Backpropagation without tears

Rail Rojas?
Mathematics and Computer Science Department
Free University of Berlin, Takustr. 9
Berlin, 14195, Germany

ABSTRACT

Backpropagalion is the most popular training method for multilayer neural
networks. Leaming in this kind of systems consists of minimizing the error
function for a given training sct. Since this function is continuous and
differentiable, an ilerative gradient descent method can be used to find its
local minima. We give in this paper a new proof of the backpropagation
algorithm using a graphical approach in which the calculation of the gradient
of the error function reduces to a graph labelling problem. This method is not
only more general than the usual analytical derivations, which handle only
the case of special network topologies, but also much easier to follow and
understand. It shows also how the algorithm could be efficiently implemented
in computing systems in which only local information can be transported
through the network.

Keywords: Backpropagation; Learning in Neural Networks; Graph Labelling.
CR Classification Scheme: 1.2.6; F.2.0

Introduction

Neural networks represent an alternative computational paradigm, which has received
much altention in the last years [11,[5]. They differ in scveral important ways from
conventional computer systems. On the one hand, neural networks are massively parallel
systems in which information flows simultaneously through a sel of computing units. On
the other hand, we do not wanl Lo program Lhem in the way we do with conventional
computers. Ncural nctworks should leam to perform a compulation by analyzing a finite
set of examples of input-output pairs. The system should adjust its parameters, so that the
network of computing units learns to reproduce the desired output as closely as possible.

T e-mail: rojas@inf.fu-berlin.de

Moreover, the network should be able to generalize, in the sense that unknown inputs are
to be mapped to new interpolated outputs. In this case our system constitules a mapping
network which maps neighborhoods of the known inputs onto neighborhoods of the known
outputs.

The most popular approach to implement learning in neural networks is the
backpropagation algorithm, a gradient descent method Although the idea behind
backpropagation is rather simple, the published derivations of the algorithm are
unnecessarily clumsy [5] or they achieve elegance by using high-powered differential
operators of the kind that computer science students certainly are not familiar with.

We show in this paper that backpropagation can be very easily derived by thinking of
the gradient calculation as a graph labelling problem. This approach is not only elegant,
but also more general than the traditional derivations found in most textbooks. General
network topologies are handled right [rom the beginning, so that the proof of the algorithm
is not reduced to the multilayered case. Thus you can have it both ways: more general yet
simpler, i.e. backpropagation without tears.

In this paper we give first a shorl introduction o the neural network computational
paradigm and its associated learning problem, and from there we derive the
backpropagation algorithm using our graph labelling approach.

Computing with Neural Networks

We define a neural network as a computational graph, whose nodes are computing
units and whose directed edges Lransmit numeric information from node to node. Each
computing unit is capable of evaluating a single primitive function of its input, In most
neural network models each unit computes the same primitive function, but other
arrangements are also possible. Each edge of the graph has an associated weight, which is
multiplied by the numeric information being transmitted. The input units are those nodes
which receive the cxternal numeric information 1o be processed by the network. The output
units are those nodes whose results arc transmitted outside of the network. It is these
results which interest us. In networks withoul cycles, also called feed-forward networks,
the evalualion order given by the connection paticm of the network is unambiguous, so
that we do nol need to synchronize the computing units. If more than two edges coincide
on a node, the numeric information they convcey is added belore the node evaluates its
associated one-dimensional primilive [unction. Fig. 1 shows an example of a feed-forward
neural network. The network represents in facl a chain of [unction compositions which
transforms an input to an output vector (called a pattern). The network is just an
implementation of a composite function from the input to the outpul space, which we call
the network function.

For a given nctwork the network function depends on the primitive functions
implemented at the nodes, the topology ol the nctwork and the weights of the edges. For a
fixed topology and a fixed class ol computing units, the network function varies with each

choice of network weights. We say that the network function is parameterized by the
network weights. The learning problem consists in finding the optimal combination of
weights such that the network function F approximates a given function f as closely as
possible.

° ,@ F(xy)

K(x,y)

Fig. 1. Examplc ol a lecd-lorward network

Neural networks are in some sense a gencralization of some traditional methods of
function approximation. If we are given a conlinuous teal function f:[0,1]— R, we know
from the Weierstrass theorem that we can approximate f uniformly with a polynomial of
degree n, and that the higher the degree of the polynomial, the belter the approximation we
can get. Fig. 2 shows a network capable of compuling the Welerstrass approximation,
when the coefficients ag,ay,...,a, of thc approximating polynomial are known. Stated in
this way the problem seems trivial. Usually though, we are not given the function f
explicitly but only implicilly through some examples. We are provided with a set of m
input-output pairs (x,, f(x,)), (X, f(x3))..(x,,, f(x,)) and then we try (o lind the
weights which minimize the squared error of the approximation produced by the network.
In this case the best solution is the onc given by the well known least-squares method
developed by Gauss.

