Greenfoot-Szenarien zur Unterstützung von Schülerexperimenten zum Thema Mobilfunknetz

Diplomarbeit
am Fachgebiet Mathematik und Informatik
Freie Universität Berlin

Erstgutachter: Prof. Dr. Carsten Schulte
Zweitgutachter: Prof. Dr. Jochen Schiller
Betreuer: Teresa Busjahn
Betreuer: Malte Hornung

Abuzer Firat
Matrikelnummer: 3995838
Berlin
Erklärung der Urheberschaft

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit ohne Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht. Die Arbeit wurde bisher in gleicher oder ähnlicher Form in keiner anderen Prüfungsbehörde vorgelegt und auch noch nicht veröffentlicht.

Gaziantep, 09.Dezember.2011
Inhaltsverzeichnis

Abbildungsverzeichnis V
Abkürzungsverzeichnis VII

1. Einleitung 1
 1.1. Das mobile Web 1
 1.1.1. Definition 2
 1.1.2. Mobile Internetnutzung 2
 1.2. Informatikunterricht mit Hilfe der Dualitätsrekonstruktion 6
 1.2.1. Probleme im Informatikunterricht 6
 1.2.2. Dualitätsrekonstruktion 7
 1.2.2.1. Analyse eines digitalen Artefaktes 8
 1.2.2.2. Didaktische Ziele der Dualitätsrekonstruktion 11

2. Analyse des Artefakts mobiles Internet 12
 2.1. Präkonzepte und Ziele 12
 2.1.1. Präkonzepte 13
 2.1.2. Ziele 15
 2.2. Funktion und Struktur 18
 2.2.1. Funktionen des mobilen Internets 18
 2.2.1.1. Location Based Services 19
 2.2.1.2. Web 2.0 Anwendungen 19
 2.2.2. Struktur 20
 2.2.2.1. Hardware 20
 2.2.2.2. Software 21
 2.2.2.3. Mobilfunknetz 22

3. Entwicklungspfad des mobilen Internets 24
 3.1. Entwicklung des Mobilfunks 24
Abbildungsverzeichnis

1.1. Nutzungshäufigkeit mobiles Internet .. 3
1.2. Nutzung verschiedener Handy-Funktionen 4
1.3. Leitfragen für die Dualitätsrekonstruktion 9

2.1. Analyse der Präkonzepte und Ziele .. 13
2.2. Umgang mit der Technik in der Familie 17
2.3. Arten der mobilen Internetnutzung 18
2.4. Analyse der Funktionen und Struktur 23

3.1. Entwicklung des Datenvolumens .. 34

4.1. Greenfoot Benutzeroberfläche .. 39
4.2. Szenario 1 .. 43
4.3. Szenario 1 - Klassendiagramm .. 44
4.4. Szenario 2 .. 48
4.5. Szenario 2 - Klassendiagramm .. 49

5.1. inaktive Komponente ... 53
5.2. entdeckendes Lernen ... 58
Abkürzungsverzeichnis

3G Dritte Generation
3GPP 3rd Generation Partnership Project
AMPS Advanced Mobile Phone Service
App Application
AS Access Stratum
CDMA Code Division Multiple Access
CoO Cell of Origin
CS-Fallback .. Circuit Switched-Fallback
dA digitales Artefakt
EDGE Enhanced Data Rates for GSM Evolution
ETSI European Telecommunications Standards Institute
GPRS General Packet Radio Service
GSM Global System for Mobile Communications
GUI Graphical User Interface
HLR Home Location Register
HSCSD High Speed Circuit Switched Data
HSDPA High Speed Downlink Packet Access
HSPA High Speed Packet Access
HSUPA High Speed Uplink Packet Access
IMEI International Mobile Equipment Identity
IMS IP Multimedia Subsystem
IMSI International Mobile Station Identifier
IP Internet Protocol
ISDN Integrated Services Digital Network
Abbildungsverzeichnis

ISDN Puls-Code-Modulation
ITU International Telecommunication Union
IU Informatikunterricht
JIM Jugend, Information, (Multi-)Media
LBS Location-based Services
LTE Long-Term-Evolution
MIMO Multiple Input Multiple Output
NAS Non-Access Stratum
NMT Nordic Mobile Telephone
OFDM Orthogonal frequency-division multiplexing
OFDMA Orthogonal frequency-division multiplexing Access
POI Point Of Interest
QAM Quadrature Amplitude Modulation
QVGA Quarter Video Graphics Array
SC-FDMA ... Single Carrier Frequency Division Multiple Access
SGSN Serving GPRS Support Node
SIM Subscriber Identity Module
SMS Short Message Service
SMTP Simple Mail Transfer Protocol
SRAN Satellite Radio Access Network
SuS Schülerinnen und Schüler
TACS Total Access Communication System
UMTS Universal Mobile Telecommunications System
URI Uniform Resource Identifier
USIM Universal Subscriber Identity Module
UTRAN UMTS Terrestrial Radio Access Network
VGA Video Graphics Array
VoIP Voice over Internet Protocol
W3C World Wide Web Consortium
WIMAX Worldwide Interoperability for Microwave Access
WLAN Wireless Local Area Network
Abstract

