Backpropagation Algorithms :
Their Characteristics and Efficiency

Marcus Pfister Rail Rojas

B3-93
May 3, 1993

Abstract

Backpropagation is the most popular learning rule for multilayer neural networks. The
algorithm 1s easy to understand and implement, but converges rather slowly when dealing
with problems above a certain complexity threshold. In recent years much effort has been
spent trying to develop more efficient variations of backpropagation. This has lead to a
combinatorial explosion of different learning algorithms of which no detailed overview exists.
This paper provides a classification of the main variations of backpropagation and gives
some results on their relative efficiency. We addressed the difficult problem of comparing
the algorithms by selecting a set of benchmarks, which we consider representative of difficult
learning problems. The performance of each algorithm was tested using these benchmarks,
and we report our results.

Freie Universitat Berlin

Fachbereich Mathematik — Institut fir Informatik
Takustr. 9

1000 Berlin 30

e-mail: pfister@inf.fu-berlin.de, rojas@inf.fu-berlin.de

Backpropagation Algorithms :
Their Characteristics and Efficiency

Marcus Pfister Raul Rojas

May 3, 1993

Abstract

Backpropagation is the most popular learning rule for multilayer neural networks. The
algorithm is easy to understand and implement, but converges rather slowly when dealing
with problems above a certain complexity threshold. In recent years much effort has been
spent trying to develop more efficient variations of backpropagation. This has lead to a
combinatorial explosion of different learning algorithms of which no detailed overview exists.
This paper provides a classification of the main variations of backpropagation and gives
some results on their relative efficiency. We addressed the difficult problem of comparing
the algorithms by selecting a set of benchmarks, which we consider representative of difficult
learning problems. The performance of each algorithm was tested using these benchmarks,
and we report our results.

1 Introduction

Backpropagation, or backpropagation-like algorithms, were developed by several researchers
working independently between 1970 and 1985. Backpropagation was originally used by A. E.
Bryson and Yu-Chi Ho in 1969 [BH69] and was independently rediscovered by P. J. Werbos in
1974 [Wer74] and still later by D. P. Parker in 1985 [Par85]. But it was mainly the work of the
PDP group around Rumelhart, Hinton and McClellan [RHWS86], that made backpropagation,
which they called the generalized delta rule. really popular. The published work of the PDP
group provided a cristallization point for a new appreciation of the algorithm. For more details
about the colorful history of backpropagation see [HNS9, HN91, Wer88].

Before backpropagation was introduced, there had been attempts to train rather simple neural
networks with only one or two layers of perceptrons. Minsky and Papert, who provided the first
careful analysis of the mapping properties of these networks, concluded, that there were a large
nuber of problems which could not be solved by a single layer of perceptrons [MP88]. Thev
also showed, that networks with one ore more additional hidden layers (Figure 1) could be able
to solve those problems.

The structure of backpropagation networks ist that of a directed graph. The nodes of the graph
are computing units capable of evaluating certain primitive functions. Information flows between
the nodes through the weighted edges of the graph. The information transported by each edge
is multiplied with its associated weight. All incoming information to a node is added and the
node’s primitive function is evaluated. An input vector (also called a pattern) fed into some
nodes of the network starts a chain of evaluations and the final result at some selected nodes

Ly Ly Lo

Input
patterns

Output
patterns

Figure 1: Network with one input-, one output- and one hidden layer (L;, Ly and Ly).

(the output units) is recorded. The topology of the network and the primitive functions at the
nodes are usually fixed. The only variable parameters in this computing system are the weights
of the network.

The objective of building a backpropagation network is to compute a certain function of the
input pattern which vields an output pattern. Different combinations of weights implement
different functions. The function to be computed is known only from a ‘training set’ of input-
output pairs (z1,y1), (z2,¥2), ..., (zx, yx). Each z; is an n-dimensional real vector and each y;
an m-dimensional one. We are faced with a typical optimization problem, namely to find those
values of the network’s weights which yield the best approximation to the unknown function
as measured by the results on the training set. We thus can state some typical approximation
problems of real functions in the framework of neural networks. [f we want to approximate a
function f: R — IR with a polynomial of degree n, we need to determine the set of constants
ag, s ..., a, such that f(z) = ag + arz' + -+ + a,z". The primitive functions 2%, 22%,.... 2%
can be computed at different nodes of a network. Each one of them has to be connected to
the single input = through an edge with weight 1. The results of each node go to an output
unit through n 4+ 1 edges with weights ag, aq,...,a,. The optimal weights for this very simple
network can be found applying the least squares method to the training set. The same kind of
construction can be used to approximate a given fraining set by additions of sines and cosines.
i.e. by a Fourier series.

Multilayer networks are a generalization of all these kind of approaches to the approximation
of functions, because we consider not only linear combinations of primitive functions (like with
polynomials or Fourier series), but also alimost any kind of function composition. We thus seek
to approximate unknown functions with a more richer set of combinatorial possibilities. Byv

o

accepting also nonlinear combinations of primitive functions, we can do better as with simple
polynomial approximations, which are now just a subcase of the whole method. This increased
power is unfortunately the main reason for the slow convergence of the known learning algo-
rithms. It has been shown that learning in neural networks is an NP-complete problem, that is
one for which most probably no algorithm with polynomial time complexity in the number of
weights exist [Jud87].

Backpropagation is thus in some sense a generalization of the least-squares method used for
approximating functions through polynomials. After the network weights have been found using
the algorithm, the network is tested with unknown input patterns and we expect it to be
able to generalize, that means, it should map neighborhoods of the known input patterns into
neighborhoods of the associated output patterns. Figure 2 shows an example in which the
16 x 16 square was divided in three clusters of squares. The shading values of 120 pixels chosen
at random were learnt by a network with 8 input, 5 hidden and 3 output units. The Figure
shows the actual shading pattern learnt by the network. The result is reasonable good also for
points not used in the training step.

15

Figure 2: Original clustering and network’s classification.

This paper provides an overview of the vast field of backpropagation algorithms and the prob-
lems associated with training multilayer neural networks. After a review of the basics of the
backpropagation algorithm, we look at some of its most important variations. We have divided
them in different classes according to their basic approach. We discuss the inner workings of
each algorithm, its advantages and drawbacks as well as how it is related to other methods.

Since neural networks are massively parallel learning models, we concentrated our attention on
learning algorithms that preserve the network flow computational model. Some researchers have
proposed algorithms, which they claim are superior to standard backpropagation, but that use
weight-updating strategies based on non-local information. For all backpropagation variations

examined in this paper, the neurons need no more information than the one they can get through
their input- or output channels. No global information is involved.

After the discussion of the learning algorithms, we describe the conditions under which we tested
them. This includes a brief review of possible benchmarks, and a description of the difficulties
involved in choosing the right ones. Another important question is "When is learning complete?’
[Fah88]. We consider a variety of possible stopping criterias, which depend on the problem to
be learned. We also give some suggestions for the detection of local minima.

Last but not least, a run-time comparison of the algorithms on the basis of selected benchmarks
is made. This includes an estimation of the ’optimal’ parameters of standard backpropaga-
tion for each benchmark and the comparison of this ’optimal standard’ algorithm with other
backpropagation variations.

2 Learning in Neural Networks

Consider a feed-forward network with n input and m output units. It can consist of any number
of units and can exhibit any desired feed-forward connection pattern. We are also given a
training set (z1,t1),(22,t2),...,(zp, t,) consisting of p ordered pairs of n- and m-dimensional
vectors, which are called the input and output patterns respectively. Let the primitive functions
calculated at each node of the network be continuous and differentiable. The weights of the
edges are real numbers selected at random. When the input pattern z; from the training set is
presented to this network, it produces an output o; different in general from ¢;. What we want.
is to make o; and t; identical for 1 = 1,...,p by using a learning algorithin. More precisely, we
want to minimize the error function of the network, defined as

T

: P
EOV)i= Y Bo= 5 303 (o — 1) (1)
=1

=1 =1

The first step of the minimization process consists in extending the network, so that it computes
the error function autowmatically. Figure 3 shows how this is done. Every output unit j =
1,...,m of the network is connected to a node which evaluates the function %(oij —1;;)?, where
0;; and t;; denote the j-th component of the output vector o;, respectively the target ¢;. The
output of the new m nodes is collected at a node which just adds them up and gives the sum
E;. that is the quadratic error for the input pattern p; as its output. The same extension has
to be done for each pattern ¢;. An additional computing unit collects all quadratic errors and
outputs their sum. The output of this extended network is of course the error function E(W).

— =

(0 = tiy) |30 = %D (*t — E

Figure 3: Extension of the network for the computation of the error function.

We have now a network capable of calculating the error function for a given training set. The
weights in the network are the only parameters that can be changed. We can tune them, trying

to make the quadratic error F as low as possible. Since F is calculated by the extended network
exclusively through composition of the node functions, it is a continuous and differentiable
function of the [weights wy, ws,...,w; of the network. We can thus minimize £ by using an
iterative process of gradient descent for which we need to calculate the gradient

0E OF oF
VEW)=(—, —,....—— N
(W) (8w1’8w2’ 3w1)

we then adjust each weight w; by using the increment

oF
dw;’

Aw; = —v 1= 1,...,1
where v represents a learning constant, i.e. a proportionality parameter which defines the step
length of each iteration in the negative gradient direction.

With this extension of the original network the whole learning problem reduces now to the
question of calculating the gradient of a network function with respect to its weights. Once we
have a method to compute this gradient, we can adjust the network weights iteratively. In this
way we expect to find a minimum of the error function, where VE(W) = 0.

2.1 The Backpropagation Algorithm

Forget now everything about training sets and learning. Our objective is just to find a method
for calculating efficiently the gradient of a one-dimensional network function according to the
weights of the network. Because the network is equivalent to a complex chain of function
compositions, we expect the chain rule of differential calculus to play a major role in finding
the gradient of the function. We take account of this fact by giving the nodes of the network a
composite structure. Each node consists now of a left and a right side. The right side computes
the primitive function associated with the node, whereas the left side computes the derivative
of this primitive function for the same input. The network is evaluated now in two stages: in
the first one, the feed-forward step, information comes from the right and each unit evaluates its
primitive function f in its right side as well as the derivative of f in its left side. Both results
are stored in the unit, but only the result from the right side is transmitted to the next node.
Now we have to distinguish the following cases:

2.1.1 Function Composition

The network of Figure 4 contains only two nodes. In the feed-forward step, incoming information
into a unit is used as the argument for the evaluation of the node’s primitive function and its
derivative. Inthis step, the network computes the composition of the functions f and g. The
Figure shows the state of each unit after the feed-forward step. The correct result of the
function composition has been produced at the output neuron and each neuron has stored some
information in its left side.

[n the backpropagation step the input from the right of the network is the constant 1. Incoming
information to a node is multiplied with the value stored in its left side. The result of the
multiplication is transmitted to the left and the information is transported to the next unit.
We call the result at each node the traversing value at this node. Figure 4 shows the final
result of the backpropagation step. which is f/(g(x))g'(x), that is the derivative of the function

function composition

g(z) | ¢ fge)) f

Backpropagation

Figure 4: Backpropagation for the composition of two functions.

composition fog implemented by this network. The backpropagation step provides us thus with
an implementation of the chain-rule. Any sequence of function compositions can be evaluated
in this way and its derivative can be obtained in the backpropagation step.

2.1.2 Function Addition

The next case to consider is the addition of two primitive functions. Figure 5 shows a network
to compute the addition of the functions f; and f,. The additional node has been included
just to handle the addition of the two functions. Its activation function is the identity, whose
derivative is 1. In the feed-forward step the network computes the result fi(z)+ fz(2). In the
backpropagation step the constant 1 is fed from the left side into the network. All incoming
edges to a network fan-out the traversing value at this node and distribute it to the connected
neurons. When two paths meet, the computed traversing values are added. Figure 5 shows the
result of the backpropagation step for the network. The result is the derivative of the function
addition f; -+ fy. A simple proof by induction shows that the derivative of the addition of any
number of functions can be handled in the same way.

function addition

. filz) + folx)
fa
1 Id.
h
filx) + filx) backpropagation :

Figure 5: Backpropagation for the addition of two functions.

2.1.3 Weighted Edges

The last case we have to consider are weighted edges. In the feed-forward step the incoming
information z is multiplied with the edge’s weight w. The result is wz. In the backpropagation
step the traversing value 1 is multiplied with the weight of the edge. The result is w, which
is the derivative of wz with respect to z. We conclude from this case that weighted edges are
used exactly in the same way in both steps: they modulate the information transmitted in each
direction by multiplying it with the edges weights.

feedforward: z w w-z

backpropagation: w 1

Figure 6: Backpropagation at an edge.

We can now formulate the complete backpropagation algorithm and give a proof by induction
that it works in arbitrary feed-forward networks with differentiable activation functions at the
nodes. We assume that we are dealing with a network with a single input and a single output
unit. The two phases of the algorithm are the following:

1. Feed-forward step: The input z is fed into the network. The primitive functions at the
nodes and their derivatives are evaluated at each node. The derivatives are stored.

