
A Graph Labelling Proof of the Backpropagation Algorithm

Raúl Rojas

�Neural networks represent an alternative computational paradigm, which has received much attention in the last
years [1, 5]. They differ in several important ways from conventional computer systems. On the one hand, neural
networks are massively parallel systems in which information flows simultaneously through a set of computing
units. On the other hand, we do not want to program them in the way we do with conventional computers. Neural
networks should learn to perform a computation by analyzing a finite set of examples of input-output pairs. The
system should adjust its parameters, so that the network of computing units learns to reproduce the desired output
as closely as possible. Moreover, the network should be able to generalize, in the sense that unknown inputs are to
be mapped to new interpolated outputs. In this case our system constitutes a mapping network which maps neigh-
borhoods of the known inputs onto neighborhoods of the known outputs.
� The most popular approach to implement learning in neural networks is the backpropagation algorithm, a
gradient descent method. Although the idea behind backpropagation is rather simple, the published derivations of
the algorithm are unnecessarily clumsy [5] or they achieve elegance by using unusual high-powered differential
operators.
� We show in this paper that backpropagation can be very easily derived by thinking of the gradient calcu-
lation as a graph labelling problem. This approach is not only elegant, but also more general than the traditional
derivations found in most textbooks. General network topologies are handled right from the beginning, so that the
proof of the algorithm is not reduced to the multilayered case. Thus you can have it both ways: more general yet
simpler.
� In this article we give first a short introduction to the neural network computational paradigm and its asso-
ciated learning problem, and from there we derive the backpropagation algorithm using our graph labelling
approach.

�Computing with Neural Networks
�We define a neural network as a computational graph, whose nodes are computing units and whose directed edges
transmit numeric information from node to node. Each computing unit is capable of evaluating a single primitive
function of its input. In most neural network models each unit computes the same primitive function, but other
arrangements are also possible. Each edge of the graph has an associated weight, which is multiplied by the numer-
ic information being transmitted. The input units are those nodes which receive the external numeric information
to be processed by the network. The output units are those nodes whose results are transmitted outside of the net-
work. It is these results which interest us. In networks without cycles, also called feed-forward networks, the eval-
uation order given by the connection pattern of the network is unambiguous, so that we do not need to synchro-
nize the computing units. If more than two edges coincide on a node, the numeric information they convey is added
before the node evaluates its associated one-dimensional primitive function. Figure 1 shows an example of a feed-
forward neural network. The network represents in fact a chain of function compositions which transforms an input
to an output vector (called a pattern). The network is just an implementation of a composite function from the input

Figure 1. Example of a feed-forward network

to the output space, which we call the network function.
� For a given network the network function depends on the primitive functions implemented at the nodes,
the topology of the network and the weights of the edges. For a fixed topology and a fixed class of computing units,
the network function varies with each choice of network weights. We say that the network function is parameter-
ized by the network weights. The learning problem consists in finding the optimal combination of weights such
that the network function F approximates a given function f as closely as possible.
� Neural networks are in some sense a generalization of some traditional methods of function approxima-
tion. If we are given a continuous real function f :[0,1] R R, we know from the Weierstrass theorem that we can
approximate f uniformly with a polynomial of degree n, and that the higher the degree of the polynomial, the bet-
ter the approximation we can get. Figure 2 shows a network capable of computing the Weierstrass approximation,
when the coefficients a0, a1, …, an of the approximating polynomial are known. Stated in this way the problem
seems trivial. Usually though, we are not given the function f explicitly but only implicitly through some exam-
ples. We are provided with a set of m input-output pairs (x1, f(x1), (x2, f(x2)), …, (xm, f(xm)) and then we try to find
the weights which minimize the squared error of the approximation produced by the network. In this case the best
solution is the one given by the well known least-squares method developed by Gauss.
� By using more than one layer of computing units, the number of nodes needed for an approximation can
be reduced in many cases. We are also interested in using other than polynomials as activation functions of the
units; we want in fact to develop a method capable of finding the weights needed in a network of arbitrary differ-
entiable activation functions. In this case, it is very difficult to analytically minimize the squared error for the train-
ing set. An iterative gradient descent method has to be used and this brings us to the core of the problem: When
provided with a network of primitive functions, how do we find the gradient of the network function according to
the weights of the network? The answer to this problem is the backpropagation algorithm.

�Learning in Neural Networks
�Consider a feed-forward network with n input and m output units. It can consist of any number of hidden units
and can exhibit any desired feed-forward connection pattern. We are given a training set (x1, t1),(x2, t2),…,(xp, tp)
consisting of p ordered pairs of n- and m-dimensional vectors, which are called the input and output patterns
respectively. Let the primitive functions calculated at each node of the network be continuous and differentiable.
The weights of the edges are real numbers selected at random. When the input pattern xi from the training set is
presented to this network, it produces an output oi different in general from ti. What we want, is to make oi and ti

identical for i 5 1,…,p by using a learning algorithm. More precisely, we want to minimize the error function of
the network, defined as

Figure 2. A polynomial network

mation comes from the right and each unit evaluates its primitive function f in its right side as well as the deriva-
tive of f in its left side. Both results are stored in the unit, but only the result from the right side is given off and
transmitted to the connected units. The second step, the backpropagation step, consists in running the whole net-
work backwards, whereby the results stored in the left side are now used. There are three main cases which we
have to consider.