By using morc than onc layer of compuling units, the number of nodes needed for an
approximation can be dramatically reduced. Wc arc also interested in using other than
polynomials as activation functions ol the units, we want in fact to develop a method
capable of finding the weights needed in a nctwork of arbitrary differentiable activation
functions. In this case, it is very difficull 1o analytically minimize the squared error for the
training set. An itcralive gradient descent method has to be used and this brings us to the
core of the problem: When provided with a network ol primitive functions, how do we find
the gradicnt of the nctwork function according 1o the weights of the network? The answer
to this problem is the backpropagation algorithm.

Qg

Fig. 2. A polynomial network

Learning in Neural Networks

Consider a feed-forward network with n input and m output units. It can consist of any
number of hidden units and can exhibit any desired [eed-forward connection pattern. We
are also given a training set (x,,t;),(x,,t,),...,(x,,t,) consisting of p ordered pairs of n-
and m-dimensional vectors, which arc called the input and output patterns respectively. Let
the primitive functions calculated al cach nodc of the network be continuous and
differentiable. The weights of the edges arc real numbers selected at random. When the
input pattern x, [rom the training set is presented Lo this network, it produces an output 0,
different in general from t,. What we want, is Lo make o, and t, identical for i=1,...,p by
using a learning algorithm. More preciscly, we want Lo minimize the error function of the
network, defined as
2

E=(/2)XL,

0~ 1,

The first step of the minimization process consists in extending the network, so that it
computes the error function automatically. Fig. 3 shows how this is done. Every output
unit j=1,...,m of the network is connected 1o a node which evaluates the function
(]/2)(0‘-/-—117)2, where o, and ¢; denote the j-th component of the output vector o,
respectively the target t;. The output of the new m nodes is collecled at a node which just
adds them up and gives the sum as its output. The same ¢xtension has to be done for each
pattern t;. A computing unit collecls all quadratic crrors and outputs their sum. The output
of this extended network is the error function £.

Xy ‘
(U5 =(—
Fig. 3. Extended network for the computation of the error function

We have now a network capable ol calculating the error function for a given training
set. The weights in the network arc the only paramelers that can be changed. We can tune
them, trying to make the quadratic error £ as low as possible. Since £ is calculated by the
extended network exclusively through composition ol the node functions, it is a continuous
and differentiable function of the £ weights w,,w,,...,w, of the network. We can thus
minimize E by using an iteralive proccss of gradient descent, for which we need to
calculate the gradient

ve=| 9E 9B OE
o, ow, ow,

and adjust each weight w; by using the increment

o
w.’

i

Aw, =~y i=1..Z,

where y represents a leamning constant, i.c. a proportionalily parameter which defines the
step length of each iteration in the negalive gradicnt direction.

With this extension of the original network the whole learning problem reduces now to
the question of calculating the gradicnt of a nctwork function with respect to its weights.
Once we have a method to compute this gradient, we can adjust the network weights
iteratively. In this way we expect 1o [ind a minimum for the error function, where VE =0,

Derivatives of Network Functions

Forget now everything about training scts and learning. Our objective is just to find a
method for calculating efficiently the gradient of a one-dimensional network function
according to the weights of the network. Because the network is equivalent to a complex
chain of function compositions, we expect the chain rule of differential calculus to play a
major role in finding the gradient of the function. We take account of this fact by giving
the nodes of the network a composite structure. Each node consists now of a left and a
right side. The right side computes the primilive function associated with the node,
whereas the lelt side computes the derivative of this primitive function for the same input.
The network is evaluated now in two stages: in the first one, the feed-forward step,
information comes from the right and each unit evaluates its primitive function fin its right
side as well as the derivative of fin its lelt side. Both results are stored in the unit, but only
the result from the right side is given of[and transmittcd to the connected units. The
second step, the backpropagation step, consists in running the whole network backwards,
whereby the results stored in the lefl side arc now used. There are three main cases which
we have 1o consider.

«First case: function composition

The network of Fig. 4 conlains only two nodes. In the feed-forward step, incoming
information into a unit is used as the argument for the evaluation of the node*s primitive
function and its derivative. The network computes in this step the composition of the
functions fand g. Fig. 5 shows the slale of the network after the [eed-forward step. The
correct result of the function composition has been produced al the outpul neuron and each
ncuron has stored some information in its lelt side.