2. Backpropagation step: The constant 1 is fed into the output unit and the network is
run backwards. All incoming information to a node is added and the result is multiplied
with the value stored in the left part of the unit. The result is transwmitted to the left of

the unit. The result collected at the input unit is the derivative of the nerwork function
with respect to z.

We showed before that the algorithm works for units in series. units in parallel and also when
weighted edges are present. Let us make the induction assumption that the algorithm works for
any feed-forward network with n or less that n nodes. Counsider now the network of Figure 7.
which is made of n + 1 nodes.

The feed-forward step is executed first and the result at the output unit is the network function
F evaluated at z. Assume that i units, whose respective outputs are Fy(x), Folz)..... Fy(z).

are connected to the output unit. Since the primitive function of the output unit is 0. we know
that

Fle)y=o(Fi(z)+ Folx),+ -4 Fulz)).
The derivative of F at z is thus
Fl(2) = §(s)(Fl(2) + Fi(a),+ -+ Fl(a)). (2)

where 5 1= Fy(z) + Fy(x),+ -+ F,(z). The subgraph of the main graph which includes all
possible paths from the input unit to the unit whose output is F(z), defines a subnetwork whose
network function is £; and which consists of n or less units. By the induction assumption we can

F(x)

s=wF(X)+w)+ +w,F(x)
F'(x) = ()M A x) +wo B (x)+ -+ + wp F (X))

Figure 7: Backpropagation at the last node.

calculate the derivative of Fy at z, by injecting a 1 into the unit and running the subnetwork back-
wards. The same can be done with the units whose output is Fy(z),..., Fyu(z). If we inject the
constant ¢'(s)wy instead of a 1, we get at the input unit in the backpropagation step wy Fy(z)¢'(s)
and wo FI(2)d(8). ... wn), (2)0'(s) with the rest of the units. But in the backpropagation step
with the whole network we add these m results and we get (2), which is the derivative of F
evaluated at z. Note that injecting the constants wy F{(z)o'(s),..., wyF},(z)¢'(s) into the m
units connected to the output unit, can be done by injecting a 1 in the output unit, multiplying
with the stored value ¢/(s) and distributing the result to the m units through the edges with
weights wy, wy, ..., Wy, We are in fact running the network backwards just like the backpropa-
gation algorithm demands. This means that the algorithm works with networks of n + 1 nodes
and this concludes our proof.

The backpropagation algorithin still works correctly for networks with more than one input unit
in which several independent variables are involved. In a network with two inputs, for example.
where the independent variables » and y are fed into the network, the network result can be
called F(x,y). The network function has now two arguments and we can compute the partial
derivative of I with respect to z or with respect to y. The feed-forward step remains unchanged
aud all left-side slots of the units are filled as usual. But in the backpropagation step we can

identify two subnetworks: one consists of all paths connecting the first input unit to the output
unit and another of all paths from the second input unit to the output unit. By applying the
backpropagation step in the first subnetwork we get the partial derivative of F with respect
to z at the first input unit. The backpropagation step on the second subnetwork yields the
partial derivative of F with respect to y at the second input unit. Note that we can overlap
both computations and perform a single backpropagation step over the whole network. We still
get the same results.

2.2 Learning with Backpropagation

We consider again the learning problem for neural networks. Since we want to minimize the
error function £, which depends on the network weights, we have to deal with each weight in
the network at a time.
The feed-forward step for the /[-th input pattern is computed in the usual way, but we now also
store the output of each neuron in its right side. We perform the backpropagation step in the
extended network used to compute the error function and we then fix out attention in one of
the weights, say w;; which points from the :-th to the j-th node in the network. This weight
can be treated as an input channel into the subnetwork made of all paths starting at w;; and
ending in the single output unit of the network. The information fed into the subnetwork in
the feed-forward step was o;w;;, where o; is the stored output of unit 7. The backpropagation
step computes the gradient of F; with respect to this input, that is 0F;/Qo;w;;. Since in the
backpropagation step o; is treated as a constant, we finally have

oL ' 0F, 3)

WUL] B 002'101']' ('
for o; # 0. In case that o; = 0 then 0FE;/0w;; is just zero. The backpropagation step is
performed in the usual way. All subnetworks defined by each weight of the network can be
handled simultaneously, but we now store a third quantity at each node: the result of the
backward computation in the backpropagation step up to this node. We call this quantity the
backpropagated error. 1f we denote the backpropagated error at the j-th node by d;, we can then
write the partial derivative of E} with respect to w;; as

oF
o5, = 0;0;

ﬁur.ij

The partial derivative of E with respect to w;; is the sum of all this partial derivatives for
[=1....,p. Once all partial derivatives have been computed, we can perform gradient descent
by adding to each weight w;; the increment

OF

AU,JL']' = _7W'
Ly

This correction step is what is needed to transform the backpropagation algorithm in a learning
method for neural networks.

Let’s consider how backpropagation works in a neural network with a layered architecture, like
the one shown in Figure 1. We assume, that the network consits of one layer of input units, one
layer of hidden units and one layer of output units with no direct connection between input-

and output layer. This is the most common architecture. All neurons use the sigmoid function
s(x) as their activation function, where s(z) is defined as

s(z) = Tle‘f' (4)

-15 -10 -5 5 10 15

Figure 8: Graph of the sigmoid activation function.

The first derivative of the sigmoid is

P~ a1 - s(a). (5)

We assume further, that there is only oue pattern to be learned. This is not really a restriction,
it just makes the algorithm easier to understand. The case of more than one pattern to learn is
described in section 3.1.1.

Following notation holds from now on:

wz(-;-) Weights between component ¢ of the input and neuron j of the hidden layer.
wl(f) Weights between neuron ¢ of the hidden layer and neuron j of the output layer.
OEO) t-th component of the input vector.

oz(-l) Output of neuron ¢ of the hidden laver.

052) Output of neuron ¢ of the output laver.

ng » Dimension of the input layer L.

nyg : Dimension of the hidden layer Ly.

no : Dunension of the output layer Lo,

We assume that the feedforward computation has already been done, that is some input vector
0) was fed into the network and the output o(?) was computed. All the partial derivatives of
the activation functions have also been computed and stored in the left sides of the nodes. The

ol

10

output of the network output has been compared to the desired output ¢, and the error function
E(W) has been computed by the additional layer. Now we can perform what gave its name to
the algorithm: The propagation of the error back through the network.

We start with the value 7' = 1 on the right hand side and go back to the output layer. After
going through neuron j of the additional layer, we get a new value for T"

T::(t]-—ogz)), j=1,...,n0,

since this is the derivative of the error function with respect to 052). We now go through neuron
7 of the output layer, which is the only neuron in the output layer, that is connected to neuron
j of the additional layer. If we leave this neuron via the connection weighted by wg) in the
direction of neuron ¢ of the hidden layer, we finally get

T :=(t; — 05.2))05.2)(1 - 05—2))0,51) i=1,....,ng; j=1,...,n0,

an this is the partial derivative of the error function with respect to wff). So with

6](-2) = —(t; — 052))05-2)(1 - ng)) j=1,...,n0 (6)
we get

or -

%m:—égz)ogl) v=1,...,nyg; 3=1,...,n0. (7)

ow,;

Propagating the error further backwards through the network we can compute the derivatives
c‘?E/(‘?wS-). In this case we get

nyg y .
6= (w0 =) =1
=1

and
oF 6(1)
HwV
i

; v=1,...,n7 J=1,...,ng4. (3)

In conclusion, learning with the backpropagation algorithm in multilayered networks consists of
the following steps:

|. Feedforward-step. The input vector o = (ogo),ogo),...,ogg)) is fed into the network,
which computes the output ol?). The additional layer estimates the error function E(1).

2. Backpropagation-step to the output layer. The error is propagated back through
the network to compute the partial derivatives 0E/0w§j) = —(5](-2)051).

3. Backpropagation-step to the hidden layer. The error is propagated further back
through the network to compute the partial derivatives (‘9E/@wz(}) = —6;-1)050).

[

4. Error correction step. After the evaluation of all partial derivatives the weights are
corrected in the direction of the negative gradient, which means

Au}l(j) = 76_52)051) izl,...,’ILH; j:l,”',no
(9)
Awl(_:]l) = 7651)050) 7= 17771/1’]: 17"_7”[_[,

where ¥ > 0 is a learning parameter. Some researchers have proposed different learning
parameters for the different layers, but for the standard algorithm, we always used the
same constant learning rate for all layers.

[t is very important, first to compute all the partial derivatives before the error correction (9)
is performed. Otherwise the computation of the gradient is mixed up with the correction of the
weights, and we can get a wrong result for the gradient.

2.3 The ’Pros and Contras’ of Backpropagation

As we have seen, backpropagation is a learning procedure for multilayer perceptrons, which is
basically a gradient descent method. It is very easy to implement and it is also highly parallel,
since it needs no global information to run.

But since it is a gradient descent algorithin, it also has all the drawbacks of such methods. The
algorithm converges very slowly and it also can get stuck in local minima or flat plateaus of the
error function very easily. Another difficulty is the choice of the learning parameter v (see (9)).
If it is chosen very swmall, the algorithm will almost follow the optimal gradient direction (which
does not mean, that this does not lead to a local minimum), but it will take many iterations,
especially if the error function is very flat’. On the other hand, if v is chosen too big, the
algorithm may ’jump’ over some valleys, maybe the one we look for. The choice of v always
depends on the shape of the error function, which makes it very dithicult, since usually we know
nothing about it.

3 Accelerating the Backpropagation Algorithm

[n this section, various approches to improve backpropagation will be described. We divided
them in the following classes:

1. Standard-Variations (Sec. 3.1)
2. Adaptive-Step Algorithms (Sec. 3.2)
3. Second-Order Algorithms (Sec. 3.3)
There is of course no sharp distinction between these classes, they are all more or less related.

These connections, the basic idea of the algorithms in each class, as well as their most important
representatives are now described in deep.

,.._‘
A

3.1 Variations of the Standard Algorithm

Before we get to the more sophisticated methods, we would like to describe some basic mo-
difications of the standard algorithm, which may even be useful to speed the other algorithms

up.

3.1.1 More than one pattern to learn: Batching vs. On-Line

The first decision to be made is how to update the weights, if there is more than one pattern to
learn. We usually have two choices:

¢ Batching: All the training patterns are passed through the network one after the other,
the partial corrections Aw;; are accumulated, and the error correction takes place at the
end, when all the patterns have been presented to the network. This procedure estimates
the true gradient, but with a big computational effort, since the weights are only updated
once after every presentation of the ’batch’ of training patterns.

e On-line backpropagation: This method, also called real time backpropagation, pre-
sents again the training patterns to the network one after the other, but the correction
of the weights takes place after each single pattern has been shown to the network. It is
better to choose the patterns to be learnt by random. rather than to pick them one after
the other. Updating of the weights is not done exactly in the direction of the true gradient,
the corrections made oscillate around the true gradient. With on-line backpropagation,
the stepsize v should not be chosen too big, otherwise the learning procedure may be
‘misleaded’.

Experiments show, that backpropagation converges faster. if the corrections are done in the
direction of the true gradient estimated by batching. even if there are, with the same compu-
tational effort, less weight updates per iteration than with on-line backpropagation. This holds
especially for more sophisticated algorithms, which implement large steps in weight space, trying
to find a solution in very few iterations.

If the training set contains a very large number (say hundreds) of patterns to learn, one can
make a compromise and update the weights after the presentation of a subset (let’s say 50)
of the training patterns selected at random. Otherwise the iterations get too expensive, and
often a subset, which is not too small, contains all the information needed to make a reasonable
estimation of the gradient.

Methods that try to speed up backpropagation by replacing the learning set by a much smaller
set (not necessarily a subset of the training set) of vectors, that still contains much of the
information of the whole learning set are described in section 4.

3.1.2 Introduction of a Momentum Term

Rumelhart noted, that backpropagation is quite slow, if the learning rate v is small, but it
may lead to oscillations, if one is trying to speed it up by chosing a bigger learning rate. His
suggestion [RHWS6] aimed at increasing the learning rate while simultaneously avoiding these
oscilations, was to introduce a momentum term into the error correction, modifying (9) to

AWW = 3 VEWW) 4 aaw =D, (10)

13

where k denotes the current iteration and « a new real parameter. The advantage of using such
a momentum term is twofold. First, if the computed gradient —VE(W*)) and the correction
AW =D from the last step point in similar directions, the step size of the actual correction is
increased. This leads to a speed-up in rather ’flat’ parts of the error function. Second, if we
have some 'narrow valley’ to climb down, we may get some annoying oscillations, which could
be eliminated by using the momentum term. Figure 9 shows an example.