Die SuS kennen das mobile Web als Anwender, sie nutzen nur bestimmte Funktionen und kennen die dahinterliegende Struktur nicht. Ziel der vorliegenden Arbeit ist dieser Nutzergruppe ein Werkzeug zur Hand zu geben, welches die Struktur und Funktionalität des mobilen Internets besser verständlich und anwendbar macht. Anhand des informatischdidaktischen Verfahrens "Dualitätsrekonstruktion" wird dieses Werkzeug konzipiert.

Eingeleitet wird diese Arbeit durch eine didaktische Aufbereitung des mobilen Internets für den Informatikunterricht. Des Weiteren wird dessen Entwicklungspfad, welcher auch den technischen Hintergrund beinhaltet, betrachtet. Darauf basierend wird eine visuelle Umgebung entwickelt, in der die SuS die Struktur und Funktionen des mobilen Internets mit Hilfe von Greenfoot1-Szenarien erforschen, experimentieren und erfolgreicher anwenden können.

1Greenfoot ist eine für die Programmiereranfänger entwickelte, auf Java basierende Programmierer-Umgebung, in der man spielerisch objektorientiertes Programmieren lernen kann.
Kapitel 1.

Einleitung

1.1. Das mobile Web

„Jedermann wird sein eigenes Taschentelefon haben, durch welches er sich, mit
wem er will, wird verbinden können. Die Bürger der drahtlosen Zeit werden
überall mit ihrem Empfänger herumgehen, der irgendwo, im Hut oder anders-
wo, angebracht sein wird...“[Slo10]

Im Jahre 1910 hatte Robert Sloos in seinem Artikel "Das drahtlose Jahrhundert" die
Welt in 100 Jahren derart formuliert. Die meisten Menschen haben vielleicht seine Idee
damals für unmöglich gehalten, aber eigentlich hatte er die heutige Kommunikationswelt
sehr präzise beschrieben. Im Gebiet der Mobilkommunikation wurden mehr Fortschritte
erreicht als Sloos prophezeien konnte.

Keine andere Technologie hat die Welt so schnell und stark geändert, wie der Mobilfunk
und das Internet. Die Menschen haben die Möglichkeit überall und jederzeit erreichbar
t zu sein. Die Entwicklungen in diesen Bereichen haben die zwischenmenschliche Kommu-
nikation von Grund auf geändert. Kaum jemand kann sich einen Alltag -ob privat oder
geschäftlich- ohne Mobiltelefon und Internet vorstellen. Am Anfang war es ein Luxus
für Wenige, die dieses Privileg hauptsächlich beruflich genutzt haben. Mit den neuen
Entwicklungen in den 1990’er haben sich diese Technologien als Kommunikations- und
Unterhaltungsmittel für immer mehr Menschen etabliert.
Kapitel 1. Einleitung

1.1.1. Definition

Der Begriff "mobiles Internet" ist sehr allgemein und hat in verschiedenen Kontexten unterschiedliche Bedeutungen. Das W3C\(^1\) definiert das mobile Web als Zugang zum Internet mit einem mobilen Endgerät. Technisch gesehen ist es ein Web-Zugriff über ein mobiles Endgerät ohne Kabelanbindung.[W3C11b].

Als mobile Geräte können Laptop, Netbook, Handy, Smartphone, PDA, Kindle usw. benutzt werden. Wlan, Wimax, GSM, GPRS/EDGE, UMTS und LTE sind die Übertragungstechnologien, die sich hierfür anbieten. In dieser Arbeit werden die Endgeräte mit Smartphone und Mobiltelefon, die Übertragungstechnologien mit Mobilfunk (GSM, GPRS/EDGE, UMTS und LTE) begrenzt.

Das mobile Internet ist nur ein sehr kleiner Teil des komplexen Internets. Bisher lassen sich noch nicht alle Möglichkeiten, die das Internet bietet, auf das mobile Internet übertragen. Das mobile Web entsteht aus der Symbiose von Mobilfunk und Internet. Der Entwicklungspfad des mobilen Web wird in Kapitel 3 untersucht.

1.1.2. Mobile Internetnutzung

Die Zahl der Internetnutzer über das Mobiltelefon stieg besonders nach Entwicklung von UMTS zwischen den Jahren 2005 und 2008 [RJ10]. Laut der Studie von TNS Infratest gingen 21% der Handybesitzer im Jahr 2010 mit ihren Mobiltelefonen ins Netz. Das beträgt 3% mehr als im Jahr zuvor. 40% der Handynutzer besitzen ein Smartphone, mit welchen es sich ganz bequem im Internet surfen lässt [Kni10]. Nicht nur die Anzahl der Internetnutzer steigt an, sondern auch wie oft und wie lange sie das mobile Web nutzen. In der Abbildung 1.1 ist zu erkennen, dass z.B. tägliche Internetnutzung am Mobiltelefon sich in einem Jahr verdoppelt hat, während die Anzahl derer, die das mobile Internet seltener als einmal im Monat nutzen, sinkt.

\(^1\)W3C:World Wide Web Consortium ist das Gremium zur Standardisierung der das World Wide Web betreffenden Techniken
Die Jugendlichen, die zwischen 14 und 29 Jahre alt sind, bilden eine besondere Zielgruppe dieser Technologie. 29% dieser Nutzergruppe surfen im Internet oder lesen ihre Mails mit ihren Endgeräten [Kni10]. Sie nutzen das Internet und Handy zu Kommunikations- und Unterhaltungszwecken sowohl untereinander, als auch mit Lehrpersonal. Zuweilen nutzen sie es als Hilfsmittel zum Lernen.
Wie in der oberen Abbildung 1.2 zu erkennen, nutzen 9% der SuS ihr Mobiltelefon um im Internet zu surfen und 7% lesen ihre Mails. Diese Zahlen steigen jedes Jahr tendenziell an und haben auf Grund der Tatsache, dass 80% der SuS (Laut JIM-Studie\(^2\)) ein internetfähiges Mobiltelefon besitzen, noch großes Wachstumspotenzial. [Süd10].

Zu dem Thema, für was die SuS das mobile Web nutzen, gibt es sehr wenige und nicht eindeutige Informationen, aber aus den allgemeinen Internet-Nutzungsgewohnheiten kann man ausschliessen, dass sie das mobile Web hauptsächlich zu Kommunikationszwecken nutzen. Die SuS nutzen das mobile Internet auch zu Lernzwecken, aber es werden nicht alle vorhandenen Möglichkeiten ausgenutzt. Als Grund hierfür tauchen zwei Theorien auf. Zum einen kennen sie möglicherweise die Funktionen nicht genau, zum anderen besteht vielleicht keine Motivation die Anwendungen zu erlernen. Während die SuS das mobile Internet nutzen, kennen sie nur bestimmte Funktionen. Über andere Funktionen und über die dahinter liegende Struktur des mobilen Netzes haben sie wenig Kenntnis. Sie wissen

\(^2\)JIM : Jugend, Information und (Multi-)Media – jährlich erscheinende Studie zum Medienumgang 12-19 Jähriger des Medienpädagogischen Forschungsverbundes Südwest
Kapitel 1. Einleitung

nicht wie das Mobilfunksystem funktioniert und wie eine Verbindung vom Mobiltelefon ins Internet aufgebaut wird. Warum an manchen Stellen die Verbindung schnell ist, während sie an anderen Stellen sehr langsam ist. Was für eine schnelle und sichere Verbindung gebraucht wird.

Im weiteren Verlauf wird u.a. auf diese Fragen Bezug genommen und in dieser Arbeit ein implementiertes Tool vorgestellt, welches bei der Beantwortung dieser Fragen den SuS helfen soll.
Kapitel 1. Einleitung

1.2. Informatikunterricht mit Hilfe der Dualitätsrekonstruktion

1.2.1. Probleme im Informatikunterricht

Warum ist das so? Um dieser Fragestellung auf den Grund zu gehen ist es ratsam sich den IU (Informatikunterricht) der Schule anzusehen. Im Idealfall sollte das Hintergrundwissen im IU vermittelt werden. Meist hat aber IU an der Schule eher einen programmiersprachlichen Charakter oder gleicht dem Gesellschaftskundeunterricht. Beim Programmierunterricht erlernen die SuS meist nur gewisse Befehlsketten, die sie wiederverwenden können. Mit diesem Wissen sind sie aber schwer in der Lage selbst gestalterisch zu arbeiten, da ihnen die Struktur der Programmiersprache fehlt. Der Informatik-Unterricht mit Gesellschaftskundencharakter beschränkt sich nur auf Einflüsse der Informatik und behandelt bestenfalls einige Funktionen. Demnach haben auch die meisten SuS, die mit dem Informatikstudium anfangen, falsche Vorstellungen, was auch zu den Gründen der hohen Abbruchquote des Informatikstudiums gehört [Kno07].

