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Abstract

We examine in this paper the garbage collection problem in Prolog. The
peculiar semantics of Prolog, with its single assignment rule, imposes a heavy
burden over the processor of a traditional von Neumann computer. The memory
management has to be done by the processor and not by the programmer: this
makes programming easier but the programs could be executed innefficiently if
no appropriate memory management method is used.

We discuss the garbage collection strategies used in Lisp systems and in which
way they could be adapted for a Prolog system. We give several alternatives
for the implementation of a garbage collector in Prolog, which go from the very
simple (garbage collection done by the programmer) to the very elaborated (a
system of pointers to segments). The decision over which method should be used
depends then of the type of computer or architecture which is to be employed.

1. The problem

The great majority of Prolog compilers and interpreters work with very
inefficient memory management. This is not a problem of careless
programming but of the peculiar semantics of Prolog, which is very
different to the semantics of other languages. We can illustrate this point

with an example.
Consider the following clause

a:- b(X),c(X),d(Y).



In a conventional procedural language we could collect the memory cell
occupied by X just before the call to predicate d, because we know that in d
the value of X will not be used. That is not always the case in Prolog. If the
predicates b and c left choice points behind, we can not collect the memory
cell occupied by X: we must wait and see if no backtracking occurs. The only
case in which we can collect the memory cell occupied by X is when no
choice point exist between "creation" and "annihilation" of the this
variable.

2. Two new predicates.
It is possible to discuss the garbage collection problem more easily if we
introduce to new predicates "create" and "destroy". The first predicate
allocates a memory cell for a new variable in a clause. The second reclaims
the storage used by a variable. For example, the clause:

a:- b(X),c(Y).
could be written so:

a:- create(X), b(X), create(Y), c(Y).
In this way we just make explicit that which is always implicit in every
Prolog interpreter: before we can use the variables X or Y, we have to
allocate some memory for them. We would like to write also:

a:- create(X), b(X), destroy(X), create(Y), c(Y), destroy(Y).
As already said this is not always possible.
Just note the following points:
* At the time of creation only a memory cell is allocated for every variable.
* At the time of annihilation more than a memory cell could be collected,
because the variable could be instantiated to a structure or a list.

3. A pathological example.

Consider the quick-sort program:



gsort([HT],S,X):- split(H,T,A,B),
gsort(A,S,[HI1Y]),
gsort(B,Y,X).
gsort([1,X,X).

In this program after the tail of the original list was splitted in the sublists A
and B, we no longer need it. It would be better if we could write:

.... split(H,T,A,B), destroy(T) ....

All the information that we need for the sorting process is indeed already
contained in the sublists A and B. Conventional Prolog interpreters will not
annihilate T because of several possible reasons:

e In interpreters without a "switch"-capability (like that of a WAM) the
gsort predicate leaves fast always a choice point behind (for the second
option). Without an analysis of the second clause is not possible to know if
T will be required again or not.

e The interpreter does not know if the lists T, A and B "share". Depending
on the way that the split predicate works and depending on the structure
sharing methods of the interpreter, it could be the case for A to be the same
list as T (with B=[]). If we collect the memory cells of T too early we could
destroy the information contained in A. The program would crash.

Because of this T will be preserved in every iteration, that is, a copy of the
tail of every generated sublist will be stored with every recursive call. If we
start with a list of length 210 we are going to split the original list about ten
times. In every step we are going to left behind a copy of the old
information. That means that we need 10*210 storage cells for gsort to work.
If we want to sort a megabyte of integers, we should better be sure that we
have 20 megabytes of storage available!.

In practice the storage requirements of even "respectable” Prolog
interpreters are much worse than this. Our IF-Prolog interpreter uses 256Kb
of global stack just to sort 200 integers!.

4. The garbage collection facilities of the WAM.

The Warren-Abstract-Machine does theoretically much better garbage
collection than naive Prolog interpreters. As a matter of fact, David Warren
built garbage collection as an inherent feature of the WAM, but the



associated problems are not trivial and it is not surprising that fast nobody
implements garbage collection in practice.

Storage management optimization is achieved in the WAM with the use of
argument registers. If a temporary memory cell is needed, then an argument
register can be used to hold a new variable or a pointer to other data
structures. The argument registers can be overwritten and in this way a
simple form of garbage collection can be implemented.