Search path
/ \

) /A /4
(a) (b)

Figure 9: Descending a narrow valley with and without the use of a momentum term.

Although of course & has to be chosen empirically, just like 7. we can say that since

k=1

AWWE = 4 VEW®) 4 aAWETD = 4 VEW) =5 > oI VEW) 4 o AW O

j=1

a < 1 has to hold, otherwise the momentum term (especially ak'_\.i'i"(o)) explodes, as k increases.
Since the momentum term is pulling us away from the steepest descent direction —VE(W(“)7
we need a rather good estimation of the gradient, if we do not want to get hopelessly lost on
the surface of the error function. Thus, batching is recommended. to obtain the true gradient
of the error function in every iteration.

One correction according to (10) now consists of the use of the actual gradient VE(W ()
and some linear combination of the gradients computed during the steps before. This relates
backpropagation with momentum to the cg methods. The difference is, that cg methods use
mutually conjugate search directions, which does not necessarily hold for the VE(I/V(j)), j =
1,...k. A rather extensive analytical study of the momentum term has been done by A. Sato
in [Sat9l].

3.1.3 Using bipolar- instead of binary vectors

Another simple approach is to train the network with bipolar vectors, which consist of elements
equal to -1 or 1. This means, that every component z; of the binary vector z is replaced by the
element z; := 2z; — 1 to obtain the bipolar vector . The activation function of the neuron has
to be changed then from the sigmoid s(2) to the symmetric sigmoid §(x) := 2s(z) — 1.

14

Two arbitrary bipolar vectors are orthogonal, and thus decorrelated, with a probability, that
increases with the dimension n of the vectors. To see this, we have to look at the scalar product

n
S = &k
k=1

of two arbitrary binary vectors Z and §. The single components & are either -1 or 1, both
with probability 0.5. For increasing n, the probability of S = 0 approaches one. For binary
vectors on the other hand, S = n/4, because z,yy are either 0, with probability 0.75 or 1, with
probability 0.25.

This s a reason for the speedup of backpropagation when bipolar vectors are used, because as
described in section 4, an orthonormalized and decorrelated data set has positive effects on the
error function.

Another, much simpler positive effect of using bipolar vectors can be understood, if we take a

look at the error correction step (9) of the backpropagation algorithm. It shows that the weight’s
(1) 1)

. . .) « .
corrections Aw,,” are proportional to the input o, . So the weights W,

are only changed for

01(-0) # 0, which always holds for bipolar vectors. This has already been pointed out by W. S.
Stornetta and B. A. Hubermann [SH87] and has also bee used by S. E. Fahlimann [Fah88], who
used ’constrained bipolar’ vectors consisting of elements equal to -1/2 and 1/2 and a symmetric
sigmoid §(z) := s(x) — 1/2. This still has the positive effects described above, but it does not
make the activation function steeper and we also save a multiplication at each node.

3.1.4 Introduction of a temperature parameter in the sigmoid

The temperature is a constant ¢ > 1 which acts multiplicatively on the input of the sigmoid,
changing the activation function to
1
sla) = ————
1+ €—L.1

and its first derivative to

os(z) o
9, = ¢ s(2)(1 = s(x)).

This has the effect of making the step of the sigmoid (and simultaneously, the steps of the error
function) steeper. Thus fewer iterations are required to climb it down. Simulated annealing
is a technique which uses a changing temperature constant and is used In stochastic neuronal
networks, such as Boltzmann Machines.

Although the networks learn somewhat faster in some small problems, like the XOR function,
this technique will in general rather lead to wild oscillations of the network’s weights, since it
basically works just as an increment of the learning rate y. Experiments also show, that the
introduction of a temperature constant has a negative effect on the generalization abilities of
the network. The explanation is that because of the steeper step of the sigmoid, the neurons
flip” their output faster. Unknown inputs, near to learned ones, may not produce the desired
output, which should be near to the output belonging to the learned input.

After some experiments we came to the conclusion, that the negative effects of introducing the
temperature constant overcome the positive ones, so we did not look further at this technique.

p—t

-15 -10 10 15

Figure 10: The Sigmoid function for ¢ = 1 and ¢ = 3.

3.1.5 Handling flat spots of the error function

The first derivative of the sigmoid (5) goes to zero, as the output of the neuron goes to zero
or one. Since the correction of the weights is proportional to these derivatives, they will then
also go to zero. These regions of the error function are called the flat spots of the error surface.
The presence of these flat spots is one of the main reasons for the slow convergence of standard
backpropagation. Several proposals have been made to solve this problem.

I. Adding an offset to the derivative of the sigmoid
S. E. Fahlmann [Fah88] proposed making sure, that the sigmoid’s derivative will never get
too close to zero. His idea was to add a small constant € > 0 to the first derivative of the
sigmoid,
os{z ,
98) 4 e = s(a)(1— sz)) + (11)
dr
so that this expression is always greater than zero (at least ¢) and the weight’s changes
will not die out. Good results were obtained with € ~ 0.1.

2. Modification of the error function I
K. Balakrishnan and V. Honavar [BH92] proposed a modification of the error function,
to eliminate at least the flat spots in the output layer. Their approach is not to evalnate
the error between the output of the output neurons o(f) and the desired output t,;, but
between the input of the output neurons and their desired input, which is easy to compute
as s7'(t,;). This changes the error function to

1 ‘
E= § E, = 3 E E (netTarget,; — net[npi)z, (12)
P P

16

where netTarget; is the desired input of output neuron ¢ for pattern p and netln,; is its

actual input. We can now evaluate the weight update rules just as in section 2.2 with the
(2)

only difference, that 6;”’ becomes

61(2) = (netTargety,; — netlng).
The sigmoid is now approximated lineary to obtain an approximation of its derivative

2
, outputErrory t; — O;i)

~ inputError,, h netTarget,; — netIn,

Now 32-(2) becomes

(2) target, — 0(2-)

§2) TATO% T i (13)

Sl

To make sure, that s’ will not get too close to zero, Balakrishnan and Honavar define an
output unit to be in the active range if its output 05.2) is greater than (1 —m) or less than

m (where they chose m = 0.9) and in the inactive range otherwise. If an output unit is

found to be in the active range, the updates are made using 552) of (13), otherwise & is

replaced by a constant value of 0.09.

Since s’ is always smaller than 0.25 and can get close to zero, the weight updates are
divided by 10.0 to make sure, that they will not become too large, because this could lead
to oscilatious of the networks weights.

3. Modification of the Error Function II

A. Kryzak, W. Dai and C. Y. Sun proposed another modification to handle flat spots in
the output layer [KDS90]. They define the error E,; of each output neuron j for a certain
pattern t, as

E,; = { o tp](%"(l ~op,)) if =0
-—tm‘Z?L(Om) if tp; = 1

This changes the error function and its derivative to

5 .
E, = Z E, = - Z((l —tpi)n(l — ogj)) + tpj-ln(oézj)))
J 7
OE, 1
o - T (1- fpj)l—_—o(-—_)_)-
Pj Pi pJ
This leads to a redefinition of 6](-2) (see (6))
(2 L 1 2 2 2
57 = (g (1=) ——5)0, (L= o)) = 15— o), (14)
Opj 1= o
where 6](-” remains unchanged. Since this approach iis undefined for nonbinary output, we

dropped this error function modification for the comparison.

17

3.2 Adaptive-step algorithms

The idea behind this kind of methods is to use variable step sizes instead of a constant learning
rate v for the corrections defined by (9). This step size is often chosen to be a function of
the backpropagated error. This means that for steep descent, where the backpropagated error
is big and thus significant changes of the error function E(W) are expected, v is chosen to be
small to avoid overjumping the minimuin; where the backpropagated error is small and the error
function is rather flat, v is chosen to be big, so that not too many steps are needed to reach
the minimum. Such an adptive rule is of course a heuristic and depends highly on the problem
to be learned. Some of these methods tune the learning parameter used in every step by using
information gained during the learning process.

3.2.1 The gradient reuse algorithm

This algorithm, proposed by D. R. Hush and J. M. Salas [HS88] is surely the most obvious
approach for this tree of acceleration techniques. It is actually a kind of line search. The
search direction is given by —VE(W®)) and the minimum (or some point close to it) along this
direction is to be found. There is of course a trade-off between accuracy (getting as close as
possible to the minimum) and computational effort (checking only a few points along the search
direction).

The search direction —V E(W) is followed in discrete steps W k1) .= Wiki) — () B (%))
as long as the error function decreases. If E(W Kty > E(WH)Y holds, W+ .= (k) s
declared to be the minimum along that direction. A new search direction —VE(W(HU) is
computed, and the algorithm continues.

The stepsize v(*) depends again on the behavior of the error function. If in step k—1 the gradient
—VE(W("‘)) was reused very often, the error function is assumed to be flat and 7(” is increased,
to obtain a smaller reuse rate and thus to investigate fewer points along the search direction. If,
on the other hand, the reuse rate during step k — 1 was low, the error function is assumed to be
(%) is decreased to make sure that the minimum is approximated sufficiently
well. Hush and Salas claim that a reuse rate of about ten iterations is the best.

Since the gradient is reused several times, we need a rather accurate search direction. Thus,
batching is used to obtain a better result for VE(W).

rather steep and ¥

3.2.2 The dynamic adaption algorithm

R. Salomon suggested a similar procedure, but taking only two points along the search direction
and adjusting the learning parameter y(¥) dynamically [Sal92]. This means that for a given
search direction d = VE(W) and a given learning parameter ¥} the points Wk=1 — 4. k)¢
and W1 _ d-q/(k)/f are examined. The point W*+1 that causes the smallest error and the
corresponding new learning rate are chosen. We have the following equations:

B(w=1 0y = E(W(’“"U—7("’)VE(I/I/(""”))

S o [T B, Gy < pri,)
B DAY % otherwise
wk = w0 SRy g)

18

He sets { = 1.3, and so did we. In the original version Salomon normalizes the gradient VE(W),
but claims that the algorithm above also converges without this normalisation, only more slowly.
We did not normalize the gradient because of locality reasons.

3.2.3 The Delta-Bar-Delta algorithm

This algorithm, developed by R. A. Jacobs [Jac88], uses different learning rates for every single
weight, which are adapted at each iteration. This approach reflects the idea that the slope of the
error surface might differ considerably, depending on the weight directions. Since backpropaga-
tion corrections with a constant learning rate are proportional to these slopes (3),(8), the size
of the step actually taken in weight space may also differ considerably. This may lead, for steep
descent and thus large slopes, to minima being jumped over. On the other hand, it may lead
to very slow descents at flat spots with small slopes. To solve these problems, Jacobs suggested
the following heuristics:

1. Each weight (each direction in the search space) has its own learning rate.
2. These learning rates are modified based on information about the error surface .

3. When the error gradient 0 F/0w;; has the same sign in many consecutive iterations, the
corresponding learning rate is increased, since a minimumn may lie ahead.

4. When the gradient flips signs in several consecutive iterations, the learning rate is de-
creased, since this indicates, that a minimum has been overjumped.

These heuristics, which form the basis of the Delta-Bar-Delta algorithmn, lead to the following
equations, where £ indicates the iteration number.

L = o gt
K if SETUTEWRY S 0
k -
Ay = S 9(7‘ VY EWR) < g (15)
0 othelwxse
(k)

il

I Alk—1
U (1-)VE(WH) 445"
The term §Z(j) is basically a decaying trace of gradient values. The parameters x, ¢ and 4 are
to be specified by the user. Experiments show, that values of x =~ 0.05, ¢ ~ 0.3 and ¢ =~ 0.7
work best [Jac88, MW90]. The learning rates 7;;)) may be set to the initial values 0.1.
The reason for increasing the learning rates additively is to prevent them from becoming too

large too fast; the reason for decreasing them exponentially is to keep them positive at all
iterations, as well as to allow rapid decreases.

3.2.4 The extended Delta-Bar-Delta algorithm

A. A. Minai and R. D. Williams found that the Delta-Bar-Delta algorithm has several draw-
backs [MWO90]. First, the introduction of a momentum term, which is a rather elegant method

19

of speeding standard backpropagation up, sometimes causes the Delta-Bar-Delta algorithm to
diverge. Second, even with very small values x (see (15)), the learning rates can increase so
much, that the small exponential decreases do not prevent the algorithm from jumping wildly.
To overcome these drawbacks, Minai and Williams suggested the following modifications to the
Delta-Bar-Delta algorithm:

1.

The learning rate increase is changed from a constant increase x to an exponentially
increasing function of |Si(])-€)|. This causes the learning rate to increase faster on flat spots
of the error surface than on rather deep slopes.

. Momentum is used as a standard part of the algorithm, and the momentum is changed

adaptively just like the learning rate, using the Delte-Bar-Delta criteria.

. To prevent the learning and momentumn rate from becoming too large, an upper limit is

defined for both.

