E. Heraeus Seminar, VCH, Weinheim.
394. Schwefel, H. P. (1965), Kybernetische Evolution als Strategie der experi-

mentellen Forschung in der Strömungstechnik, Diplomarbeit, TU-Berlin.
395. Seitz, C. (1980), “System Timing”, in: [Mead and Conway 1980], pp. 218–262.
396. Sejnowski, T., and C. Rosenberg (1986), “NETtalk: a Parallel Network that

Learns to Read Aloud”, The John Hopkins University Electrical Engineering
and Computer Science Technical Report, JHU/EECS–86/01.

397. Sejnowski, T., and G. Tesauro (1989), “The Hebb Rule for Synaptic Plasticity:
Algorithms and Implementations”, in: [Byrne, Berry 1989], pp. 94–103.

398. Sewiorek, D., G. Bell, and A. Newell (1982), Computer Structures: Principles

and Examples, McGraw-Hill, Auckland, NZ.
399. Shannon, C., and J. McCarthy (1956), Automata Studies, Princeton Univer-

sity Press, Princeton.
400. Shastri, L., and J. Feldman (1985), “Evidential Reasoning in Semantic Net-

works: A Formal Theory”, Ninth International Joint Conference on Artificial

Intelligence, August, pp. 465–474.
401. Sheng, C. L. (1969), Threshold Logic, Academic Press, London.
402. Sheu, B., B. Lee, and C.-F. Chang (1991), “Hardware Annealing for Fast-

Retrieval of Optimal Solutions in Hopfield Neural Networks”, in: [IEEE 1991],
Vol. II, pp. 327–332.

403. Silva, F., and L. Almeida (1990), “Speeding-Up Backpropagation”, in: R.
Eckmiller (ed.), Advanced Neural Computers, North-Holland, Amsterdam, pp.
151–156.

404. Silva, F., and L. Almeida (1991), “Speeding-up Backpropagation by Data
Orthonormalization”, in: [Kohonen et al. 1991], pp. 1503–1506.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

450 References

405. Siu, K.-Y., and J. Bruck (1990), “Neural Computation of Arithmetic Func-
tions”, Proceedings of the IEEE, Vol. 78, No. 10, pp. 1669–1675.

406. Siu, K.-Y., and J. Bruck (1991), “On the Power of Threshold Circuits with
Small Weights”, SIAM Journal of Discrete Mathematics, Vol. 4, No. 3, pp.
423–435.

407. Siu, K.-Y., J. Bruck, T. Kailath, and T. Hofmeister (1993), “Depth Efficient
Neural Networks for Division and Related Problems” IEEE Transactions on

Information Theory, Vol. 39, No. 3, pp. 946–956.
408. Sontag, E. (1995), “Automata and Neural Networks”, in [Arbib 1995], pp.

119–123.
409. Soucek, B., and M. Soucek (1988), Neural and Massively Parallel Computers,

John Wiley, New York.
410. Speckmann, H., G. Raddatz, and W. Rosenstiel (1994), “Improvements of

Learning Results of the Selforganizing Map by Calculating Fractal Dimen-
sions”, in: European Symposium on Artificial Neural Networks 94 – Proceed-

ings, Brussels, pp. 251–255.
411. Sprecher, D. (1964), “On the Structure of Continuous Functions of Several

Variables”, Transactions of the American Mathematical Society, Vol. 115, pp.
340–355.

412. Stein, D. (1989), Lectures in the Sciences of Complexity, Proceedings of the

1988 Complex Systems Summer School, Addison-Wesley, Redwood City, CA.
413. Stein, D. (1989), “Spin Glasses”, Scientific American, Vol. 261, No. 1, pp.

36–43.
414. Steinbuch, K. (1961), “Die Lernmatrix”, Kybernetik, Vol. 1, No. 1, pp. 36–45.
415. Steinbuch, K. (1965), Automat und Mensch: Kybernetische Tatsachen und

Hypothesen, Springer-Verlag, Berlin.
416. Stephens, P., and A. Goldman (1991), “The Structure of Quasicrystals”, Sci-

entific American, Vol. 264, No. 4, pp. 24–31.
417. Stern, N. (1980), “John von Neumann’s Influence on Electronic Digital Com-

puting, 1944–1946”, Annals of the History of Computing, Vol. 2, No. 4, pp.
349–361.