Sometimes this overwriting capability of the WAM is not desirable, for
example, when a specific value has to be kept for later use. In this case one
has to define environment storage cells where it is possible to save
"permanent” variables. Warren has provided a method to identify
superfluous environment cells that are trimmed with every procedure call.
He calls this method "last call optimization", a generalization of tail
recursion optimization.

Take a look at this clause:

a(X,Y) - b(X), c(Y), d(Y).

If we suppose that "global" argument registers (A1,A2, ...) are present and
that all procedures become their arguments trough this registers we could
rewrite this clause like:

a(A1,A2) - Y1:=A2, b(A1), AL:=Y1, c(Al), d(A1).

Note:

e Predicate "b" gets its argument direct from "a" trough register Al.

e Argument register A2 must be saved in a local variable Y1, because
argument registers are global and can be overwritten in procedure calls.

* After A2 was "refreshed”, the local variable Y1 is no longer necessary. It

can be destroyed safely but only in the case that "b" left no choice points
behind.

If we suppose that the presence of argument registers is implicit in the
procedure calls (call a/2 is equivalent to a(A1,A2), etc), we could rewrite the
clause above as:

a/2:- create(Y1)
move (Y1,A2)
callb/1
move (A1,Y1)



destroy (Y1)
callc/1
calld/1.

Here create and destroy have the already described meaning. "Move" is only
a destructive assignment, possible with global registers.

Actually Warren has embedded the semantics of "create" in his "allocate”
instruction. Allocate reserves memory cells for the needed local variables
that are to hold "permanent" values and makes other housekeeping
functions. "Destroy” is implicit contained in the instruction "call". This
instruction trims the local environment before a procedure call is executed
(only in the case that no choice points make this trimming impossible).

The only possible inefficiency with this scheme is that the storage for all
required local variables is allocated at the beginning of the clause (with a
single "allocate") and not only when it is needed. This is nonetheless more
as compensated with the execution time savings of the simpler method.

As a matter of fact, the WAM is an optimal storage allocator in the case that
no structures are used (we discuss the case of unsafe variables later on).

5. Stacks are beautiful

The WAM uses three different stacks in order to manage the Prolog
computation rule. The local stack contains all of the control information:
environments and choice points. The global stack is used to hold structures
and "unsafe" variables. The trail stack hold the addresses of memory cells
which should be reset on backtracking.

This usage of multiple stacks makes backtracking very simple: in order to
backtrack it is only necessary to reset the pointers of the three stacks to its
original value (as stored in the choice point). In the case of the local and
global stacks this can be made immediately. In the case of the trail, the stored
addresses have to be popped and the corresponding memory cells reset.

In the case of frequent backtracking no storage allocation problem arises: in
each backtracking step memory is being freed. The three stacks come back to
their original starting point and everything is ready for a new forward
computation.

If the objective is to optimize backward computation, then stacks are the
optimal solution. It is difficult to realize a faster reset strategy than resetting
two pointers (global and local stack) and popping off the rest of the pointers



to memory cells which additionally need to be reset (because they lie beyond
the current choice point in the local or global stack).

It is because of some of this features that the WAM has become so popular:
the registers perform some kind of garbage collection at no cost, they make
the parameter passing faster, the deallocate feature maintains a minimal
environment and the used stacks optimize backtracking.

There is only a big problem with the global stack: there is no simple way to
implement garbage collection in it.

6. Stacks are difficult to compress

In a better world like this, a world with recursive architecture computers,
there would be no need for a global stack to hold structures. If we represent a
memory cell with the Prolog structure cell(Tag,Value) and if we suppose
that every argument register is capable of holding one of this "cells", we
could then have simple values like

A1l = cell(constant, [] )
other
Al = cell(integer, 13)

contained in the first register. A recursive structure, like the list [a,b], could
be stored like

A1l = cell(list, '.'/2(cell(atom,a),cell(list,".' /2(cell(atom,b),cell(const,[])))))

Such simple recursive storage of terms must be simulated in the memory of
the computer . Every structure has to be stored in the global stack and only a
pointer to this structure can be allocated in the argument register (with the
tag "ref"). Many problems arise with this representation method.

Take the case of quicksort. At the beginning of the whole computation we
have a list of n elements in the global stack and a pointer to it. The list is
splitted in two new lists and the new lists are allocated below the old list in
the global stack, before gsort is called again with the new sublists as
arguments. At this point the WAM knows that it does not need the old list
anymore but it can not deallocate it from the global stack, because other
structures are just below it. If we deallocate the original list, then we have to
compress the global stack and redirect all pointers in the local and global



stack that pointed to addresses below the deallocated structure. That is no
easy matter, because we do not know which pointers are pointing there.