Memory and recovery are incorporated into the algorithmn, which means that the best
result seen until the current iteration is saved. A tolerance parameter A is used to control
recovery in the sense that if the error gets greater than A times the lowest error seen so
far, the search is restarted at the best point found so far, but with attenuated learning and
momentum rates. With a small probability, the algorithm can also start at a completely
different point.

Because of complexity reasons, we did not implement the recovery part.

This leads to the following equations:

auft) = —opjon) + ol Aul
’71((7 +1) = j\/llfv("/marv 71'(]') + Aﬂ/‘l(]))
ol = MIN(oparall + 2l)
(k) A fe—
. ke 25571 i Sf(j l)vE(W“')) >0
Aviy = 4 =gl i SETIVER(I®) <o 1o
0 otherwise

7 "\'(k)
Rm € B Ib'l |
k)

Aal(.j - _(;bma(k)

e see the conditions above
0

The parameters Y0z, @maz a0d K1, Ky 1y Gons 81, B have to be specified by the user; the expres-

sion S

a(k)

;; is the same as in (15). For their experiments, Minai and Williams used the following

values for the different parameters:

Yimar = 10.0 Cmazr = 0.9
Kon = 0.1

¢l = 0.3 (,bm = 05
B = 200 B, = 5.0

Experiments with different values for x; (x; = 0.001. »; = 0.05 and x; = 1.0) were made, and it
turned out, that x; = 0.05 worked best.

20

3.3 Second-order algorithms

The idea behind these methods is that the error function E(W) is approximated locally by a
quadratic function, its truncated Taylor series

. 1 : :
EW® 40y~ E(W®) 4+ VE(WENTh + §thzE(WW)h,
where V2E(W) is the second derivative of E(W), the Hessian matriz with

OF*

VEE(W) = .
(W) Owiwy

To avoid the use of four indices, we refer here to the elements of W as wy instead of w;; as usual.
The quadratic approximation above can now be minimized exactly. We just have to find the

point WE+D = Wk L where VE(W*+1)) = 0 holds. We have
0 = VEW® 4)T = vEWMINT £) Tv2Ew k),
and this leads to
h=-VEEWENTIVEW®),
which means that W#+1) is of the following form:
WD) = w) — g2 p(w =1y p(w), (17)

The minimum of the quadratic approximation so obtained is of course not the exact minimum of
E(W) itself. but we can iteratively compute W) until we are sufficiently close to the minimum
of E(W). Since a function behaves almost quadratically near its global minimui, the method
converges faster, as we get nearer to a solution.
The iteration, which is defined by equation (17) is the pure form of Newton’s method. It can be
modified by introducing a parameter . We get

Wkt = W) _ (g2 pw)1y p(w 9,
were ot¥) is obtained in a line search to minimize E. As we get closer to the solution, a(*)
of course closer to 1.

gets

However, Newton’s method has several significant drawbacks, which make it problematic as a
learning algorithm for neural networks. First, to obtain a good convergence-rate, we have to
find a good initial value W{® which is very hard for neural networks. The best initial values
we can find are often randowm ones. Second, it is very expensive in both memory and time
requirements. In each step, non-local information is needed in order to estimate the Hessian
matrix V2E(W) or its inverse.

To overcome these drawbacks, a second modification is made. We replace the inverse of the
Hessian matrix at each step by a matrix M *), which is supposed to be some (easy to compute)
approximation of V'ZE(W("'))‘I. Since the Hessian matrix is positive definite at the minimum
of E(W), this must also hold for M*). We get

W = W) g0 By B), (18)

whereby a again line search is required to estimate the o(¥) which minimizes E(W{#+1). Meth-

ods, which involve the steps defined by (18), including a line search in some cases to obtain a(*),

21

are called Quasi-Newton Methods. Backpropagation as a gradient descent method belongs to
this class of algorithms (M%) = I). This also holds for the adaptive step methods, since they
also use M%) = I and some sort of line search to estimate a(¥).

The objective now is to find matrices My which are a better estimation than [and easier
to compute and store than V2E(W("'))_l. One approach is the the Davidon-Fletcher-Powell

Method (DFP) [Lue73, Wat87], which updates M(*) at each step as
pB)p-)T ~ M ®) g(R) (AT pr (k) (19)
p(k)Tq(k) q(k')TM(k)q(/")

where p(F) := ad®*) minimizes E(W *)+ad*)) along the search direction d*) := ~MWVEW KR,
and ¢¥) .= VE(W*D) v E(WK), It can be shown by induction that all M*) are symmetric

positive definite, if M) is [Lue73]. It can also be shown that pO)TV2E(W)pl) = 0 for i # j,

which means that the p*) are mutually V2 E(W)-conjugated. This makes the Davidon-Fletcher-

Powell method (19) a cg-method.

Another more sophisticated approach is the the Broydon-Fletcher-Goldfarb-Shanno Meth-

od (BFGS) [Wat87]

MEHY) = pr(k) 4

GWIT Ok pEpT Tk 4 (8 1 g (¢RI
pIT (B pIT g(R) AT 4(F)

where p(*) and ¢(*) have the same form as described above.

The drawback of these methods is, that although the computational effort is reduced by order
O(n), as compared to Newton’s method, where n is the number of network’s weights, both
approaches require global information. For this reason we dropped them from our comparison.
R. L. Watrous tested both methods (19) and (20) in [Wat87] using the XOR- and a 'moderate
sized” multiplexer problem with 33 weights as benchmarks. He showed the BFGS method to be
superior to the DFP method and both to be faster than standard backpropagation. Using these
methods he also obtained some good results in speach recognition problems [WSWR&T7].

MEFD =) (14

, (20)

3.3.1 The pseudo-Newton diagonal estimation algorithm

A quasi-Newton method that needs no global information has been proposed by S. Becker and
Y. le Cun [BIC88]. Their idea was to neglect the off-diagonal elements of the Hessian matrix,
that is

VEE(W) = O*F|9*w;
0
This leads to the following learning rule:
Awy = 1 oF

|02 E)0%wj| + u ' Owyj’
where 1 > 0 is a small constant introduced to avoid that the denominator gets too close to zero.
The method described above has the drawback, that. because of the nonlinearity of the second
derivatives, this algorithm can only be run in on-line mode.
Since the speed-up reported by Becker and le Cun is not significant enough, and on the other
hand the computation of the diagonal elements of the Hessian matrix is long and complicated,
we also dropped this method from our comparison.

22

3.3.2 Quickprop

Quickprop is an improvement to backpropagation, proposed by S. E. Fahlmann [Fah88], which
is not a direct derivation of Newtons method, like the other second order methods described
before. It is rather an adaptive step algorithm which assumes the error function to be quadratic
and which performs a kind of Newton-iteration but in a single direction. It is a kind of 'Newton-
line-search’. Quickprop is based on two assumptions:

1. The error function E(W) is a parabola, whose arms open upward.

2. The change in the slope of the error curve, as seen by each weight, is not affected by all
the other weights that are changing at the same time.

Now if the error function is quadratic in each direction and is not affected by other weights, the
first derivative has to be linear.

S (= VE(W))

AW) AW =D

/ (k1) W k) py (k=1)

W

Figure 11: Visualisation of a Quickprop step

Under this assumptions and with AW =1 already computed, we have to find WD where

vV E(W*+1)) = 0 holds, which means, we have to determine AW ®*),
As Figure 11 suggests, this is easily done, because the equation
AW () AW *=1)
SH T S Z g

holds, with S*) := VE(W), and thus we have for AW)

5k
where the vector operations are performed componentwise.
Now we have to distinguish three different cases:

AWE) = yAW K=Y, (21)

23

1. S™) has the same sign as S~ but is somewhat smaller. This means that the weights
are again changed in the same direction.

2. S*) and S*-1 have opposite signs. This means that we have jumped over the minimun,
WD will be somewhere between W) and Wk—1),

3. 5 has the same sign and has the same size or is larger than S(*~1). Now we have to
constrain the step size, because if we follow the updating formula blindly, it will lead to
infinitly large steps. Fahlmann handles this situation by introducing a new parameter, the
‘maximum growth factor p’, which means that we are not allowed to change the weights
more than g times AW®* =1 Fahlmann claims, that g ~ 1.75 will do well.

Since the weight changes (21) always depend on the weight changes of the previous step, some
bootstrap strategy is required to start the process, or restart it for those weights which have
previously taken a step of size zero and are now facing nonzero gradient components, because of
some changes elsewere in the network. In this case, Fahlmann uses an ordinary backpropagation
step with a fixed learning constant v and a momentum rate «.

Such a gradient descent term is always added to the weight change AW =D computed with (21),
except in the case, where VE(W(*)) is nonzero and in the opposite direction of VE(W (*-1)),
The updating (21) alone is enough then, otherwise we may overshoot the minimum again, which
would lead to an oscillation of the learning algorithm.

Fahlmann observed that in some problems Quickprop causes some of the weights to grow very
large, which may even produce floting point overflows during the learning phase. He handles
this problem by adding a small weight decay (he chooses it to be —0.0001 x W) to the gradient
VE(W®*)) computed at each step. Since the goal is to take large steps (in the right direction) in
weight space, batching is used to obtain the gradients VE(W®*)). Fahlmann also adds an offset
to the derivative of the sigmoid (see 11) and uses constraint bipolar vectors (see section 3.1.3)
to speed the algorithin up.

For some larger problewms, he uses a technique proposed by D. C. Plaut, S. Nowlan and G. Hinton
[PNHR6], which chooses a different learning rate for every single neuron and its incoming weights,
depending on the number of the neuron’s incoming connections. This means that for neuron
J the incoming weights are changed with a rate v; = Ygiope/(F1ncom. weights of neuron j).
Fahlmann calls this technique, which we did not test, ’split epsilon’.

3.3.3 The extended Quickprop

M. Fombelida and J. Destiné merged the Extended Delta-Bar-Delta (see section 3.2.4) and the
Quickprop Algorithm described above [FD92]. The idea was to introduce the adaptive learning
rate of the Extended Delta-Bar-Delta Algorithm into Quickprop, which uses just an adaptive
momentum rate (21). Extendended Quickprop has a structure more reminescent of Quickprop
than of the extended Delta-Bar-Delta algorithm. We consider it to be a second order method
too. The proposed transference of the adaptive learning rate into Quickprop can be described as
follows, where the three distinguished cases correspond with those of the Quickprop Algorithm.

L. .sign(Sz-(f)) = sign(g(k)))"

aw® = [7)9;)+QAW(Voif ol > aaw Y
N %Jk 9, : +U 01/167 wise

24

2. sign(Sgc)) = sign(S'()) and |S' | > |S |
(k) ._ (K)ol (k—1)
AW 1= =755 + aAWS

3. sign(Si(]k)) # sign(Si(f)).

(%)

j

. . k—
A ®) ::{ aAH/(k R of vz(;) >aAW1-(j !

v otherwise

The learning rates are changed with the following rule

) Ne(—ﬁlSEf)l) if Sk lg
R A G s*k 15(7"

i
0 other wWISE

Like in case of the Delta-Bar-Delta algorithm, we have for 51-(11-") and ASA‘Z-(]I-C)

s = 0Ejowy 8§ =(1-0)sY 4085V

i
and v() is the quadratic Quickprop step
s
(%) ¥ (k-

v, = (—)_\.W
= G 5

The parameters a. x, ¢ and 6 have to be specified by the user. Since Fombelida and Destiné do
not write anything about how they choose them, we choose them to be the same as in Quickprop
and the Extended Delta-Bar-Delta Algorithm, that is x =~ 0.05, ¢ ~ 0.3 § = 0.7 and a = 0.9.
The learning rates v;; where again initialized to 0.1.

4 Orthonormalisation and Decorrelation of the Training-Set

This is in fact some kind of preconditioning, which means that the network is not trained with
the original training set, but with a 'new’ set, which is the result of some linear transformation
being applied to the original one, to achieve orthonormalization. and thus decorrelation of the
data. The positive effect of such a decorrelation can be explained by taking a closer look at the
network architecture shown in Figure 1. The network can be divided in two parts:

1. An assoclative memory: From the input layer to the output of the hidden layer.

2. A Linear regression network: From the output of the hidden- to the input of the
output layer.

The output layer may be neglected in this discussion, since it just performs a ’squashing’ of its
input, which is actually the important variable (see also section 3.1.5, item 3). It is easy to
find the weights for the two separate parts, if both are trained independently. The difficulty
of training a multilayer network is, that both parts have to be trained simultaneously, and of

course the targets of the associative memory (the output of the hidden layer), i.e the input of
the regression part are unknown. Nothing remains constant during learning and experiments
show, that first the weights of the first part (and thus the internal representations) are found,
and after that the weights for the linear regression part are estimated.

A closer look at the theory of associative memory and the corresponding hebbian learning (see
for example [HN91, HKP91, Roj93]) shows, that learning in associative memories becomes much
easier (and also the capacity of the memory increases!), as the vectors that have to be learnt, are
uncorrelated. A speedup in training multilayer perceptrons can also be expected, if the elements
of the trainings set are uncorrelated or, even better,; are orthonormal.

This may be visualized as a change of the error surface, which has to be climbed down. Since
there is a relation (or duality, see [Roj93]) between input- and weight space, orthogonalization of
the input data has also some kind of orthogonalizing effect on the error function in weight space.
This means that small angles between different steps of the error function are increased, which
has a ’rounding’ effect on the error surface. Small narrow oval valleys become more symmetric
now and much easier to descend.

4.1 Principal component ananlysis: Sanger’s and Oja’s Rule

Principal component analysis (PCA) is in fact some kind of data compression. The objective
is to find m orthogonal vectors out of a set of n-dimensional input vectors, that account for
as much as possible of the data variance [HKP91, Roj93]. The input data is projected into an
m-dimensional subspace (m << n is desirable), and each n-dimensional input vector is replaced
by its representation with respect to the m principal components, i. e. an m-dimensional
vector. Because of the possible reduction in dimensionality (and thus. reduction in the number
of weights) this makes the data much easier to handle. If, because of the data variance, such
a reduction can not be obtained, the computed principal components are at least mutually
orthogonal which has the 'rounding’ effect on the error surface described above.

These principal components are computed as follows. The first principal component is taken to
be along the direction with the maximum variance, which is the n-dimensional vector ¢y that
maximizes

T
> ezl
=

for all input vectors z;. The second principal component ¢, is constrained to lie in the subspace
orthogonal to the subspace spanned by ¢;. Within that subspace it is again in the direction with
the maximum variance and is estimated by computing the principal component of the vectors
&;, where &; := ([, — clc?)xi is the projection of z; outo the the subspace orthogonal to ¢;.
The other principal components are computed in the same way. The m-th principal component
¢, 1s obtained by computing again the principal component of the &;, where &; := (T:—ll([n -
ckckT,));'vi, the projection onto the subspace orthogonal to ¢y,.... 1.

Different strategies have been proposed to compute the first m principal components on a oune-
layer feed-forward neural network. These (unsupervised) networks, independently designed by
Sanger and Oja [HKP91], use the following learning rules:

C2

Figure 12: The first two principal components of a set of two-dimensional data
e Sangers Rule
i
Aw;; = Pey(zj — Z CkWy)
k=1
¢ Oja’s m-unit Rule
n
Aw.i]- = ﬂci(l‘j — Z Ckwk-j),
k=1

which just differ in the upper limit of the summation. Unfortunately neither of these learning
rules is local, so Sanger suggested a reformulation of his learning rule, which preserves locality.

—
N
N

—_—

=1
Awg = eil(z; = 3 exwng) = ciws)
k=1

The learning rate 3 has to approach zero slowly, as the number of iterations increase.
The corresponding network for this learning rule has the structure shown in Figure 14, where
the neurons denoted with a’+7 just compute the inner product of input- and weight vector, 1. e.

their activation function is just the identity.

W

Figure 13: A linear associator and its computation

The idea is to compute the first principal component with a linear associator and subtract it
from the input. The second linear associator computes the first principal component of this
modified input, that is it computes the second principal component of the original input, and so
on. The network is trained with Sanger’s rule and after training is completed, backpropagation

27

w1 Cq

r ——— —_—
Wi
*
z — cywy V2 2
Wy
E3
T — ciwy — 2wy | Y3 €3,
w3
*

Figure 14: Sanger’s network for the computation of the first 3 principal components

is performed replacing the original trainings iuput with the output ¢;...c, of the network
described above. The target vectors remain unchanged.

We trained the network using 40 x (#inputunits) X (#inputpatterns) training cycles. The
learning rate was initially set to 3 = 0.1 and every (#inputunits) X (#inputpatterns) cycles
reduced to 3 := % 0.75.

4.2 Adaptive data-decorrelation

F. M. Silva and L. B. Almeida have proposed a different mrthod of data decorrelation and
orthonormalisation [AS92, AS9la. AS91Db]. They employ layers of linear associators after the
input- and hidden layer, which have as much neurons as the input- rsp. hidden layer. These
layers perform a linear transformation, such that the output is uncorrelated and normalized.
These additional layers are trained with an unsupervised learning rule, either in batch or in
on-line mode.

We first give a motivation of the learning rule. The output y; of neuron j of a single layer of
linear associators (see Figure 13 above), where the number of input and output neurons are
equal, is

y; = a w,

where z is the input vector and a, is the weight vector of all incoming channels of output neuron
J- The correlation of two given outputs y; and y is

1 = Elyiy;) = ol E z2T)a; = al-TRIIa-, 23
7 J ? J 7

where R, is the correlation matrix of the input data and FE(-) is the expected value operator.
We want to find now a;, aj, such that y; and y; become uncorrelated. This means that r;; = 65,
where 4;; is the Kronecker-6. Looking at (23) we notice, that this means that a; and a; have
to be orthogonal in a space with metric R,,. As suggested in Figure 15 below this is done by
changing each vector a small amount # in a direction parallel to the other vector, weighted by
the dot product between both.

ﬁ) / sz = —f(vq vz)vl

Figure 15: Iterative orthogonalization of the vectors vy and vy

We just replace the dot product by the dot product with respect to R,; to obtain for a;

az(/c+1) k) ﬂ(agk)Tszagk))agk)

1671_7 a

where (3 is a learning constant and & the iteration index.
The general case with N variables (for the proof see [AS91a] e.g.) is handled by the expression

N
az(.kH) :az(.k) —ﬂZri]-aEk); t=1,...N.

IF#

k)

!
ol¥)

Since data normalization is also desired, this equation can be modified, so that a small contri-
bution of the adapted vector itself is included, positive ot negative, depending on whether r;; is
smaller or greater than 1.

N
az(-kﬂ) = agk)—,13ngja§k)+(1—rff))az(-k) i=1....N.
Ji
= (14 8)al? ,BZ?Z]a j=1,...N. (24)

In [AS91a] a proof is given that the algorithin above converges, if
o A= (ay,...,ay) is initially set to the identity matrix Iy,

o and S < min(l/2, 1/(3AF,.—1),

mazxr

where A7, . is the largest eigenvalue of R,,.
Equation (24) is the batch version of the learning algorithm. The online version is derived by

substituting r;; by the product y;y; and a time dependent learning parameter We obtain

N
o7V = (14 40Nl - gy S a0 =g
3=1

29

The distributed implementation of this (on-line) algorithm can be obtained by rewriting the
equation above as

aS;‘H) (1+ﬁ Na;)—ﬁ(k)yfk)z](»k), where z; _Za” yz ; j=1,...N. (25)

The learning phase of the on-line version can now be divided into three steps
1. Feedforward step. Computation of y; = a? z.
2. Backward step. Computation of the z;, which are stored in the units of the input layer.
3. Weight update step. As described in equation (25).

For the batch version, all the correlation parameters r;; are known, and we have

where p denotes the training pattern and P the size of the training set. This algorithm can also
be implemented using the same architecture, since (24) can be rewritten as

agjl_cﬂ) (1+ﬁk) __ﬁzyz

where 27 denotes z;, computed for the training pattern p.
The learning rate was initially set to 3 = 0.01 and every P, but at least 50 and at most 100
cycles, it is reduced using # = % 0.33, with a lower boundary f,,:, = 0.0001.

5 Testing conditions

In this section, we describe some factors that have a great impact on the required learning time,
and what we did about them.

5.1 Stopping Criteria

One difficulty is how to take the decision, when to stop the learning algorithm and conclude
that the learning phase is complete. The fastest learning algorithms degrade, if they have to
run several times longer as necessary, because of a too stringent stopping condition.

Some of the commonly used stopping criteria are the following ones:

e Small composite error: This simply means, that learning is assumed to be finished,
whenever E(W) < ¢ for some small ¢ (usually around 0.01) holds.

¢ Small individual error: Each output is required to be very close to the corresponding

component of the target, which mathematically means, that |[o(2) —¢||,, := max; |oj(.2)—tj| <
€ has to hold.

¢ Sharp threshold: Every component of the output is rogarded as one, if 052) > 0.5 and

regarded as zero, if 0() < 0.5. The output is indefinite for o;)= 0.5

30

e Threshold with margin: A compromise between the sharp threshold criterium and

the small individual error criterium. The output components o§2) are regarded as one
for 05»2) > (1 — o) and as zero for 05-2) < o0, and are indefinite otherwise. The choice of

0.5 < 0 < 1 depends on the problem to be learned.

Some other criterias are listed in [Fah88].

We think, like Fahlmann, that the first criterium (small composite error) is the worst choice,
although it is used by many researchers. On one hand we do not want some large error in one
output component to be traded off against very small errors in the others, since we want all
outputs to have small individual errors. On the other hand, the criterium is too restrictive for
many applications, because we do not want the output to be ezactly zero or one, for example.
We just want to be able to tell what the output is supposed to be, for example using the sharp
threshold criterium. In some benchmarks we had all the output bits classified right, although
E(W) was not smaller than 0.5!

To chose the right stopping criterium, one has to pose two questions about the problem to be
learned:

1. What kind of output do we want, real or binary?

2. Is the problem completely represented by the training set, or is some interpolation required
by the network?

If the target vector consists of real numbers, there is only one stopping criterium that makes
sense, the small individual error criterium, no matter if the network has to do interpolation
or not. We can not choose something like a threshold with margin criterium (margin around
what?) and the small composite error criterium has the drawbacks discussed above.

If we have binary outputs on the other hand, the question of interpolation has an impact on the
choice of the stopping criterium.

If there is no interpolation, which means that the network works as some kind of associative
memory, the sharp threshold criterium is sufficient. Because the network "knows’ all the possible
patterns, after the training phase has been completed, we can definitely tell, when an output is
supposed to be one or zero.

If there is interpolation, we want the network to produce for an unlearned pattern 7 close to a
known pattern ¢ an output 6 close to the output o belonging to <. So during the training phase,
we have to force the network to produce an output that is sufficiently close to the target vectors.
If the sharp threshold criterium is too weak, the threshold with margin criterium will do. The
margin ¢ is has to be chosen empirically to optimize the network.

We choose the stopping criteria discussed above depending on the problems to be learned. but
we always explicitly mention the criterium used for the special tests.

5.2 Restarting Algorithms

It may frequently happen, that the learning algorithm gets stuck in some local minimum or
in flat spots of the error function. In this cases, we allow the algorithmn to start again with a
different set of random weights. The total learning time then includes of course the time for the
unsuccessful trials.

The problem is how to decide early enough when an algorithm has got stuck, so that it is
restarted as soon as possible. On the other hand we want to be absolutely sure, that the

31

algorithm reached a local minimum. We do not want to be too hasty with the restart; maybe
the algorithm can still recover from an unfavorable position.

Some researchers have proposed a restart if the algorithm has not found a solution within a
certain number of iterations [RHWS86, Fah88]. This of course only makes sense, if one knows
how many iterations are usually required for a certain problem. If this is unknown, or if we want
to ’tune’ certain parameters of an algorithm to investigate their impact on the learning time,
we need some other criterium to decide, when an algorithm has got lost.

We propose a rather simple test, that only requires the observation of the error function E(W).
This test requires no extra computation and of course no global information. We 1monitor the
error function E(W) to see how much it decreases during a certain number of iterations. If the
decrement is too small, either because of a large flat plateau of the error function, or because of
a local minimum, we restart the algorithm. We choose the number of iterations that we wait,
before the decrement is estimated, to depend on the number of the patterns to be learnt. In
fact we choose it to be twice the number of training patterns, but at least 40. If the error has
not decreased at least 107° after this period, the algorithm will be restarted.

6 Benchmarks for Neural Networks

The problem of selecting adequate benchmarks to measure the convergence speed of a learning
algorithm is a rather difficult one. A learning algorithm, that performes very fast on a certain
problem may cowmpletely fail in another. We need a set of carefully choosen benchmarks, hovpe-
fully representative enough of 'real world’ applications, to investigate what a certain algorithm
is able to do.

The benchmark most often used is the XOR problem, because this is the only boolean function of
two input variables (together with its negation), that can not be learned by a single perceptron.
We ourselves did not use it as a benchmark, not even for 'nostalgic’ reasons, because it is too
small and not very relevant.

Tasks that can be solved by backpropagation networks can (roughly) be divided in two classes.
On one hand, we have problems, which require a very sharp distinction between different input
vectors. An example are extensions of the XOR problem, the so called parity problems. These
require a network output of 1, if the input vector has an odd number of components equal to 1,
and an output of 0, if this number is even. Two different input vectors with a hamming distance
(the number of different bits) of 1, which means that they are as close together as possible,
should produce a completely different output.

On the other hand we have problems that require some kind of interpolation or generalization,
that is input vectors with a small hamming distance produce also similar outputs. Such problems
are for example the classification tasks or the approximation of a given function by the network.
Although both classes must be considered, we believe that problems belonging to the second
class are closer to 'real world’ tasks.,

6.1 The Benchmarks used in this Paper

We selected, as a representative of the first class of benchiarks, a 4 bit parity problem.

We also made some runtime comparisons with decoder/encoder tasks of different sizes. The
networks solving this kind of problems have (usually) n input units, m < n hidden units and
again n output units. The input consists of an n-dimensional vector with only one component

32

equal to one and the other components equal to zero. The task is to reproduce the input, after
going through the 'bottleneck’ of the hidden units. If m = logsn, the encoder is called tight, if
m > logyn, it is called loose. These networks actually perform some kind of data compression
and the corresponding decompression.

Here is a complete list of the benchmarks we choose to evaluate the performance of the different
backpropagation variations.

o A 4-bit parity problem.
e Encoder/Decoder tasks of the sizes 10-5-10 and 16-4-16.

o A classification task, where the 16 x 16-square was divided into different clusters (Fig-
ure 16).

o A classification task, where from five input-components two were chosen by random out
of the (0,1) intervall. The other three components were set to be linear combinations of
the random ones. The target for each vector out of this data set (100 vectors) consisted
of three reals, the maximum, minimum and average of the input vector.

This task is of course not too exeiting, the aim was to have a benchmark with highly
correlated input data.

15 ﬁﬁ
12 . S
G

Figure 16: Clustering of the 16 x 16-square used as a learning benchmark.

7 Simulation Results

This section gives the runtime comparison of all the different variations described above. We
first describe the network architectures and parameters that were used to solve the problems,
then show the results and an interpretation of our experiments.

33

7.1 Architecture of the networks used

Table 1 shows the sizes of the networks, that were used to solve the benchmarks described
above. A dimension referred to as 'X-Y-7Z’ means, that the network has X input-, Y hidden-
and Z output units.

We also used an upper limit for the number of iterations. If no solution was reached within a
certain number of training cycles, the algorithm was declared to have failed to converge.

The third number is the number of trials for each benchmark.

‘ Benchmark H Network ‘ Max.It. ‘ Trials H
10-5-10 Encoder 10-5-10 1.000 10
16-4-16 Encoder 16-4-16 1.000 10
4 bit Parity 4-4-1 2.000 10
Cluster Recognition 8-10-3 2.000 10
Rec. of correlated cluster 5-10-3 1.000 10

Table 1: Sizes of the networks and parameters used

The training data for the parity and encoder problems was binary, coded as described in sec-
tion 6.1. For the cluster recognition problem we used binary input and output data. One
output unit should identify each cluster. This unit was set to 1 if the input belonged to the
corresponding cluster and set to 0 otherwise.

We choose as stopping criterium for the learning phase threshold with margin. For the parity
and encoder problems, which are totaly represented by the training data, we choose a margin of
0.4, which is almost the sharp threshold criterium. For the cluster recognition problems, where
the network has to interpolate, since we only used 190 out of the posible 256 points to train the
network, we used a margin of 0.3. For the correlated cluster recognition problems we used a
margin of 0.1, since the output consists of reals.

The network’s weights were initialized with small real random numbers » € (-0.7,0.7).

7.2 Runtime comparison

A runtime comparison with all the algorithms described in section 3.2 and 3.3 was made. We
also tested the behavior of all algorithms when the following modifications, described in 3.1 were
made

¢ Binary / Bipolar - Vectors.
¢ Adding an offset to the sigmoid’s derivative.
o The use of decorrelation Algorithms (either PCA or Adaptive Decorrelation).

o The use of the modified error function (12).

34

This meant 24 possible combinations, which were all tested with the different benchmarks de-
scribed above. The only exception was made for the encoder-problems. Since their input data
consists of the unitary vectors of the input space, which are allready orthonormal, we did not
perform PCA analysis on the input data. Our experiments show that performing PCA in this
cases rather slows the convergence process down.

The possible variations are referred to as ’Gradient-Reuse-05’ for example, were the extensions
are described in the following table:

‘ [Vec. Mode | Decor. | Offset | Err.Func || [Vec. Mode | Decor. | Offset [Err.Func |
01 || Binary None 0.0 Standard || 02 || Bipolar None 0.0 Standard
03 || Binary None 0.1 Standard || 04 || Bipolar None 0.1 Standard
05 || Binary PCA 0.0 Standard || 06 || Bipolar PCA 0.0 Standard
07 || Binary PCA 0.1 Standard || 08 || Bipolar PCA 0.1 Standard
09 || Binary Ad.Dec. | 0.0 Standard || 10 || Bipolar Ad.Dec. | 0.0 Standard
Il || Binary Ad.Dec. | 0.1 Standard || 12 || Bipolar Ad.Dec. | 0.1 Standard
13 || Binary None 0.0 Modified || 14 || Bipolar None 0.0 Modified
15 || Binary None 0.1 Modified 16 || Bipolar None 0.1 Modified
17 || Binary PCA 0.0 Modified || 18 || Bipolar PCA 0.0 Modified
19 || Binary PCA 0.1 Modified || 20 || Bipolar PCA 0.1 Modified
21 || Binary Ad.Dec. | 0.0 Modified || 22 || Bipolar Ad.Dec. | 0.0 Modified
23 || Binary Ad.Dec. | 0.1 Modified || 24 || Bipolar Ad.Dec. | 0.1 Modified

Table 2: Variations of the algorithms tested.

Testing eight algorithms with possible 24 variations on five different benchmarks means a huge
mass of data. Showing all the results we obtained in tables would mean a ’table-overkill’. To
avold it, we decided to present the data in the following way:

For each beuchmark, we report the results for all 24 (rsp. 16) variations on standard backpropa-
gation in batch mode under the use of a momentumn term. We report the mean training time as
well as the fastest result. This is done to have the possibility to show and compare the speedups
obtained.

Then we report the best result for each of the other algorithins. The rest of the results are
presented in tables in the appendix, were we only report the results for those algorithms, that
converged in at least 50% of the trials.

The diagrams show the average runtime (grey bars) as well as the fastest result obtained (black
bars). The numbers 01, ..., 24 stand for the standard backpropagation variations (see Table 2
above). F1, ..., F6 stands for

F1 || Fastest Result for gradient reuse {GR)

F2 || Fastest Result for delta bar delta (DBD)

F3 || Fastest Result for extended delta-bar-delta (EDBD)
F4 || Fastest Result for dynamic adaption (DA)

F5 || Fastest Result for Quickprop (QP)

F6 || Fastest Result for extended Quickprop (EQP)

Qn
DJ

The corresponding constellation is reported below, like "QP 22°.

If anything worth reporting occurred, that the figures and tables would not reveal (for example
that some algorithm had difficulties, if trained with bipolar vectors or something like that), we
describe the problem in the text.

7.3 Results for the 10-5-10 Encoder

The network for the 10-5-10 Encoder is relativly small, and the problem itself is rather easy to
learn. So all the algorithms peformed relativly well, as Figure 18 shows.

Time (in Sec.)

i
|
1

2004

1olfl !

| ’.) f]! :& 1n

| i

il I
UTUZ U3 U4 05 06 07 0% 091 1314 1516 51920 2
F1:. GR 03| F2: DBD 23| F3: EDBD 03
F4: DA 15| F5: QP 21 || F6: EQP 11

Figure 17: Results for the 10-5-10 Encoder problem.

[t should be recognized that even simple modifications of the standard algorithm, like using
bipolar vectors and/or adding an offset to the sigmoid’s derivative, lead to significant speedups.
Quickprop and the dynamic adaption algorithm learned the problem really fast, but this does
not hold for the extended Quickprop.

7.4 Results for the 16-4-16 Encoder

The 16-4-16 Encoder is somewhat harder to learn than the 10-5-10 Encoder, but Figure 19
shows, that significant speedups can be obtained by using simple modifications of the standard
algorithm.

The gradient reuse algorithm had great problems with this benchmark. The modified error
function provided (in general) no speedup, it rather caused the algorithm to diverge. While
Quickprop and the dynamic adaption algorithm still learned the problem fastest, extended
Quickprop still was not too fast.

36

Time (in Sec.)

100

50 i

it |
Ii il 4

| | WHHHE N inel
1l i

01 02 d3 04 05 06 07 08 69 101112 13 14 15 iﬁ 17 1819 20 21 22 QB 24 3
F1: GR 03] F2 DBD 13] F3: EDBD 03
F4: DA 03] F5: QP 03| F6: EQP 03

Figure 18: Results for the 16-4-16 Encoder problem.

Almost all algorithms performed best with the same combination of binary vectors and the
addition of an offset to the sigmoid’s derivative.

It seems that the Encoder tasks are better learned with binary vectors, since the input is already
orthogonal and decorrelated, which does not hold for the bipolar vectors anymore.

7.5 Results for the 4 Bit parity problem

This case is a lot more difficult to solve than the Encoder problems and in fact only five standard
backpropagation variations converged at all. It is significant, that all five variations used bipolar
instead of binary vectors to train the network.

The gradient reuse algorithm almost completely failed to converge (except for constellation 10)
and also the dynamic adaption algorithm and Quickprop did not do too well. It is interesting
that Quickprop reduced the error very fast at the beginning, but when the error was somewhat
below 0.9, there was almost no reduction anymore. This could be solved by allowing bigger step
sizes which may, on the other hand, lead to oscillations for other problems. Both delta-bar-delta
algorithms, plain and extended, performed very well under almost all constellations.

It seems that what worked best for the 4 bit parity problem is the inclusion of the decorrelation
layers, either with binary vectors or with bipolar vectors using the modified error function.
PCA preconditioning provided almost no speedup, which is not too surprising, since there is no
correlation between the input data.

7.6 Results for the cluster recognition problem

The cluster recognition problem now is the first benchimark, where the network has to interpolate
between the training data, which it did well.

Time (in Sec.)
130/

100

50

il Iff Il b I
01 02703 04 05 06 07 U3 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

F1: GR 10| F2: DBD 10| F3: EDBD 22
F4: DA 22| F5: QP 06 || F6: EQP 10

Figure 19: Results for the 4 bit parity problem.

It turned out, that for this problem the network performed sifgnificantly better using bipolar
vectors, as Figure 21 shows. All the other standard modifications also speed the algorithm up,
but none as bipolar vectors. The PCA preconditioning provides a small speedup for the pure
training phase of the backpropagation network, but if one includes the training time for the
PCA network, which is about 17 seconds, the speedup is gone.

This is almost the fact with the decorrelation layers. Although they reduce the iterations
which are used to train the network (BP 02: 135 Iterations; BP 10: 87 Iterations), passing the
informations through these layers takes more time than is saved by the iteration reduction. If
the problem to learn gets more difficult, the decorrelation layers will pay.

Thwe (in Sec.)
75

501

Do 00 Of U A
0T 020304050607 03091011 1213141516 17 18319 2021 222324 F1F2E3F4EF5F0

F1: GR 09 F2: DBD 06| F3: EDBD 06!
F4: DA 18| F5: QP 14| F6: EQP 06

Figure 20: Results for the cluster recognition problem.

As for the parity problem, the gradient reuse algorithmn performed relatively bad. in fact it was

38

often slower than the corresponding standard algorithm.

The DBD and EDBD algorithms performed again relatively well, although they had even more
problems when dealing with binary vectors than the corresponding standard algorithm. The
fastest results were again obtained with Quickprop and the dynamic adaption algorithm. Ex-
tended Quickprop again performed relativly poor, which means that if it converges at all, it does
this rather slow.

7.7 Results for the correlated cluster recognition problem

This task was the hardest of them all, and as for the first cluster recognition, the algorithms
performed significantly better under the use of bipolar vectors, as Figure 22 below shows. In
fact, standard backpropagation only converges when trained with bipolar vectors.

Time (in Sec.)

A

100 |
)l

11 11

OT 0T 0T 0905 U5 07 VN 09 10 TT 12 T T3 15 T6 7 T8 19 20 IT 22 T3 24 FT 2 By e s e
Fl: F2: DBD 11| F3: EDBD 10
F4: DA 10 || F5: QP 08 | F6: EQP 22

Figure 21: Results for the correlated cluster recognition problem.

The table also shows, that all algorithms learn the task a lot faster, if decorrelation algorithms
are used. The fastest results were all obtained if either PCA preconditioning was used (as for
standard backpropagation and both Quickprop algorithms) or adaptive decorrelation layers were
included, where the adaptive decorrelation algorithin seem to do a little better than PCA. This
may have its reason in the fact. that PCA (where the input dimensionality is reduced to three)
provides only a decorrelation of the input data., where the adaptive decorrelation algorithm
decorrelates also the input of the hidden layer.

The gradient reuse algorithm fails completely to converge for all variations and the delta-bar-
delta algorithm performed relatively bad, as well as the extended Quickprop. The extended
delta-bar-delta algorithm, the dynamic adaption algorithm and Quickprop did very well. The

39

extended Quickprop algorithm converged in almost all cases, but the dynamic adaption al-
gorithm and Quickprop were usually faster, where the dynamic adaption algorithm usually
performed best.

The modified error function seems not to have a positive effect on the convergence speed, almost
all algorithms converged faster without it.

7.8 Concluding remarks on the learning procedures

¢ Standard varlations

1.

Bipolar vectors seem to have a major influence on the convergence speed of all
learning procedures tested. Almost all benchmarks (except for the encoder problems,
since their input is already orthonormal), were learned faster, sometimes significantly,
when the network was trained with bipolar vectors, no matter which algorithm was
used.

. Adding an offset to the sigmoid’s derivative speeds the algorithms up in most

cases. Exceptions are those problems, which require a fine tuning of the weights, like
for example the four (or more) bit parity problems or the approximation of continuos
functions, which we have not tested here. In these cases, in which the error function
seems to have rather steep slopes anyway, the offset can cause the weight updating
algorithms to perform rather wild jumps.

. Decorrelation Algorithms also seem to have a major influence on the convergence

of the learning procedures. Uncorrelated data is in fact much easier to learn than
correlated data. The speedup obtained with those decorrelation algorithms may
even be bigger, if for example a network has to learn large sets of highly correlated
experimental data. This can easily happen in real world applications.

. The use of the modified error function. Although it sounds like a good idea,

the modified error function only seems to provide speedups for smaller, less complex
tasks, such as the 10-5-10 encoder or the recognition of the shading of the 16 x 16-
square. For more complex tasks, the modified error function rathe slows down the
convergence, or even causes divergence of the algorithm. This may be ovecome, if
the input error is not approximated (since the sigmoid is approximated by a straight
line), but really computed. Then more precise error corrections without flat spots in
the output layer can be expected.

e Weight updating strategies

L.

2.

The gradient reuse algorithm was only faster than the standard algorithm for
small problems, like the encoder problems or the recognition of the shading of the
16 x 16 square. For more complex problems it was either slower than standard
backpropagation (like for the 4-bit parity problem) or did not converge at all (like for
the correlated cluster problem).

The delta-bar-delta algorithm only performed well for the 4-bit parity problem.
[t seems, that a fine tuning of the parameters x, ¢ and %, on which the weight-
updating depends, is required. This requires, on the other hand, quite a few tests to
tune them, which again takes a lot of time.

40

3. The extended delta-bar-delta algorithm has similar problems as the delta bar
delta algorithm, although it performes better in general, and significantly better for
the recognition of the correlated cluster. But here as well, there are a lot of parameters
which have to be chosen careful for each benchmark, which requires a lot of time and
knowledge about the error surface shape.

4. The dynamic adaption algorithm. Although the algorithin performs very well
for all benchmarks, it seems that the normalization of the gradient, which the original
algorithm requires, has a bigger influence on the convergence of the algorithm than
it was reported by Salomon. Theoretically it makes no difference, but in practice,
if a large learning parameter and a steep descent come together, the algorithm may
overshoot any minimum and get stuck in very flat spots far away from any solution.
This was observed frequently, mainly for more complex problems. Since normalization
of the gradient can not be done without using global information, another way may
be figured out to constrain the stepsizes and stop the algorithm from jumping too
wild. Besides this problem, the dynamic adaption has the big advantage, that there
is no parameter, which needs to be tuned.

[

. Quickprop also performed very well for all benchmarks. The algorithm has just one
important parameter involved, the 'maximum growth factor x’, which almost needs
no tuning. Experiments show, that it is rather to be choosen too small than too big,
values of about 1.3 to 1.7 will do well for any problem.

6. Extended Quickprop was almost a complete failiure. It was often slower than the
standard algorithm (or at least not significantly faster) and always slower than any
other algorithm, except for the gradient reuse algorithm. This may again have the
reason in the fact that there are quite a lot of parameters involved, which need to be
tuned. In our opinion, an algorithm which has many parameters of great influence,
which have to be tuned finely and which are different for each problem, is not very
good anyway.

8 Future work

Having implemented and tested a great numnber of learning algorithmns for multilayer neural
networks, we are planning to design some kind of "hybrid learning algorithm™ by combining
some the algorithms above. The algorithm should be able to switch between several optimizing
strategies, depending on the shape of the error surface.

It is also planned to implement some of the algorithms, as well as the hybrid algorithm, on a
massively parallel machine, the CNAPS computer of Adaptive Solutions. Since this machine
is several times faster than the workstation on which the algorithms have been implemented
so far (speedups of 500 - 1000 can be expected), much more complex tasks could be chosen as

benchmarks. This will yield a better comparison of algorithms and will make it possible to solve
real world tasks.

41

9 Appendix (Tables for the runtime comparison)

9.1 Results for the 10-5-10 Encoder
‘ Benchmark: 10-5-10 Encoder
\ B-BP GR DBD EDBD DA QP EQP
[AR FR[AR| FR| AR[FR| AR | FR| AR[FR | AR [FR | AR [FR

01 || 34.0 [21.1 [11.6 9.9 [17.7 | 14.6 | 10.5 8.5 5.7 | 5.3 43 [36 [18.7 | 14.3

02 || 32.7 [19.6 | 12.8 69 | 197 | 153 | 183 [12.8 69| 5.2 [116 | 5.8 [204 | 17.0

03 |[15.1 | 13.0 7.0 59] 11.6 9.7 | 85 7.4 48 | 4.5 3.9 33132 112

04 || 17.0 9.5 | 12.8 5.2 | 151 | 11.4 | 16.4 | 10.4 57 | 4.3 9.8 | 6.2 | 154 | 11.9

05 — — — — — — — — — | = — | — — —

06 — — — — — — — — — | — — | — — —

07 — — — — — — — — Y R — — | — — —

08 — — — — — — — — — — | — — —

09 [201131104] 151 156 | 11.9 | 106 8.0 60| 5.6 8.7 [36 [16.3 | 12.1

10 [17.3 | 12.6 | 11.1 6.5 | 159 [12.3 | 14.9 | 104 6.7 | 5.3 6.6 | 5.2 | 17.2 | 14.2

11 [11.2 9.8 7.5 6.2 | 10.8 8.8 8.5 7.1 5.1 | 4.8 4.7 | 3.4 | 11.9 9.9

12 || 11.5 7.5 | 10.7 5.3 | 12.7 | 10.3 | 135 | 101 59 | 4.4 9.8 | 5.4 | 13.2 [11.1

13 9.6 8.0 | 17.0 6.7 | 10.0 8.2 8.9 7.8 43 | 3.8 3.6 | 2.9 | 148 | 126

14 || 11.2 5.4 | 18.4 5.9 | 10.7 7.7 | 11.8 9.4 8.7 | 3.7 6.2 | 5.0 | 14.5 | 11.9

15 8.5 6.8 | 15.8 71 9.4 7.6 9.0 7.4 42 | 38 38] 29 | 153 [120

16 || 18.9 5.3 | 20.6 57 | 12.4 9.2 | 14.2 97 57 | 40 | 12.7 | 6.1 | 174 | 115

17 — — — — — — — — — | = — | - — —

18 — — — — — — — — — [— — | — — —

19 — — — — — — — — — — — | — — —

20 — — — — — — — — — | — — | — — —

21 3.1 7] 23.7 7.5 9.0 7.5 9.5 7.8 4.6 | 4.1 3.6 | 3.0] 123 | 10.2

22 8.3 5.0 | 21.4 5.5 8.9 74 | 11.7 9.3 | 13.0 | 4.0 79 391231 104

23 7.4 5.9 | 35.8 | 19.2 8.4 6.7 8.7 7.1 45 | 4.0 4.3] 29[130 9.8

24 || 10.0 4.5 | 24.9 6.3 9.8 7.5 | 12.1 8.6 6.4] 42 11.8| 56| 156 | 106

9.2 Results for the 16-4-16 Encoder

Benchmark: 16-4-16 Encoder
B-BP GR DED EDBD DA QP EQP
AR FR| AR] FR|] AR FR| AR[FR| AR] FR| AR][] FR| AR | FR

[01 [[1059 [904 7031] 574] 362 [320] 223]162 [384] 83 113 [63] 400 347]
[02][104.2 [96.6 | 207.8 | 100.0 76.7 | 48.8 54.0 | 39.3 73.3 [18.0 | 119.5 | 16.2 67.1 88.5
[03 43.8 | 31.0 42.6 28.3 21.5 | 19.2 15.3 | 12.7 10.6 9.1 7.8 6.3 25.0 22.0
[04 97.0 | 371 — — — — — — 49.1 [19.3 — — — —
05 — — — — — — — — — — — — — —
06 — — — — — — — — — — = — — —
07 = — — — — — — — — — — — — —
[03 — — — — — — — — — — — — — —
[09][678511 72.5 46.3 332 [29.1 23.9 | 201 32.8 | 11.0 — — 37.8 33.4
[10 53.2 | 35.0 | 140.2 48.5 37.6 | 33.0 35.8 | 27.7 24.0 [15.1 90.3 | 15.8 40.4 35.1
11]] 349] 252 56.2 38.7 248 | 18.3 17.8 | 14.2 16.1 | 10.0 — = 29.1 22.1
[12 [1387 | 366 — — | 100.5 | 52.2 72.2 | 31.7 44.9 | 203 | 163.2 | 35.7 66.5 33.9
[13][103.4 | 284 | 109.2 57.9 204 | 17.4 21.6 | 15.3 22.1 7.2 6.8 5.7 43.3 29.3
[14]] 94.6 [44.6 | 183.0 [100.0 55.4 | 35.9 62.1 | 32.9 39.8 | 10.8 — — 79.6 53.5
15 51.0 | 278 98 .4 74.1 211 | 17.8 21.0 | 14.6 14.3 9.5 8.6 7.0 38.5 27.3
16 || 80.1 [29.6 — — — — — — [1696 | 31.4 | 121.9 | 71.0 - —
17 | - — — — — — — — — — — — —

18 — — — — — — — — — — — — — —
[19]] — — — — — — — — — = _ — — —
[20] —1 — — — — | = — | = — [= — [= — =
(21)] ma3[276] 1645 96.0 22.8 [19.2 69.5 | 18.3 32.2 7.7 — — 38.4 29.0
22 [55.8 | 202 — — 45.3 | 23.4 54.0 | 25.0 — — 49.9 | 22.0 61.8 36.3
23 68.0 | 36.4 — — 34.4 | 22.1 23.2 | 180 | 132.5 | 16.1 73.5 | 43.3 44.9 29.3
24 41.5 | 19.7 — — — — | 1836 | 45.6 — — | 146.5 [39.6 | 190.1 | 100.0