418. Stevens, C. (1988), “Die Nervenzelle”, in: [Gehirn und Nervensystem 1988],
pp. 2–13.

419. Stevens, L. (1973), Explorers of the Brain, Angus and Robertson, London.
420. Steward, O. (1989), Principles of Cellular, Molecular, and Developmental

Neuroscience, Springer-Verlag, New York.
421. Stone, G. (1986), “An Analysis of the Delta Rule and the Learning of Statis-

tical Associations”, in: [Rumelhart, McClelland 1986], pp. 444–459.
422. Sugeno, M. (ed.) (1985), Industrial Applications of Fuzzy Control, North-

Holland, Amsterdam.
423. Szu, H., and R. Hartley (1987), “Fast Simulated Annealing”, Physics Letters

A, Vol. 122, pp. 157–162.
424. Tagliarini, G., and E. Page (1989), “Learning in Systematically Designed Net-

works”, in: [IEEE 1989], pp. 497–502.
425. Tesauro, G. (1990), “Neurogammon: A Neural-Network Backgammon Pro-

gram”, in: [IEEE 1990], Vol. III, pp. 33–39.
426. Tesauro, G. (1995), “Temporal Difference Learning and TD-Gammon”, Com-

munications of the ACM, Vol. 38, No. 3, pp. 58–68.
427. Thompson, R. (1990), Das Gehirn: Von der Nervenzelle zur Verhaltens-

steuerung, Spektrum der Wissenschaft, Heidelberg.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

References 451

428. Toffoli, T. (1980), “Reversible Computing”, in: J. de Bakker, and J. van
Leeuwen (eds.), Automata, Languages and Programming, Lecture Notes in
Computer Science, Vol. 85, Springer-Verlag, Berlin.

429. Toffoli, T., and N. Margolus (1989), Cellular Automata Machines: A New

Environment for Modeling, MIT Press, Cambridge, MA.
430. Tomlinson, M., D. Walker, and M. Sivilotti (1990), “A Digital Neural Network

Architecture for VLSI”, in: [IEEE 1990], Vol. II, pp. 545–550.
431. Torkkola, K., J. Kangas, P. Utela, S. Kashi, M. Kokkonen, M. Kurimo, and T.

Kohonen (1991), “Status Report of the Finnish Phonetic Typewriter Project”,
in: [Kohonen et al. 1991], pp. 771–776.

432. Touretzky, D., G. Hinton, and T. Sejnowski (eds.) (1989), Proceedings of the

1988 Connectionist Models Summer School, Morgan Kaufmann, San Mateo,
CA.

433. Touretzky, D., J. Elman, T. Sejnowski, and G. Hinton (eds.) (1991), Proceed-

ings of the 1990 Connectionist Models Summer School, Morgan Kaufmann,
San Mateo, CA.

434. Tukey, J. W. (1958), “Bias and Confidence in Not Quite Large Samples”,
Annals of Mathematical Statistics, Vol. 29, p. 614 (abstract).

435. Turing, A. (1937), “On Computable Numbers, with an Application to the
Entscheidungsproblem”, Proceedings of the London Mathematical Society,
Vol. 42, pp. 230–265.

436. Valiant, L. (1984), “A Theory of the Learnable”, Communications of the

ACM, Vol. 27, pp. 1134–1142.
437. Vapnik, V., and A. Chervonenkis (1971), “On the Uniform Convergence of

Relative Frequencies of Events to their Probabilities”, Theory of Probability

and its Applications, Vol. 16, pp. 264–280.
438. Vlontzos, J., and S. Y. Kung (1991), “Digital Neural Network Architecture

and Implementation”, in: [Ramacher, Rückert 1991], pp. 205–228.
439. Walter, J., and H. Ritter (1995), “Local PSOMs and Chebyshev PSOMs

Improving the Parametrized Self-Organizing Maps”, in: F. Fogelman-Soulie
(ed.), International Conference on Artificial Neural Networks, Paris.

440. Wawrzynek, K., K. Asanovic, and N. Morgan (1993), “The Design of a Neuro-
Microprocessor”, IEEE Transactions on Neural Networks, Vol. 4, No. 3, pp.
394–399.

441. Weigend, A., and N. Gershenfeld (1994) Time Series Prediction : Forecasting

the Future and Understanding the Past, Addison-Wesley, Reading, MA.
442. Werbos, P. (1974), Beyond Regression – New Tools for Prediction and Anal-

ysis in the Behavioral Sciences, PhD Thesis, Harvard University.
443. Werbos, P. (1994) The Roots of Backpropagation – From Ordered Derivatives

to Neural Networks and Political Forecasting, J. Wiley & Sons, New York.
444. Wesseling, P. (1992), An Introduction to Multigrid Methods, J. Wiley & Sons,

Chichester, UK.
445. Wessels, L., and E. Barnard (1992), “Avoiding False Local Minima by Proper

Initialization of Connections”, IEEE Transactions on Neural Networks, Vol.
3, No. 6, pp. 899–905.

446. White, H. (1988), “Economic Prediction Using Neural Networks: the Case of
IBM Daily Stock Returns”, in: [IEEE 1988], Vol. II, pp. 451–458.

447. White, H. (1992), Artificial Neural Networks – Approximation and Learning

Theory, Blackwell, Oxford.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

452 References

448. Whitley, D., S. Dominic, and R. Das (1991), “Genetic Reinforcement Learning
with Multilayer Neural Networks”, in: [Belew and Booker 1991], pp. 562–570.

449. Whitley, D. (ed.) (1993), Foundations of Genetic Algorithms 2, Morgan Kauf-
mann, San Mateo, CA.

450. Widrow, B., and M. Hoff (1960), “Adaptive Switching Circuits”, 1960
WESCON Convention Record, New York, in: [Anderson and Rosenfeld 1989].

451. Widrow, B., and M. Lehr (1990), “30 Years of Adaptive Neural Networks:
Perceptron, Madaline and Backpropagation”, Proceedings of the IEEE, Vol.
78, No. 9, pp. 1415–1442.

452. Wiener, N. (1948), Cybernetics, MIT Press, Cambridge, MA.
453. Wilkinson, G. (1990), “Food-Sharing in Vampire Bats”, Scientific American,

Vol. 262, No. 2, pp. 64–71.
454. Williams, R. (1986), “The Logic of Activation Functions”, in: [Rumelhart,

McClelland 1986], pp. 423–443.
455. Willshaw, D., O. Buneman, and H. Longuet-Higgins (1969), “Non-Holo-

graphic Associative Memory”, Nature, Vol. 222, pp. 960–962.
456. Wilson, G., and G. Pawley (1988), “On the Stability of the Traveling Salesman

Problem Algorithm of Hopfield and Tank”, Biological Cybernetics, Vol. 58, pp.
63–70.

457. Winder, R. (1962), Threshold Logic, Doctoral Dissertation, Mathematics De-
partment, Princeton University.

458. Winograd, S., and J. Cowan (1963), Reliable Computation in the Presence of

Noise, MIT Press, Cambridge, MA.
459. Winston, R. (1991), “Nonimaging Optics”, Scientific American, Vol. 264, No.

3, pp. 52–57.
460. Wolfram, S. (1991), Mathematica: A System for Doing Mathematics by Com-

puter, Addison-Wesley, Redwood City, CA.
461. Wooters, C. (1993), Lexical Modeling in a Speaker Independent Speech Under-

standing System, PhD Thesis, UC Berkeley, TR-93-068, International Com-
puter Science Institute.

462. Wunsch, D., T. Caudell, D. Capps, and A. Falk (1991), “An Optoelectronic
Adaptive Resonance Unit”, in: [IEEE 1991], Vol. I, pp. 541–549.

463. Yamaguchi, T., and W. G. Kropatsch (1990), “Distortion-Tolerance Curve
of the Neocognitron with Various Structures Including Pyramid”, IEEE 10th

International Conference on Pattern Recognition, IEEE Computer Society
Press, Washington D. C., pp. 918–922.

464. Yao, A. (1985), “Separating the Polynomial-Time Hierarchy by Oracles”, 26th

Annual Symposium on Foundations of Computer Science, IEEE Press, Wash-
ington D. C., pp. 1–10.

465. Zadeh, L. (1988), “Fuzzy Logic”, Computer, Vol. 21, No. 4, April, pp. 83–93.
466. Zak, M. (1989), “Terminal Attractors in Neural Networks”, Neural Networks,

Vol. 2, pp. 259–274.
467. Zaremba, T. (1990), “Case Study III: Technology in Search of a Buck”, in:

[Eberhart, Dobbins 1990], pp. 251–283.
468. Zhang, S., and A. G. Constantinides (1992), “Lagrange Programming Neural

Networks”, IEEE Transactions on Circuits and Systems II: Analog and Digital

Signal Processing, Vol. 39, No. 7, pp. 441–52.
469. Zurada, J. (1992), Introduction to Artificial Neural Systems, West Publishing

Company, St. Paul, MN.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

References 453

470. Zurada, J. M., R. Marks II, and C. Robinson (1994) (eds.), Computational

Intelligence – Imitating Life, IEEE Press, New York.
471. Zurek, W. (1990), Complexity, Entropy and the Physics of Information, Santa

Fe Institute, Studies in the Sciences of Complexity, Addison-Wesley, Redwood
City, CA.

472. – (1990), Gehirn und Kognition, Spektrum der Wissenschaft, Heidelberg.
473. – (1988), Gehirn und Nervensystem, Spektrum der Wissenschaft, Heidelberg.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

	forword.pdf
	preface.pdf
	K1.pdf
	K2.pdf
	K3.pdf
	K4.pdf
	K5.pdf
	K6.pdf
	K7.pdf
	K8.pdf
	K9.pdf
	K10.pdf
	K11.pdf
	K12.pdf
	K13.pdf
	K14.pdf
	K15.pdf
	K16.pdf
	K17.pdf
	K18.pdf
	references.pdf