But it could be worse. Suppose that two lists A and B are stored in the global
stack. Because of the way they were constructed, it could be that the first
element of A is followed by the first element of B. After that comes the
second element of A and then the second element of B and so on. We could
know that A is no longer of any use and that B needs to be kept. We could
deallocate all the elements of A but in order to get this storage back we have
to compress the global stack and redirect all the pointers of the elements of B
to new addresses. In this case the collection of the storage used by A is very
expensive in computing time. Think for example of a list with 1000
elements: 1000 pointers should be redirected and 1000 elements should be
copied back into upper positions in the global stack.

Stacks are fine for backtracking: they are terrible for storing loosely coupled
structures, like those which arise in Prolog,.

7. The garbage collection vision.

We would like to exploit the potential garbage collection capabilities of the
WAM, but we have several constraints:

* Backtracking should be so time-efficient as possible, like in the classic stack
oriented WAM.

* Backtracking must free storage cells fast immediately

* The execution overhead of garbage collection should stay below excessive
values

There are several alternatives for implementing garbage collection in a
WAM. We proceed to discuss several of them.

8. Naive Mark and Sweep.

Mark and sweep is the least attractive of all the garbage collection
techniques. It is collection of storage by brute force.
Mark and sweep could be implemented in a WAM in the following way:

- stop processing
- traverse the local stack and mark all used structures in the
global stack



- traverse all marked structures in the global stack and mark
other used structures in the global stack ("scavenging")
- compress the global stack while redirecting all pointers to it

9. Clever Mark and Sweep

A variant to the brute force alternative is a dynamic-static variant of mark
an sweep. Each time that a "call" instruction deallocates a pointer to a
structure it could be marked as "unused". By stopping processing, we could
delete all unused structures and compress the stack.

This technique has only a problem: we don't know exactly how many
pointers are directed to a structure. If we deallocate one of this pointers, we
have no guarantee that other pointers are not pointing to this very same
structure ("aliasing"). Even worse: we don not know if a part of this
structure is being pointed by some variables (the tail of a list or an argument
of a structure, etc).

The only way to make this technique feasible is to store with each structure
a counter of references to it. Only when the counter were zero, would it be
safe to delete the structure from the global stack.

As it turns out, the biggest problem is that even when we know which
structures should be deleted, the time needed for the reorientation of the
pointers to the global stack could be prohibitive. We don't want the users to
sit there and stare at the computer when it makes garbage collection. We
want a responding, efficient system. The only way out seems to be letting
the global stack drop and substitute it with a real heap.

In the original description of the WAM, Warren speaks of a "heap" to hold
structures. Actually the heap is in fast all implementations no heap but a
stack. A good idea could be to see what happens when the heap is a real
heap.

10. Reference Counting

A heap is an area of memory divided in storage blocks of equal or different
sizes. A block can be requested to store a part of a list or a structure and with
the help of pointers is possible to link several blocks to hold the whole
structure.

If blocks of different sizes are used in the heap, one word of storage has to be
reserved to keep track of the size of the block. One problem with this
scheme is that when later a block is freed and collected, this block can only



be used to store an element with the same storage requirements: for
example, if the block contains 5 storage cells but 7 are needed for a new
structure, then the old block can not be reused. If, on the contrary, only three
cells are needed it must be decided if two cells could be wasted or if the
original block of size 5 could be broken apart in two smaller blocks.
Eventually the fragmentation of the heap will demand a compression and
reordering of the used blocks in order to collect unused storage. This "mark
and sweep" step could be delayed longer as in the case in which no real heap
is used, but it will be needed sooner or later.

A better alternative is to allow only blocks of the same size to be used.
When all blocks are equal, a collected block can be reused immediately after
it has been collected. There is no fragmentation of the heap and the
compression step is not needed. This strategy has only two problems:

e The locality of the data is not guaranteed. When the computation
advances in time the allocated blocks will be more randomly distributed
over the whole heap area. This is a potential problem in those applications
in which virtual memory should be used (because of the size of the problem
or because of the reduced storage available). The random distribution of the
used structures could produce a lot of time-costly page faults.

e If all the blocks are to be of the same size, then in some cases part of the
block will not be used. Some of the heap area will be wasted. It is important
to know in advance how much of the heap memory could be wasted in this
way.

The biggest problem with every reference counting strategy of this type is to
keep track of the references to objects. In the WAM, a pointer to an object in
the global stack can be stored in a register and nowhere else. If the register is
overwritten, we should then decrement the reference count of the pointed
object. That implies that every time the contents of a register are changed,
we must check to see if no reference to the global stack is being destroyed.
The overhead incurred in this checking could be very sensible because the
argument registers are being changed in every head matching and being
restored on each fail. On backtracking it would be impossible to reset only
the pointers to the local stack. Backtracking should instead pop each stored
element in the local stack to see if no references to the global stack were
being skipped. A popped element could be deleted only after decrementing
the reference count of the pointed object. An additional problem is that
collected memory cells should be managed in certain way. A straightforward
technique could be to form a list of free memory blocks. Every time a
structure is collected, the blocks that it occupies should be hanged to the free



list. But if the deallocated structure has a complicated form (a tree or
something similar), it is necessary first of all to unravel the structure by
traversing it, in order to reorder the used blocks in a serial list. Obviously a
garbage collection which must always flatten a collected structure in order to
hang the freed blocks to the free list can not be very efficient.

Another problem with reference counting is that a circular structure can
fool the garbage collector in making it believe that an inaccessible structure
continues to be pointed by an element in the local stack. This case should
not arise in a Prolog interpreter with occur check in the unification
procedure, but as a matter of fact the great majority of current Prolog
implementations tolerate infinite recursive structures or they even
encourage them (like in Colmerauer's Prolog II).

Because of all of this reasons (and another more) we drop reference
counting as a viable strategy.

11. Baker’s algorithm

We describe now Baker’s garbage collection algorithm, because it is the basis
for more complex algorithms used in computers like the Symbolics.

Baker's algorithm is a "copying" algorithm, that is, the elements of the heap
that should be preserved are copied to a new memory area on each full cycle
of the garbage collector and the objects that are garbage are not copied. In this
way only accessible objects are copied and not accessible objects disappear of
the new memory area. This method has two advantages:

e All what is needed is a list of accessible objects. Everything that is not
accessible is considered to be garbage. The list of accessible objects is readily
available in the WAM in the local stack (the contents of the argument
registers should be considered too).

* The accessible objects can be compacted on copying, making the use of
virtual memory techniques more efficient, because the probability that a list
or structure can be allocated in a single memory page increases.

* The garbage collector can run incrementally and in parallel to the
"mutator” (the program that creates new objects). This is specially important
if garbage collection is to be performed in "real time" by another processor
or by specialized hardware.

Baker’s algorithm works in the following manner: The heap manager
allocates objects in memory without taking care of collecting any garbage
until it is decided that garbage collection should start. The area of memory
where the allocated objects reside is called "Fromspace". A big enough new
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area of memory is provided and it is called "Tospace". The process in which
this partitioning of the computer memory occurs is called "flipping".

The garbage collector must now evacuate all accessible objects in Fromspace
taking them to Tospace and leaving the garbage behind. The address of the
first accessible object in Fromspace is taken from the list of accessible objects
and the first memory cell is evacuated:

1 Fromspace Tospace

[ ]

0\ objec-&s .(created New Objects (created
before flipping) after flipping)

Memory is divided into fromspace and tospace

2 Fromspace Tospace

I 1 I
This object_, forwarding address
is moved to |:"

Tospace

N
The object
is moved to here

O1d objects are evacuated from Fromspace to Tospace
The contents of the objects are copied

After a memory cell has been copied to Tospace, a pointer to this new
location is stored in the old location. This is called a "forwarding pointer"
and serves to purposes:

 If locations that are to be evacuated contain a pointer to this removed
object, than it is possible to reorient this pointer to the new location by
copying the value of the forwarding pointer.

* The mutator (the real program) can work normally and doesn't perceive
the garbage collection process. If a copied element is referenced by the
mutator, the forwarding pointer is only another extra level of indirection
for the dereferencing process.
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After a memory cell is been copied to Tospace, it is "scavenged”, i.e. it is
analyzed and seen if it contains a pointer to Fromspace. If this is the case the
pointed object is copied to Tospace. A forwarding pointer is left behind and
the original pointer to Fromspace is changed to point to the new location in
Tospace:

3 Fromspace Tospace

| |
: forwarding address
|___I forwarding address

L
€ This object
is scavenged

Ve

~
The contents
of the scavenged . . .
object is Scavenging an object redirects
evacuated pointers from Fromspace to Tospace

The scanvenging is repeated until an object is copied that doesn't contain a
pointer to Fromspace. In this moment a new accessible object is taken from
the list of accessible objects and is copied to Tospace. The scavenging process
begins anew and so on. When the dust settles, all accessible objects have
been copied to Tospace and the whole of Fromspace can now be safely
declared free memory.

What happens if the mutator needs to allocate new objects when the
garbage collection is going on? Baker proposes to allocate new objects in
Tospace, possibly at the bottom of this area or interleaved with the accessible
objects been collected. It should be guaranteed only that all new objects does
not contain pointers to Fromspace (which we want to declare free memory).
This condition could be fulfilled if every time a new object is allocated it is
inspected to see if it contains a reference to Fromspace. The referenced object
should be evacuated to Tospace and the pointer in the object should be
redirected to point to Tospace.

12. Garbage Collection in the Symbolics

The Symbolics Lisp-Workstations work with a refined version of Baker's
algorithm (that is not surprising: Baker is a researcher at Symbolics). It is
well known how important it is for Lisp to count with an efficient garbage
collector. Old Lisp implementations had the same problems with garbage
collection as the modern Prolog interpreters. With the time a whole set of
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techniques for garbage collection in Lisp machines has emerged and the
algorithms used in the Symbolics should be considered as the state of the art
in this field.

The Symbolics works with virtual memory. Typically the virtual address
space is thirty times the physical address space and the virtual storage is
divided in pages of 256 words (of 34 bits each). The virtual memory system
administers a table of the pages that are located in the physical memory and
those that are relegated to secondary storage.

For the garbage collection process the address space of the Symbolics is
divided in three regions, instead of two. The first of them is the
"Fromspace” region of Baker’s algorithm, which is called "old space". The
second is the "Tospace" region of Baker, which is called "copy space”. The
third is called the "new region". In old-space are located all the objects
created until the time that it was decided to flip spaces. Accessible objects
located in old-space will be collected in copy-space by copying. All new
created objects are not stored in copy-space but in new-space. This is a
further optimization of the algorithm of Baker because old objects will not
be interleaved with new objects. Another optimization is a further division
of the memory space of the Symbolics in "quantums" of 16Kb each. When
the time of collecting the accessible objects in old-space arrives, a new copy
space is allocated, but this copy-space consists only of a quantum. If new
memory is required additional quantums are appended to the copy-space. It
is not necessary for the virtual address of consecutive quantums to be
consecutive too. A table of the allocated quantums to one of the three
described areas is maintained by the hardware and software of the machine.

Copy space

« Accesible objects
::> are copied here

Old space

Page —

—}
some
virtual
pages
are in
secon-
dary 1
storage |

New quantums are
T
New space added if necessary

¢ New objects are allocated here

Quantum

After all of old space has
been scavenged, copy space
and new space are fusioned
in one area.
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For the copying process the Symbolics-Algorithm works in a similar way to
the original Baker method, but there exist three concurrent processes
instead of two: the mutator is the program that creates new objects in new
space, the scavenger scans the evacuated objects in copy-space looking for
pointers to old-space and the transporter copies objects from old space to
copy space leaving a forwarding pointer behind and giving as result the new
address of the copied object in new space. The mutator and the scanvenger
work in parallel. Each time the mutator creates a new object in new space,
the scavenger takes control and performs several copy steps, after what it
gives the control back to the mutator. In this way it is guaranteed that the
storage reclamation process does’t fall behind the creation of new objects.
This avoids an explosion of the memory requirements. The transporter is
called by the scavenger each time that it wants to evacuate an object from
old space to copy space. The transporter is called also by the mutator every
time that it accesses an object in old memory. The accessed object is copied
and the new address is stored in new space. In this way it is guaranteed that
in new space no pointers to old space are stored and the scavenger does not
need to scan this area of memory after it is done with the scanning of copy
space. The scavenger is called also in every pause of the mutator, for
example when it waits for input from the terminal or when it is waiting an
I/O operation to the hard disk.

This division of labor between three different processes opens the possibility
that they be mastered by different hardware components. In the Symbolics
the main processor distributes its time between the mutator and the
scavenger whereas the transporter is emulated in hardware. Every time that
a storage cell in old-space is accessed, a hardware trap occurs. The mutator
copies the accessed object and gives his new address to the mutator or to the
scavenger. In this way a lot of the garbage collection process is made
transparent for the systems programmer.