9.3 Results for the 4-bit Parity Problem
Benchmark: 4-bit Parity Problem
B-BP GR DBD EDBD DA QP EQP
AR| FR| AR | FR| AR]| FR| AR| FR| AR FR| AR]| FR| AR] FR
01 — —] — — — — [841 | 327 — | = — — — —
02 || 121.6 | 773 | — | — | 77.7 | 71.2 | 44.1 | 29.6 | 142.1 | 187 — — | 939 | 717
03 — — | — | — 1949|1000]| — | — —] = — = — —
04 || 1368 | 729 | — — | 1005 | 583 | 39.9 | 29.4 | 202.7 | 96.7 | 98.4 | 17.4 | 87.2 | 65.1
05 — — | = — — — | 440 | 31.3 — — — | — — —
06 || 850 | 36.7 | — — | 704 | 454 | 36.2 | 25.4 | 95.4 | 22.8 | 280 | 139 | 66.1 | 469
[07 — — | = — | 134.8 | 588 | 63.2 | 335 — | = — | — 11523 526
08 || 84.1 | 45.5 — — | 739 | 744]350] 214 — | — 1014] 174] 730 459
09 — — | — — — — — | = —] = — | — — —
10 47.9 | 264 | 82.5 | 69.3 | 466 | 47.6 | 30.0 | 21.2 — = — — | 487 397
11 — — | = — | 107.9 | 40.5 | 42.2 | 20.9 | 106.1 | 26.1 | 120.6 | 57.7 | 127.2 | 56.2
12 99.1 | 58.2 — — | 846 | 403 | 265 | 20.8 | 134.3 | 17.3 | 92.9 | 21.6 | 85.3 | 36.6
13 — — | =1 = — — — — | 140.5 | 23.8 — — — —
14 — — — — | 598 | 47.7 | 259 | 24.7 | 834 | 13.4 — — — —
13 — — | = — — — 967 | 35.7 — | — 11346] 366 | 182.0 | 103.0
16 — — | = — [1796 | 60.4 | 378 | 239 — [— [1169 [22.6 | 109.4 | 369
17 — — | — — — — — — — | = — | = — —
18 — — = — | 564 | 389 | — | — |1161 | 139 | 403 | 11.8 | 53.8 | 400
19 — — = — - 582 | 329 — | — [1349 | 44.2 — —
20 — — | = — [861 | 439 | 301 | 192 — | — | 524 [125 — —
21 — — — — — — | = — [= — — — —
22 — - = — — — [209 | 189 | 791 | 97| 420 | 5.9 — —
23 — — — — — — [931 | 387 — — — | = — —
24 — — | = — — — | 564 | 164 — | — 1332 208 — —
9.4 Results for the Cluster Recognition Problem
1 Benchmark: Cluster Recognition Problem
; B-BP GR DBD EDBD DA QP EQP
1’ AR | FR AR | FR AR [FR AR | FR AR [FR AR | FR AR FR
(01 [54.8 | 40.7 — — | 523 [40.0 | 284 | 20.3 | 96.7 | 20.8 | 38.6 | 22.4 — —
02 || 404 | 31.6 | 100.8 | 73.2 | 163 | 10.8 | 15.0 | 13.0 | 138 [10.1 | 105 | 7.5 | 22.3 | 18.8
03 || 49.9 | 34.8 | 216.4 | 105.6 | 71.7 | 56.5 | 70.1 | 27.3 | 24.1 | 18.1 | 53.1 | 32.0 — —
04 || 235 | 18.1 | 79.8 | 71.2 | 14.6 | 12.0 | 14.8 | 13.0 | 11.7 | 104 9.7 | 84| 225 169
(05 || 53.0 | 45.8 — — | 360 | 27.0 | 238 | 21.2 | 91.6 | 17.6 | 17.0 | 13.2 | 528 | 43.5
[06][398305 | 984 [810 | 137 | 114 | 155 | 142 | 124 | 10.1 89 | 72| 218 196
[07 [55.4 [327 | 2110 [1035 | 652 | 36.3 | 61.1 | 23.7 | 488 [17.3 | 64.5 | 20.1 | 103.2 | 60.0
{08 [243] 201 | 836 | 675 144 | 120 | 154 | 133 | 11.7 | 93 9.8 | 7.8 | 22.7 | 17.8
[00 [[622] 490 567 | 503 | 67.6 | 46.2 | 46.4 [39.0 | 30.2 [15.6 | 53.5 | 34.9 — —
10 | 51.2 | 41.8 [135.8 | 120.8 | 240 [187 | 29.9 | 25.5 | 24.0 | 183 | 19.7 | 13.7 | 373 | 297
11 || 50.6 | 45.3 | 123.5 | 61.5 | 123.5 | 61.5 | 108.9 | 51.9 | 40.0 | 29.1 | 84.8 | 45.6 — —
12 [323 [28.0 [105.0 | 94.8 | 26.0 [21.8 | 26.7 | 23.2 | 21.7 | 189 | 17.1 | 159 | 37.4 | 27.2
3 — — | 2344] 998 — = - — — | — 1 333 234 — —
[T1][229 159 | 465 | 41.8 | 204 | 123 | 171 | 154 | 10.7 | 838 7.5 | 6.5 s —
15] — - — — — — — — — — [11138 | 426 — —
16 [188 [13.2 [55.0 | 46.0 | 26. 126 | 18.0 [14.2 | 121 9. 84 [6.9 1338] 806
7 = — — — — | = — — | —] 460] 123 — 3
18 || 190 | 144 | 476 | 401 | 17.7 | 114 | 161 | 15.1 | 11.0 | 9.7 77| 6.7 — —
1| -7 — — — — | — 13067 704 — | — 11108358 — —
20 |[240 | 157 | 503 | 41.8 | 236 | 123 | 17.5 | 146 | 12.5 | 9.7 82| 7.2 | 1287 | 54.7
21 || — — | 239.0 | 110.5 — — — — - — | 33.7] 38.5 — —
22 [271 [193 | 71.7 | 645 | 56.9 | 21.1 | 29.2 | 254 | 186 | 17.1 | 13.6 | 12.1 —
23 — J— J— — e = i — — — — J J —
24 [[793 [62.2 | 793 | 62.2 | 608 | 24.6 | 296 | 25.2 | 22.6 | 17.1 | 153 | 12.3 — —

9.5 Results for the Correlated Cluster Recognition Problem
Benchmark: Correlated Cluster Recognition Problem

B-BP GR DBD EDBD DA QP EQP

AR | FR| AR | FR AR[FR AR] FR AR] FR AR [FR AR [FR
01 — — — — — — | 151.2 | 110.5 | 106.7 | 64.6 | 116.5 48.4 — —
02 111.2 | 70.9 — — — — 53.7 35.2 76.3 | 62.7 87.8 41.7 | 1494 | 101.6
03 — — — — — — — — | 108.0 | 70.6 — — — —
04 63.1 | 37.5 — — — — 61.9 38.1 69.4 | 50.2 78.5 39.2 — —
05 — — — — -— — — — — — — — — —
06 — — — — — — 67.1 47.6 83.3 | 55.4 82.9 34.0 | 158.1 112.8
o7 — — — — — — — — — — — — — —
08 54.3 | 36.1 — — — — 65.3 40.2 56.4 | 46.9 58.5 30.0 — o
09 — — —_ — | 155.5 | 112.4 | 106.9 38.8 66.7 | 39.1 150.4 102.5 180.3 | 120.9
10 60.2 | 40.8 — -~ | 151.7 78.1 53.2 40.7 52.8 | 37.9 75.4 49.1 135.3 79.1
11 — — — — | 133.8 90.5 | 101.1 57.5 66.3 | 51.5 | 147.4 105.3 | 170.3 | 124.2
12 69.5 | 47.7 — — | 161.4 | 133.7 74.2 41.2 55.1 40.5 79.6 54.3 | 132.9 | 105.3
13 — — — — — — | 142.2 | 115.7 — — — — — —
14 — — — — | 139.4 32.7 83.4 38.8 | 125.5 | 44.3 98.7 28.7 | 155.6 | 112.7
15 — — — — — — | 113.5 87.7 — - — — ——
16 -— — — — — — 74.1 40.6 95.1 | 39.0 97.0 52.1 — —
17 — — — — — — — — — — — — — —
18 — — — — | 143.1 | 122.6 69.3 35.3 90.8 | 41.8 58.7 24.8 | 134.2 | 117.3
19 — —] = = — — — — — | — — - = =
20 — — — — — — 81.7 35.2 98.7 | 58.7 71.4 23.9 | 158.7 | 136.4
21 - — — — — — | 134.1 89.6 | 149.7 | 60.7 — — — e
22 — —_ — -~ | 145.6 81.8 79.2 35.2 84.4 | 38.5 | 133.5 32.1 102.5 57.6
23 — — — — — — | 153.4 84.5 — — — — — —
24 — — — — — — | 110.5 62.9 | 117.3 | 51.5 | 134.0 46.3 | 136.9 86.0

44

References

[AS91a]

[AS91b]

[AS92]

[BH69]

[BHY2]

[BIC83]

[Fah38]

[FD92]

[Hes80]
[HKPY1]

[HNZ9]
[HN91]
[HS38]
[Jac88]
[Jud87]

[KDS90]

[Lue73]

[MP88]
[MW90]

L. B. Almeida and F. M. Silva. A distributed solution for data orthonormalisation. In: T.
Kohonen, K. Makisara, O. Simula and J. Kangas, editor, Artificial Neural Networks, pp. 943-
948, Amsterdam, 1991. North Holland.

L. B. Almeida and F. M. Silva. Speeding-up backpropagation by data orthonormalisation. In:
T. Kohonen, K. Makisara, O. Simula and J. Kangas, editor, Artificzal Neural Networks, pp.
1503-1507, Amsterdam, 1991. North Holland.

L. B. Almeida and F. M. Silva. Adaptive decorrelation. In: 1. Aleksander and J. Taylor, eds.,
Artificial Newral Networks, pp. 149-156, Amsterdam, 1992. North Holland.

A. E. Bryson and Yu-Chi Ho. Applied Optimal Conirol. Blaisdell, New York, 1969.

K. Balakrishnan and V. Honavar. Improving convergence of backpropagation by handling flat
spots 1n the output layer. In: 1. Aleksander and J. Taylor, eds., Artificial Neural Networks,
pp. 1003-1009, Amsterdam, 1992. North Holland.

S. Becker and Y. le Cun. Improving the convergence of backpropagation learning with second
order methods. In: D. Touretzky, G. Hinton, and T. Sejnowski, eds., Proceedings of the '88
Connectionist Models Summer School, pp. 29-37. Carnegie-Mellon-University, 1988.

S. E. Fahlmann. Faster-learning variations on back-propagation. In: D. Touietzky and T. Se-
jnowski Gi. Hinton, eds., Proceedings of the 88 Connectionist Models Summer School, pp.
38-h1. Carnegie-Mellon-University, 1988.

M. Fombellida and J. Destine. The extended quickprop. In: 1. Aleksander and J. Taylor, eds.,
Artificial Neural Networks, pp. 973-977, Amsterdam, 1892. North Holland.

M. R. Hestenes. Conjugate Direction Methods in Optimization. Springer, New York, 1980.

J. Hertz, A. Krogh, and R. Palmer. [niroduction to the Theory of Neural Computalion.
Addison-Wesley Publishing Company, Redwood City, 1991.

R. Hecht-Nielsen. Theory of the back propagation neural network. In: Proceedings of the
IEEE Ist International Conference on Neural Networks, vol. 2, pp. 381-386, 1989,
R. Hecht-Nielsen. Neurocomputing. Addison-Wesley, Reading, 1991.

D. R. Hush and J. M. Salas. Improving the learning rate of back-propagation with the gradient
reuse algorithm. In: Proceedings of the IEEE 1st International Conference on Neural Networks,
vol. 1, pp. 441-447, 1988.

R. A. Jacobs. Increased rates of convergence through learning rate adaption. Neural Networks,
1:295-307, 1988.

S. Judd. Learning in networks is hard. In: Proceedings of the [EEE 1st International Confer-
ence on Neural Networks, vol. 2, pp. 685-692, June 19387.

A. Krzyzak, W. Dai, and C. Y. Suen. Classification of a large set of handwritten charac-
ters using modified backpropagation model. In: Proceedings of the IEEE Ist International
Conference on Neural Networks, vol. 3, pp. 225-232, 1990.

D. G. Luenberger. [niroduciion to linear and nonlinear Programming. Addison-Wesley Pub-
lishing Company, London, 1973,

M. L. Minsky and S. Papert. Perceptrons. MIT Press, Massachusets, 1988.

A. A. Minal and R. D. Williams. Backpropagation heuristics: A study of the extended delta-
bar-delta algorithm. In: Proceedings of the IEEE Ist Inlernational Conference on Neural
Networks, vol. |, pp. 595-600. 1990.

[Par85]

[PNH86]

[RHWS6]

[Roj93]

[Sat91]

[SH37]

[SR87]

[Wat87]

[Sal92]
[WerT4]
[Wer88]

[WSW37]

D. B. Parker. Learning logic. Technical Report 47, Center for Computational Research in
Economics and Management Science, MIT, 1985.

D. C. Plaut, S. J. Nowlan, and G. E. Hinton. Experiments on learning by back-propagation.
Technical Report CMU-CS-86-126, Carnegie-Mellon-University and Comp. Science. Dep,
Pittsburgh PA, 1986.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error
propagation. In: D. E. Rumelhart and J. McClelland, eds., Parallel Distributed Processing.
MIT Press, 1986.

R. Rojas. Theorie der Neuronalen Netze — Ewne systemalische Einfihrung. Springer, Berlin,
March 1993,

A. Sato. An analytical study of the momentum term in a backpropagation algorithm. In:
T. Kohonen, K. Makisara, O. Simula and J. Kangas, editor, Artificial Neural Networks, pp.
617-753, Amsterdam, 1991. North Holland.

W.S. Stornetta and B. A. Hubermann. An improved three-layer, back propagation algorithm.
In: Proceedings of the IEEE 1st International Conference on Neural Nelworks, vol. 2, pp.
637-643, June 1987.

T. Sejnowski and C. Rosenberg. Netalk: A parallel network that learns to read aloud. Computer
Systems, 1:145-168, 1987.

R. L. Watrous. Learning algorithms for connectionist networks: Applied gradient methods of
nonlinear optimization. In: Proceedings of the IEEE Ist International Conference on Neural
Networks, vol. 2, pp. 619-627, June 1987.

R.Salomon. Verbesserung konnektionistischer Lernverfahren, die nach der Gradientenmethode
arbeiten. PhD thesis, TU Berlin, November 1992.

P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral
Science. PhD thesis, Harvard University, November 1974.

P.J. Werbos. Backpropagation: Past and future. In: Proceedings of the [EEE st [nternational
Conference on Neural Networks, vol. 1, pp. 343-353, 1988.

R. L. Watrous, L. Shastri, and A. Waibel. Learned phonetic discrimination using connectionist
networks. In: Furopean Conference on Speech Technology, pp. 377-380, Edinburgh. 1987.

46