�• First case: function composition
�

The network of Figure 4 contains only two nodes. In the feed-forward step, incoming information into a
unit is used as the argument for the evaluation of the node’s primitive function and its derivative. The network com-
putes in this step the composition of the functions f and g. Figure 5 shows the state of the network after the feed-
forward step. The correct result of the function composition has been produced at the output neuron and each neu-
ron has stored some information in its left side.
� In the backpropagation step the input from the right of the network is the real constant 1. Incoming infor-
mation to a node is multiplied by the value stored in its left side. The result of the multiplication is given off to the
left and the information is transported to the next unit. We call the result at each node the traversing value at this
node. Figure 6 shows the final result of the backpropagation step, which is f′(g(x))g′(x), that is the derivative of the
function composition fog implemented by this network. The backpropagation step provides us with an implemen-
tation of the chain-rule. Any sequence of function compositions can be evaluated in this way and its derivative can
be obtained in the backpropagation step.

• �Second case: function addition

� The next case to consider is the addition of two primitive functions. Figure 7 shows a network to compute
the addition of the functions f1 and f2. The additional node has been included just to handle the addition of the two
functions. Its activation function is the identity, whose derivative is 1. In the feed-forward step the network com-
putes the result f1(x) 1 f2(x). In the backpropagation step the constant 1 is fed from the left side into the network.
All incoming edges to a network fan-out the traversing value at this node and distribute it to the connected neu-
rons. Where two paths meet the computed traversing values are added. Figure 8 shows the result of the backprop-
agation step for the network. The result is the derivative of the function number f1 1 f2. A simple proof by induc-
tion shows that the derivative of the addition of any number of functions can be handled in the same way.

Figure 5. Result of the feed-forward step

Figure 6. Result of the backpropagation step

Figure 4. Network for the composition of two functions

• �Third case: weighted edges

� The last case we have to consider is weighted edges. In the feed-forward step the incoming information x
is multiplied by the edge’s weight w. The result is wx. In the backpropagation step the traversing value 1 is multi-
plied by the weight of the edge. The result is w, which is the derivative of wx with respect to x. We conclude from
this case that weighted edges are used in exactly the same way in both steps: they modulate the information trans-
mitted in each direction by multiplying it by the edges’ weights.

�Steps of the Backpropagation Algorithm
We can now formulate the complete backpropagation algorithm and give a proof by induction that it works in arbi-
trary feed-forward networks with differentiable activation functions at the nodes. We assume that we are dealing
with a network with a single input and a single output unit. The two phases of the algorithm are the following:
Feed-forward step: the input x is fed into the network. The primitive functions at the nodes and their derivatives
are evaluated at each node. The derivatives are stored.
Backpropagation step: the constant 1 is fed into the output unit and the network is run backwards. Incoming infor-

Figure 8. Result of the backpropagation step

Figure 7. Addition of functions

Figure 9. Backpropagation at an edge

�Acknowledgements
This work was done while visiting the International Computer Science Institute in Berkeley. Thanks are due to
Marcus Pfister and Joachim Beer for his valuable comments.

�References
�1. Hertz, J., Krogh, A., and Palmer, R. Introduction to the Theory of Neural Computation. Addison-Wesley,

Redwood City, 1991.
�2. Pfister, M., and Rojas, R. Speeding-up backpropagation—A comparison of orthogonal techniques.

International Joint Conference on Neural Networks, Nagoya, 1993.
�3. Rojas, R. Theorie der neuronalen Netze. Springer-Verlag, Berlin, 1993.
�4. Rojas, R. Second-order backpropagation. Technical Report, International Computer Science Institute, 1993.
�5. Rumelhart D., and J. McClelland, J., Eds. Parallel Distributed Processing. MIT Press, Cambridge, Mass.,

1986.
�6. Rojas, R. Neural Networks. Springer-Verlag, New York, 1996.

Raúl Rojas (rojas @ inf.fu-berlin.de) is a professor of computer science at the Free University of Berlin and at the
University of Haile. His field of research is the theory and applications of neural networks.

�Figure 1. Example of a feed-forward network
�Figure 2. A polynomial network
�Figure 3. Extended network for the computation of the error function
�Figure 4. Network for the composition of two functions
�Figure 5. Result of the feed-forward step
�Figure 6. Result of the backpropagation step
�Figure 7. Addition of functions
�Figure 8. Result of the backpropagation step
�Figure 9. Backpropagation at an edge
�Figure 10. Backpropagation at the last node
�
�
�

