Speeding - up Backpropagation —
A Comparison of Orthogonal Techniques
Marcus Pfister Rail Rojas

Freie Universitat Berlin
Fachbereich Mathematik — Institut fir Informatik
Takustr. 9, 1000 Berlin 30.

May 10, 1993

Abstract

In recent years much effort has been spent trying to develop more efficient variations of
the backpropagation learning algorithm. This has led to a combinatorial explosion of learn-
ing methods of which no detailed evaluation exists. We have analyzed the most important
algorithms and extracted their minimal building blocks. By arranging these building blocks
in different forms, and testing the resulting algorithms, we obtained new combinations which
were benchmarked in a commercial workstation. Our results show which factors are respon-
sible for the increased speed-up of the tested algorithms. These results could lead to better
learning methods for neural networks.

1 Introduction
The basic backpropagation correction step for a weight w; in a multilayer neural network is
given by

OF
Aw; = —v o (1)

where F denotes the quadratic error function of the network and v a learning constant. Back-
propagation is thus just a gradient descent method for the optimization of the networks weights.
By taking into account previous correction steps, the k-th correction can be rewritten as

E -
-+ 04AwZUC 23 (2)

Since in the backpropagation algorithm the partial derivative 0 E /0w, is computed as 0E/dw; =
—d;0;, where §;0; is the backpropagated error up to neuron j, and o; is the output of neuron ¢
in the feedforward step, (2) can be rewritten as:

Awgk) =v6;0; + aAwEk_l).

Different learning methods modify this equation in different ways. Figure 1 shows a diagram of
the most common approaches. ’

Since neural networks are massively parallel learning models, we concentrated our attention on
learning algorithms that preserve the network flow computational model. Some researchers have
proposed algorithms, which they claim are superior to standard backpropagation, but that use
weight-updating strategies based on non-local information. For all backpropagation variations

Jordt

sz’ = v - (5j -0 + ozA’wl(k_l)
TMomentum Term

Decorrelation Methods

Modified Error Function

| Second Order Methods |

i-Newton Method
Adaptive Step Methods Quasi-Newton Methods

Newton Methods
Just one Learning Rate

One Learning Rate for each weight

Figure 1: Common approaches for the acceleration of Backpropagation

examined in this paper, the neurons need no more information than the one they can get through
their input- or output channels. No global information is involved.

After the discussion of the learning algorithms, a run-time comparison of the algorithms on the
basis of selected benchmarks is made. This includes an estimation of the ’optimal’ parameters
of standard backpropagation for each benchmark and the comparison of this ’optimal standard’
algorithm with other backpropagation variations.

2 Accelerating the Backpropagation Algorithm

In this section, various approches to improve backpropagation will be described. We divided
them in the following classes, between which there is of course no sharp distinction:

1. Standard-Variations (Sec. 2.1)
2. Adaptive-Step Algorithms (Sec. 2.2)

3. Second-Order Algorithms (Sec. 2.3)

2.1 Standard — Variations

e More than one pattern to learn: Batching vs. On-Line
The first decision to be made is how to update the weights, if there is more than one pattern to
learn. We usually have the choice of using batch or on-line backpropagation.

o Introduction of a Momentum Term
This is a method for increasing the learning rate while simultaneously avoiding oscilations. It
works similar to a phisical momentum. The weight correction is modified to

AWH .= s VEW®) 4 aAWw kD), (3)

where k denotes the current iteration and a < 1 a new real parameter.

o Using bipolar- instead of binary vectors

Another simple approach is to train the network with bipolar vectors, which consist of elements
equal to -1 or 1. Two arbitrary bipolar vectors are orthogonal, and thus decorrelated, with a
probability, that increases with the dimension n of the vectors. This has a positive effect on the
convergence of learning procedures for multilayer neural networks.

e Handling flat spots of the error function

The first derivative of the sigmoid goes to zero, as the output of the neuron goes to zero or one.
Since the correction of the weights is proportional to these derivatives, they will then also go
to zero. These regions of the error function are called the flat spots. The presence of these flat
spots is one of the main reasons for the slow convergence of standard backpropagation. Several
proposals have been made to solve this problem.

1. Adding an offset to the derivative of the sigmoid
S. E. Fahlmann [Fah88] proposed making sure, that the sigmoid’s derivative will never get
too close to zero. His idea was to add a small constant € > 0 to the first derivative of the
sigmoid, so that this expression is always greater than zero (at least €). Good results were
obtained with € ~ 0.1.

2. Modification of the error function
K. Balakrishnan and V. Honavar [BH92] proposed a modification of the error function,
to eliminate at least the flat spots in the output layer. Their approach is not to evaluate
the error between the output of the output neurons 01(3) and the desired output ¢,;, but
between the input of the output neurons and their desired input, which is easy to compute
as s71(tp;). This avoids the calculation of the derivatives of the last layer’s sigmoids.

2.2 Adaptive-step algorithms

The idea behind this kind of methods is to use variable step sizes instead of a constant learning
rate v for the weight-corrections. This stepsize changes with the shape of the error function.

e The gradient reuse algorithm

This algorithm was proposed by D. R. Hush and J. M. Salas [HS88]. The search direction
—VE(W) is followed in discrete steps Wki+1) .= Wk — ()7 E(W (), as long as the error
function decreases. Then a new search direction -VE(W(k+1)) is computed. The stepsize (¥
is tuned that a reuse rate 7 = 10 can be expected.

e The dynamic adaption algorithm
R. Salomon suggested a similar procedure, but taking only two points along the search direction

and adjusting the learning parameter ~(*) dynamically [Sal92]. This means that for a given
search direction d = VE(W) and a given learning parameter ~(8) the points Wk—1) — 4. ()¢
and W1 d-'y(k)/C are examined. The point W*+1) that causes the smallest error and the
corresponding new learning rate are chosen.

e The Delta-Bar-Delta algorithm

This algorithm, developed by R. A. Jacobs [Jac88]|, uses different learning rates for every single
weight, which are adapted at each iteration. This approach reflects the idea that the slope of
the error surface might differ considerably, depending on the weight directions.

e The extended Delta-Bar-Delta algorithm

A. A. Minai and R. D. Williams found that the Delta-Bar-Delta algorithm has several drawbacks
[MW90]. The most important one is, that the introduction of a momentum term, which is a
rather elegant method of speeding standard backpropagation up, sometimes causes the Delta-
Bar-Delta algorithm to diverge. So an adaptivly changing momentum is introduced.

2.3 Second-order algorithms

The idea behind these methods is that the error function E(W) is approximated locally by a
quadratic function, its truncated Taylor series

EW® 4 b))~ E(W®) 4+ VE(WE)Th 4 %hT V2E(W®)p,
where V2E(W) is the second derivative of E(W), the Hessian matriz.

o Quickprop

Quickprop is an improvement to backpropagation, proposed by S. E. Fahlmann [Fah88]. Quick-
prop is based on two assumptions: First, the error function E(W) is a parabola, whose arms
open upward and second, the change in the slope of the error curve, as seen by each weight,
is not affected by all the other weights that are changing at the same time. Now if the error
function is quadratic in each direction and is not affected by other weights, the first derivative
has to be linear, and the minimum along this direction can be found easily.

o Extended Quickprop

M. Fombelida and J. Destiné merged the Extended Delta-Bar-Delta and the Quickprop Algo-
rithm [FD92]. The idea was to introduce the adaptive learning rate of the Extended Delta-Bar-
Delta Algorithm into Quickprop, which uses just an adaptive momentum rate.

3 Orthonormalisation and Decorrelation of the Training-Set

The positive effect of uncorrelated input data may be visualized as a change of the error surface,
which has to be climbed down. Since there is a relation (or duality, see [Roj93]) between input-
and weight space, orthogonalization of the input data has also some kind of orthogonalizing
effect on the error function in weight space. This means that small angles between different
steps of the error function are increased, which has a ’rounding’ effect on the error surface.
Small narrow oval valleys become more symmetric now and much easier to descend.

Y

o Principal component ananlysis: Sanger’s and Oja’s Rule

Principal component analysis (PCA) is in fact some kind of data compression. The objective
is to find m orthogonal vectors out of a set of n-dimensional input vectors, that account for as
much as possible of the data variance [Roj93]. The input datais projected into an m-dimensional
subspace. Because of the possible reduction in dimensionality (and thus, reduction in the number
of weights) this makes the data much easier to handle.

e Adaptive data-decorrelation

F. M. Silva and L. B. Almeida have proposed a different mrthod of data decorrelation and
orthonormalisation [AS91]. They employ layers of linear associators after the input- and hidden
layer, which have as much neurons as the input- rsp. hidden layer. These layers perform a linear
transformation, such that the output is uncorrelated and normalized. These additional layers
are trained with an unsupervised learning rule, either in batch or in on-line mode.

4 Simulation Results

4.1 The benchmarks used in this paper

The problem of selecting adequate benchmarks to measure the convergence speed of a learning
algorithm is a rather difficult one. A learning algorithm, that performes very fast on a certain
problem may completely fail in another. We need a set of carefully choosen benchmarks, hope-
fully representative enough of ’real world’ applications, to investigate what a certain algorithm
is able to do. We chose the following ones:

Benchmarks Netsize
1 | A 4-bit parity problem. 4-4-1
2 | A 10-5-10 encoder problem. 10-5-10
3 | A 16-4-16 encoder problem. 16-4-16
4 | Clustering of the 16 x 16-square. 8-10-3
5 | A classification task whith highly correlated input data. 5-10-3

4.2 Runtime Comparison

A runtime comparison with all the algorithms described in section 2.2 and 2.3 was made. We
also tested the behavior of all algorithms when the standard modifications described in section
2.1 were applied. This means that each algorithm was run in 24 different modes.

Each algorithm was started 10 times. If no solution was reached within 1000 iterations (rsp.
2000 for benchmark 1 and 4), the algorithm was declared to have failed to converge. The average
runtime (grey bars) as well as the fastest results obtained are (black bars) reported for those
algorithms, which converged in more than 50% of then trials. The diagram in Figure 2 shows
the reults for the last three benchmarks. The numbers 01 — 24 denote the different standard
variations. For the other algorithms, the results for the best combination of the standard
variations were reported.

Time (in Sec.)

A
130

100

50

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (in Sec.)

50

25

|

;‘ |! !
il I‘
\ n
| { il
|

[
| 1 |
i ‘ \ |
b i | f
| | f
LUCLLECLLL LR MITTTH
01020304 050607080910111213 141516 17 18 19 20 21 22 23 24 A1 A2A3 A4A5 A6

Time (in Sec.)

100

5(

1A2A3A4A5A6

01 02 0304 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ATAZA3AZA5 A6

The numbers 01-24 denote the different standard Variations

Al: Grad. Reuse A2: Delt.-B.-Delt. || A3: Ex. Delt.-B.-Delt.

A4: Dynam. Adapt. || A5: Quickprop A6: Ex. Quickprop

Figure 2: Results for the benchmarks three, four and five.

6

4.3 Conclusions

e Standard variations

¢ Bipolar vectors seem to have a major influence on the convergence speed of all learn-
ing procedures tested. Almost all benchmarks (except for the encoder problems, since
their input is already orthonormal), were learned faster, sometimes significantly, when the
network was trained with bipolar vectors, no matter which algorithm was used.

¢ Adding an offset to the sigmoid’s derivative speeds the algorithms up in most
cases. Exceptions are those problems, which require a fine tuning of the weights. In these
cases, in which the error function seems to have rather steep slopes anyway, the offset can
cause the weight updating algorithms to perform rather wild jumps.

¢ Decorrelation Algorithms also seem to have a major influence on the convergence of
the learning procedures. Uncorrelated data is in fact much easier to learn than correlated
data. The speedup obtained with those decorrelation algorithms may even be bigger, if
for example a network has to learn large sets of highly correlated experimental data. This
can easily happen in real world applications.

e The use of the modified error function. Although it sounds like a good idea, the
modified error function only seems to provide speedups for smaller, less complex tasks,
such as the 10-5-10 encoder or the recognition of the shading of the 16 X 16-square. For
more complex tasks, the modified error function rathe slows down the convergence, or even
causes divergence of the algorithm.

¢ Weight updating strategies

¢ The gradient reuse algorithm was only faster than the standard algorithm for small
problems, like the encoder problems or the recognition of the shading of the 16 x 16 square.
For more complex problems it was either slower than standard backpropagation (like for
the 4-bit parity problem) or did not converge at all (like for the correlated cluster problem).

e The delta-bar-delta algorithm only performed well for the 4-bit parity problem.
It seems, that a fine tuning of the parameters k¢ and ¥, on which the weight-updating
depends, is required. This requires, on the other hand, quite a few tests to tune them,
which again takes a lot of time.

e The extended delta-bar-delta algorithm has similar problems as the delta bar
delta algorithm, although it performes better in general, and significantly better for the
recognition of the correlated cluster. But here as well, there are a lot of parameters which
have to be chosen carefully.

¢ The dynamic adaption algorithm. Although the algorithm performs very well for all
benchmarks, it seems that the normalization of the gradient, which the original algorithm
requires, has a bigger influence on the convergence of the algorithm than it was reported
by Salomon. Theoretically it makes no difference, but in practice, if a large learning
parameter and a steep descent come together, the algorithm may overshoot any minimum
and get stuck in very flat spots far away from any solution. Besides this problem, the
dynamic adaption has the big advantage, that there is no parameter, which needs to be
tuned.

¢ Quickprop also performed very well for all benchmarks. The algorithm has just one
important parameter involved, the 'maximum growth factor p’, which almost needs no
tuning. Experiments show, that it is rather to be choosen too small than too big, values
of about 1.3 to 1.7 will do well for any problem.

o Extended Quickprop was almost a complete failiure. It was often slower than the
standard algorithm (or at least not significantly faster) and always slower than any other
algorithm, except for the gradient reuse algorithm. This may again have the reason in
the fact that there are quite a lot of parameters involved, which need to be tuned. In our
opinion, an algorithm which has many parameters of great influence, which have to be
tuned finely and which are different for each problem, is not very good anyway.

5 Future Work

We are now working on an implementation of the faster variations discovered in this study on a
neural computer with 256 processors (CNAPS). We expect to have first results in a few weeks.

References

[AS91]

[BHY2]

[Fah88)

[FD92]

[HS88]

[Jac88]

[MW90]

[RHWS6]

[Roj93]

[Sal92]

L. B. Almeida and F. M. Silva. Speeding-up backpropagation by data orthonormalisation. In
T. Kohonen, K. Makisara, O. Simula and J. Kangas, editor, Artificial Neural Networks, pages
1503-1507, Amsterdam, 1991. North Holland.

K. Balakrishnan and V. Honavar. Improving convergence of backpropagation by handling flat
spots in the output layer. In I. Aleksander and J. Taylor, editors, Artificial Neural Networks,
pages 1003-1009, Amsterdam, 1992. North Holland.

S. E. Fahlmann. Faster-learning variations on back-propagation. In D. Touietzky and T. Se-
jnowski G. Hinton, editors, Proceedings of the ’88 Connectionist Models Summer School, pages
38-51. Carnegie-Mellon-University, 1988.

M. Fombellida and J. Destine. The extended quickprop. In I. Aleksander and J. Taylor,
editors, Artificial Neural Networks, pages 973-977, Amsterdam, 1992. North Holland.

D. R. Hush and J. M. Salas. Improving the learning rate of back-propagation with the gradient
reuse algorithm. In Proceedings of the IEEE 1st International Conference on Neural Networks,
volume 1, pages 441-447, 1988.

R. A. Jacobs. Increased rates of convergence through learning rate adaption. Neural Networks,
1:295-307, 1988.

A. A. Minai and R. D. Williams. Backpropagation heuristics: A study of the extended delta-
bar-delta algorithm. In Proceedings of the IEEE 1st Iniernational Conference on Neural Net-
works, volume 1, pages 595-600, 1990.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error
propagation. In D. E. Rumelhart and J. McClelland, editors, Parallel Distributed Processing.
MIT Press, 1986.

R. Rojas. Theorie der Neuronalen Nelze — Eine systematische Einfihrung. Springer, Berlin,
March 1993.

R. Salomon. Verbesserung konnekiionistischer Lernverfahren, die nach der Gradientenmethode
arbeiten. PhD thesis, TU Berlin, November 1992.