It could be possible to employ a special processor only for the scavenging of
copy-space. It could work in parallel with the main processor and perform
other housekeeping functions. The only complication would be the
contention of the two used processors for access to the bus. A multiple bus
architecture or other methods could solve this problem.

This is the essence of the garbage collection method used in the Symbolics,
but there are other details that should be considered. The fact that the
Symbolics is a virtual memory machine makes very important to compact
the storage allocated to different objects, so that they pass into a single page
of virtual memory if that is possible. Lists that contains lists should be
copied in a depth-first manner, because they are accessed in this way. With
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no changes the used algorithm tends instead to copy lists in a breadth first
manner.
Consider the following list:

|:\’:‘Sx‘lgl-l—l-—ﬂdl

When this list is copied from old space to copy space, the first cons-cell is
copied first. The new cons-cell contains two pointers to old space: one to the
continuation of the list and the other to the car, itself a list:

L= [b |

T T3 =147

When the copied object (the cons cell) is scavenged, the first pointer points
to the continuation of the list and the second to the CAR. The scavenger
would then copy first the continuation of the list and then the CAR. The
CAR-sublist would not be compacted by the copy process, on the contrary it
would be interleaved with the rest of the list, a possible source of
inefficiency for the virtual memory system (if no virtual memory is used,
then it does’t matter how the objects are copied).

There is no simple solution to this problem when we don't want to use a
recursive routine (a recursive routine needs a stack and this produces new
storage allocation problems) and when we want to collect accessible objects
in real time, but the Symbolics employs what is called approximate depth
first copying . In this scheme, the scavenger scans through copyspace
looking for references to oldspace, it always scans the partially filled page at
the end of copyspace first. Any object in oldspace pointed by objects in this
page is evacuated to copyspace and then the scavenger continues with the
objects at the top of copyspace. If a new object is evacuated, there is a new
partially filled page and attention is redirected to it. If no pointer to oldspace
exists in this page, the scavenger resumes where it interrupted, until all of
copyspace has been scanned. This method has only the drawback that some
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locations will be scanned twice, but that is more than compensated with the
increased locality of the structures in copy space and the incurred overhead
is almost always negligible.

Actually garbage collection in the Symbolics is more complex as here
explained, because the Symbolics differentiates between ephemeral and
static objects. The ephemeral objects are more likely to become garbage and
so they are handled in a special manner. The garbage collection process is
tuned so that ephemeral objects are copied more often than other objects,
guaranteeing that storage will be freed at a higher pace.

13. A Garbage Collection Strategy for the WAM

There are several possible garbage collection methods that could be applied
in a WAM.

The first possibility is not to do garbage collection at all. If virtual memory is
used, we could provide for a big enough virtual address space, so that a
program which does a long forward computation will not run out of
address space. If the locality of the data is guaranteed (that is, if the program
creates constantly new structures, that are nevertheless tight packed in
memory) this will not impose a very big penalty on the execution time of
the program. Eventually the user could run out of space and in this case a
"mark and sweep" garbage collection step could be performed.

The second possibility is to do garbage collection using virtual address space
and a Baker-type copying algorithm. Like the classical Baker-Algorithm, we
divide the address space in Fromspace, Tospace and Newspace (only in the
case of the global stack). The copying process starts in the local stack. All the
pointers to structures in the global stack are examined and pointed
structures are copied to Tospace and scavenged to translate the rest of the
structure to Tospace. When all of the global stack has been copied
Fromspace can be declared free memory. There are several problems with
this scheme:

* When the global stack is copied, the stack structure is lost. If a list, for
example, has been incrementally created, it could well be the case that it
spans several areas that belong to different choice points. The simple
strategy of resetting GPOS (the global stack pointer) don't work any more for
fast backtracking. All the GPOS-values stored in the local stack with every
choice point lose any meaning.
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» New structures are created in Newspace in a global stack. Here it is valid to
do backtracking in the normal way.

e Several pointers in the trail could be pointers to deleted structures in the
copying process. It is necessary then to collect also the garbage in the trail
that arises when collecting garbage in the global stack.

This problems are lost in the following manner:

* After flipping, the global stack loses its structure but the local stack keeps
it. It is safe to backtrack resetting the pointer to the local stack. The old GPOS
values are not considered valid and are not taken into account. This implies
that after flipping, backtracking does not recover automatically the garbage
in the global stack. This garbage will be recovered only in the next copying
process.