X ‘_‘*
Fig. 4. Network for the composition of two functions

function composition

X ———‘ f(g(x))

Fig. 5. Result ol the feed-forward step

In the backpropagation step the input from the right of the network is the real constant
1. Incoming information to a node is multiplied by the value stored in its left side. The
result of the multiplication is given off to the left and the information is transported to the
next unit. We call the result at each node the traversing value at this node. Fig. 6 shows the
final result of the backpropagation step, which is f7(g(x))¢’(x), that is the derivative of the
function composition feog implemented by this network. The backpropagation step
provides us with an implementation of Lhe chain-rule. Any sequence of function
compositions can be evaluated in Lhis way and its derivalive can be obtained in the
backpropagation step.

Backpropagalion

Fig. 6. Result of the backpropagation step

fel)g (x)

«Second case: function addition

The next case to consider is the addition ol lwo primitive (unctions. Fig. 7 shows a
network to compute the addition of the functions f; and f,. The additional node has been
included just to handle the addition of thc two lunctions. Its activation function is the
identity, whose derivative is 1. In the feed-forward step the network computes the result
fi(x)+ £,(x). In the backpropagation step the constant 1 is {ed from the left side into the
network. All incoming edges to a network fan-out the traversing value at this node and
distribute it Lo the connected ncurons. Where two paths meet the computed traversing
values are added. Fig. 8 shows Lhe result of the backpropagation step for the network. The
result is the derivalive ol the funclion addition f, + f,. A simple proof by induction shows
that the derivalive of the addilion ol any number of functions can be handled in the same
way.

Junction composition

H(x)

f0a) + falx)

f2(x)

Fig. 7. Addition of {unctions

Backpropagation
G
R+ f(x0) ——— 1
L f

Fig. 8. Rcsult of the backpropagation step
*Third case: weighted edges

The last case we have 1o consider is weighted edges. In the feed-forward step the
incoming information x is multiplied by Lhe edge‘s weight w. The result is wx. In the
backpropagation step the traversing value 1 is multiplied by the weight of the edge. The
result is w, which is the derivative ol wx with respect 10 x. We conclude from this case that
weighted edges are used in cxaclly the same way in both steps: they modulate the
information transmitled in cach dircclion by multiplying it by the edges' weights.

Feed-forward
.
w
X O O wx
Backpropagation
e
W
w () O 1

Fig. 9. Backpropagation at an cdge

Steps of the Backpropagation Algorithm

We can now [ormulate the complete backpropagation algerithm and give a proof by
induction that it works in arbitrary feed-forward networks with dilferentiable activation
functions at the nodes. We¢ assumec that we are dealing with a network with a single input
and a single output unit. The two phases ol the algorithm are the {ollowing:

Feed-forward step: the input x is fed into the network. The primitive functions at the nodes
and their derivatives are cvaluated at ecach node. The derivalives are stored.

Backpropagation step: the constant 1 is [ed into the output unit and the network is run
backwards. Incoming information to a node is added and the result is multiplied by the
value stored in the left part of the unit. The resull is given off to the left of the unit. The
result collected at the input unit is the dertvative of the network {unction with respect to x.

IF(x)

s=w () + s [0+ +w, [(x)
Fx) =@ () (x) +wy 15 (x)+ -+ w [, (X))

Fig. 10. Backpropagalion al Lhe last node

We showed before that the algorithm works [or units in serics, units in parallel and also
when weighted edges arc present. Lel us make the induction assumption that the algorithm
works for any feed-forward nctwork with »n or less that # nodes. Consider now the network
of Fig. 10, which is madc of n+1 nodes. The feed-lforward step is first executed and the
result of the output unit is the network function F evaluated al x. Assume that m units,
whose respective outputs arc F(x), £,(x),...F, (x), arc connected to the output unit.
Since the primitive function of the output unit is ¢, we know that

FCoy=ow F(x)+w k() ++w, F (x)).
The derivative of F at x is (hus

F'(x) =@ ()W, F(x) + Wy By (xX) + -+ w,. F(X)).

10

where s=wF (x)+w,F,(x)+--+w,F, (x). The subgraph of the main graph which
includes all possible paths from the input unit to the unit whose output is F(x), defines a
subnetwork whose network function is £, and which consists of n or less units. By the
induction assumption we can calculate the derivative of £ at x, by introducing a 1 into the
unit and running the subnetwork backwards. The same can be done with the units whose
output is F,(x),....F, (x). If we introduce the constant ¢(s)w, instead of a 1, we get at the
input unit in the backpropagation step w,F{x)@(s) and w, 5 (x)@(s),...,w, F. (x)p(s) with
the rest of the units. But in the backpropagation step with the whole network we add these
m results and we finally get

O ()W, F(x)+wy 5 (x)+-+w, F (X))

which is the derivalive of F evalualed al x. Note that introducing Lhe constants
w F(0)0(s),...,w, F. (0)@(s) into the m units connected 1o the oulput unit can be done by
introducing a 1 into thc outpul unit, multiplying by the stored value ¢(s) and distributing
the result to the m units through the edges with weights wy,w,,...,w,. We are in fact
running the network backwards as the backpropagation algorithm demands. This means
that the algorithm works with networks of n+1 nodes and this concludes our proof.