* In Newspace a global stack is constructed. If backtracking does not attempt
to reset a global stack pointer to Fromspace, then backtracking can go on as
normally.

e It is necessary to compact the trail after having copied all of Fromspace in
order to delete dangling pointers and in order to redirect the trail pointers.
The stack structure of the trail can be preserved in this operation.

14. A closer look.

There are several features that a high performance Prolog-Workstation
should have in common with Lisp-Machines like the Symbolics. One of
them is virtual memory and the possibility to discharge part of the garbage
collection process in the hardware. The partitioning of the address space that
is typical of virtual memory machines simplifies also the task of doing
garbage collection.

We could adopt a three-level partitioning of the address space:

* pages are 1K memory chunks, that when accessed reside complete in the
main storage. If structures are compacted in a minimal quantity of pages, the
access to them can be made more efficient.

* quantums could be big enough sections of memory (64K for example), that
are reallocated in memory according to a quantums-table.

* the whole address space is divided in three principal areas: the local-stack
memory area, the trail-memory area and the heap. Each area is allocated a
memory-quantum at the beginning of the computation and additional
quantums are allocated on request. If the virtual address space is big enough,
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no conflict should arise. The main storage will be distributed dynamically
between the three memory areas, not statically at the beginning of the
computation, like in a traditional WAM and so it is not necessary to
displace the stacks when one of the memory areas is exhausted.

The transformation between physical and logical addressing of the pages
could be handled by a memory management unit.

Global Area

Table

\\‘\Loca] stack

™~

15. A simpler method

One of the simplest garbage collection methods in Prolog consists in using
some kind of anotation to let the programmer specify which structures
should be preserved in the forward computation. A fail can be forced then
and in this way space in the global stack is recovered.

Consider the following piece of code:

goal:- construct(U), gsort(U,S), manipulate(S).
In this example a list U is ordered and the result S is used in the rest of the
computation. If U is not used anymore, it has become garbage and it should
be possible to recover the memory cells occupied by this list. One possible

technique to do this would be to transform the goal above into this form:

goal:- (create(U), gsort(U,S), asserta(s(S)),fail;
retract(s(S)), manipulate(S)).
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We assume in this example that create/1 and qsort/2 are two deterministic
predicates. Note that after S has been computed, it is copied from the global
stack to the space reserved for code (through the use of assert/1). Thereafter
a fail is forced. In this way all the global stack space occupied by parcial
results of create/1 and gsort/2 is cleared. S is recovered from the code space
and the computation continues with the predicate manipulate/1.

As can be seen this method of garbage collection in Prolog is straightforward
and relatively efficient. There are although some inconveniences:

- Care must be taken to ensure that the forced fail does not take us back to a
choice point left behind by the predicates whose partial results we want to
clear.

- The forced fail should not change the result of the computation. Care must
be taken to "encapsulate” it in a suitable manner.

- When a structure is copied to the code space, then aliasing of embedded
variables is not necesarily preserved. Consider the code below:

a:- X=Y, asserta(eins(X)),asserta(zwei(Y)),
retract(eins(U)),retract(zwei(V)),... etc.

In most Prolog systems after this manipulation, the variables U and V will
not represent necesarily the same variable. They will be independent.

- The burden of garbage collection reverts to the programmer. This can be
very efficient (because the programmer knows better that anyone else which
results should be preserved), but in this case errors can be made and one of
the advantages of declarative programming (compared to imperative
languages) is lost.

One alternative solution to this last problem is to investigate the possibility
of letting the compiler do the program transformation by himself. The
compiler could determine (by static analysis or partial interpretation) which
structures are no longer needed and set automatically the necessary fails.

A more efficient way to do the copying of structures is also needed. A
possible solution would be to define two new built-ins: "preserve/1" and
"copyback/1". The argument of the first predicate is a list of terms which
should be copied from the global stack to a temporary area. The argument of
the second is a list of variables which are bounded to the terms stored in the
temporary area. This terms are copied also back to the global stack (of course
after this has been pruned).

The code above could be rewritten:
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goal:- (create(U), gsort(U,S), preserve([S]),fail;
copyback([S]), manipulate(S)).

The advantages of this method are that in the argument list more than one
term can be specified, the copy process can be speeded up when the terms are
copied to a temporary area (and not to the code area, which must be always
manipulated with great care) and after copying back the temporary area
must not be compacted again. The next time something is stored, this area
can be overwritten. The aliasing of variables could be preserved also.

Note that this method of garbage collection could be considered a very
simplified variant of the copying algorithms.

16. A copying method with garbage collection in "stages"

We describe now a method that is a generalization of the Baker algorithmus
and that can be used to recover space in the global stack in a very fast way.
The method can be understood more easily by looking at the Figure below.
We suppose that a program is pouring structures in the global stack and this
will be filled slowly. Backtracking helps to retard the moment in which the
global stack will be full. Each time that a fail occurs space in the global space
is recovered (i.e. the level of our container descends). Unfortunately
backtracking alone can not prevent that the global stack becomes full of used
and unused terms. In this moment this section of the global stack "spills
over".

Look at the next Figure. When the first section of the global stack spills
over, then the following section of the global stack begins to be filled. We
would not gain nothing if the spill process transfers only garbage from one
section of the stack to the other. But we do not simply transfer terms from
the upper to the lower stack section. We copy only those terms that are still
alive. Terms are alive if they are pointed by some memory cell in the local
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stack or by an alive cell in the global stack. As can be seen, we only apply the
Baker algorithm to the stack section A, which is considered as "old space”
and we copy the alive terms to stack section B, which is considered "new
space”. Note that stack section B is bigger than stack section A. That means
that we can repeat this copying process several times before stack section B
becomes filled. When this happens, we can repeat the copying process, but
now we copy terms from B to C.

Program:

C

Ideally we could continue using this method recursively. In practice we
have to define a maximal depth of the stack sections. A depth of two or
three containers should be efficient for most Prolog programs.

Note the following characteristics of the proposed algorithm:

* Any time that terms are copied from an upper to a lower "container" only
the last segment of the global stack is being copied. That means that we only
have to look at the local stack to find the pointers to the global stack that are
of interest as well as to the trail stack to find the pointers in sections of the
local stack above the relevant part (more about this later).

* The garbage collection characteristics of backtracking are exploited as in the
traditional WAM. All the space that can be recovered through backtracking
is recovered and the moment of spill over is delayed.
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e This method can be combined with the "preserve/1" and "copyback/1"
built-ins proposed above. In this way the spill overs can be further
minimized.

This garbage collection method in "stages" could be considered a method
which makes use of generations, like the algorithms used in some Lisp
systems [Lieberman/Hewitt 1983]. It is a more general method that the one
proposed by Touati [1987]. Each time a term is copied from one stage to the
next, the probability that this term could become garbage is further reduced.
Each "container" is bigger as the last one, but it contains terms of "higher
quality” in the sense, that they represent final or provisional results of the
computation being performed.

17. Garbage collection in two stages with a security space

It would be very interesting to investigate empirically how many stages in
the above algorithm maximize the memory reclamation characteristics of
the copying process. This depends clearly on the characteristics of the
programs used. Small benchmarks can not be used for this experiments. Big
and complicated programs (like a Prolog compiler) should be examined in
order to determine the optimal depth of the chain of stack segments.

We propose for POPE [Beer 1987] a method based in a chain of only two
segments. The first segment is used as the initial container, and the second
as the "new space” of each copying process. If the second and first segment
become full, then the whole global stack is copied using the Baker method
to a new area, which is so big as the second segment. In the process some
memory will be regained and the process is repeated again with the third
section of the stack being defined now as "new space". The Figures below
shows this.
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B C

A is the initial container. B is the next stage.

A

B C

If B is full, then alive terms are copied to C.

A

B C

Some space is recovered, A now works with C
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One possible objection to this method is that only one of the big containers
B or C is used anytime. The other remains passive waiting for a space flip.
To this objection we could answer that this copying method is very fast and
it trades memory space for speed in the garbage collection process. If we are
interested in getting the most speed from our processor and in reducing the
interrupts of the copying process to a minimum, then the extra space is
worth the benefits that we get. On the other side, if we do not want to
reserve this extra space for the copying method, we could always compress
the two used stages in the conventional manner using the Morris algorithm
(a description of the Morris technique is given in the Apendix).

18. Conclusions

We have discussed in this paper several problems associated with garbage
collection in Prolog systems. We reviewed the techniques used in Lisp
systems and concluded that a modified form of the Baker algorithm could
be used in a Prolog system. For POPE we propose a copying technique
supplemented by two new built-in predicates, which trades space for speed
in garbage collection. Future work should assess the possibility of doing
garbage colection in real time in the processor pipeline provided by POPE.
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