The backpropagation algorithm still works corrcctly for networks with more than one
input unit in which several independent variables arc involved. In a network with two
inputs for example, where the independent variables x and y are fed into the network, the
network result can be called F(x, y). The network funclion now has lwo arguments and we
can compute the partial derivative of £ with respect 1o x or with respect to y. The feed-
forward step remains unchanged and all Icft side slots of the units are filled as usual. But in
the backpropagation step we can identify two subnetworks: one consists of all paths
connecting the first input unil 1o the output unit and another of all paths from the second
input unit to the outpul unit. By applying the backpropagation step in the first subnetwork
we get the partial derivative of F with respect o x at the first input unit. The
backpropagation step on the second subnetwork yiclds the partial derivative of £ with
respect (o y at the sccond input unil. Bul note that we can overlap both computations and
perform a single backpropagation sicp over the whole network, We still get the same
resulls.

Learning with Backpropagation

We consider again the learning problem for neural networks. Since we want to
minimize the error function £, and this depends on the network weights, we have to deal
with each weight in the network one al a time. The feed-forward step is computed in the
usual way, but now we also store the outpul of each neuron in its right side. We perform

11

the backpropagation step in the extended network used to compule the error function and
we then {ix our attention on one of the weights, say w;; which points from the i-th to the j-
th node in the network. This weight can be trealed as an inpul channel into the subnetwork
made of all paths starting at w;; and ending in the single output unit of the network. The
information fed into the subnetwork in the feed-forward step was o,w,;, where o; is the
stored oulput of unit i. The backpropagation stcp computes the gradient of £ with respect
to this input, thal is JdE/dow; . Since in the backpropagalion step o; is treated as a
constant, we finally have

oy

do;w;;

The backpropagation step is performed in the usual way. All subnetworks defined by
each weight of the network can be handled simultaneously, but we now store a third
quantity at each node: the result of the backward computation in the backpropagation step
up to this nodc. We call this quantily the backpropagated error. If we denote the
backpropagated error al the i-th node by 6;, we can Lhen wrile the partial derivative of £
with respect to wy; as:

oE

—=0.0,.
" v

]
Once all partial derivatives have been computed, we can perform gradient descent by
adding to cach weight w;; the increment

Aw,; =-70,0;.

This correction step is what is needed to transform the backpropagation algorithm into a
leaming method for neural networks.

Final Remarks

We have given a ncw graphical prool of the backpropagation algorithm essentially
simpler than the traditional ones [1],]5], yel morc general because it applies Lo arbitrary
feed-forward networks. By understanding backpropagation as a graph labelling algorithm
it is much easier to handle complex network lopologies. The graphical approach
immediately suggests a hardware implementation technique for backpropagation. Our
method can be also uscd 1o show, among other rcsulls, that summation of the inpults o a
node is the only intcgration [unction [or ncural networks which guarantees locality of the
learning algorithm |3]. By visualizing the learning rule, it is also possible 10 get & deeper
understanding of the hardwarc and localily rcquirements of [last variations of

12

backpropagation [2]. A [urther step is to compute second-order derivatives using the same
kind of approach. This has been shown clsewhere [4].

Acknowledgements

This work was donc while visiting the /nternational Computer Science [nstitute in
Berkeley. Thanks are due (o Marcus Pfister and Joachim Beer for his valuable comments
and to Prof. Elfriede Fehr for her support and encouragement.

References

1. Hertz, J., Krogh, A., and Palmer, R. [Introduction to the Theory of Neural
Computation. Addison-Wesley, Redwood City,1991.

2. Pfister, M., and Rojas, R. Speeding-up Backpropagation — A comparison of
orthogonal techniques. International Joint Conference on Neural Networks,
Nagoya, 1993.

. Rojas, R. Theorie der neuronalen Netze. Springer-Verlag, Berlin, 1993.

4. Rojas, R. Second-Order Backpropagation. Technical Report, International

Computer Science Institute, 1993,
5. Rumelhart D., and J. McClelland, J., Eds. Parallel Distributed Processing. MIT
Press, Cambridge, Mass., 1986.

[OS]