Informatikstudierende verdanken ihre erfolgreichen Computernutzungsbiographien ihrer Experimentierfreudigkeit. Sie haben nicht nur die im IU beigebrachten Anwendungen benutzt, sondern haben die Möglichkeiten und die Grenzen dieser Anwendungen erforscht. Durch ihren Drang immer experimentieren zu wollen, hat sich der Wunsch zum Programmieren und zum Gestalten entwickelt. Dadurch haben sie den Übergang vom so genannten normalen Nutzer zum Entwickler/Programmierer/Gestalter geschaffen [Kno07].

Im IU könnten die SuS diesen Übergang erreichen. Der Unterricht sollte sich nicht nur auf die Vermittlung der Handlungsweisen und der Übertragung des Faktenwissens beschränken. Lehrende sollten die unterschiedlichen Vorerfahrungen in Betracht ziehen und den Unterricht dementsprechend gestalten. Mit Hilfe des im Unterricht Gelernten sind die SuS in der Lage ihre informatische Perspektive zu erweitern. Dies geschieht, wenn
Kapitel 1. Einleitung

im IU nicht nur die wenigen Funktionen erklärt werden, sondern auch Hintergründe und Strukturwissen.

Es gibt aber in der Informatik einige didaktische Ansätze, die versuchen den Informatikunterricht zu verbessern und die als Hilfsmittel benutzt werden.

Ein Verfahren ist die "Dualitätsrekonstruktion als Hilfsmittel zur Entwicklung und Planung von Informatikunterricht"[Sch09], mit dessen Hilfe im weiteren Verlauf das dA (digitale Artefakt) "mobiles Internet" aufbereitet wird.

1.2.2. Dualitätsrekonstruktion

Dualitätsrekonstruktion ist ein von Carsten Schulte beschriebenes Verfahren. Dieses Verfahren ermöglicht dA wie Textverarbeitungsprogramme, Tabellenkalkulation, Handy, Internet usw. für den IU zu rekonstruieren. Der Hauptmerkmal dieser didaktischen Rekonstruktion ist die Dualität des dA. Die Funktion und Struktur eines digitalen Artefaktes bilden zusammen diese Dualität. Während die Struktur sich auf die Technik (technischer Aufbau, Algorithmen, Datenstrukturen) bezieht, geht die Funktion auf den Zweck des dA ein.

- Weltbild
- Selbstbild
- Verhaltensrepertoire

Das Weltbild untersucht die Allgemeine Meinung zu einem digitalen Artefakt. So stellen sich die meisten Schüler beispielsweise beim Stichwort Textverarbeitung das Programm WORD und beim Stichwort Tabellenkalkulation das Programm EXCEL vor.
Kapitel 1. Einleitung

Weiterhin soll analysiert werden wie das Selbstbild der Schüler zum genannten digitalen Artefakt ist. So würden zum Beispiel beim digitalen Artefakt Internet viele Schüler dieses als bekannt und einfach einstufen. Ihr Verhaltensrepertoire beim Internet beschränkt sich allerdings auf das bloße Anwenden, Ausprobieren und Spielen. Dieses "Benutzen" wird von den SuS als vermeintliches Wissen interpretiert.

Die Aufgabe besteht nun darin, die Struktur eines digitalen Artefakts zu vermitteln, um die SuS zu professionellen Nutzern zu machen. Natürlich ist es nicht möglich und vielleicht auch unnötig die kompletten Strukturen und Funktionen eines digitalen Artefakts den SuS zu erklären. Man beschränkt sich dabei auf einzelne Aspekte die für die Lernziele und für ihre Anwendungen wichtig sind.

1.2.2.1. Analyse eines digitalen Artefaktes

Bei der Analyse eines digitalen Artefakts werden die Präkonzepte, die eventuellen Lernziele, die Funktionen und Strukturen, sowie aus den Funktionen und Strukturen des Vorgängermödells entstandene Entwicklungspfade untersucht. Des Weiteren werden die Unterschiede zwischen Welt- und Selbstbild und die dazu gehörigen Handlungsmuster durch die Dualität von Struktur und Funktion erläutert [Sch09].
Als Hilfestellung bei der Analyse werden die Leitfragen der Dualitätsrekonstruktion in der folgenden Tabelle genutzt.

<table>
<thead>
<tr>
<th>Prä-konzepte</th>
<th>Weltbild</th>
<th>Welche vorunterschiedlichen Vorstellungen über Funktion und Struktur des dA könnten existieren? Welche Vorstellungen über typische Verwendungen und typische Verwender liegen vor?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selbstbild</td>
<td></td>
<td>Können die eigene Rolle beim Benutzen reflektieren, haben das Selbstvertrauen, sich weiter einzuarbeiten (sowohl in Strukturen als auch in komplexe Funktionen)</td>
</tr>
<tr>
<td>Funktion</td>
<td></td>
<td>Welches sind die wesentlichen Funktionen des dA? Welches sind die wesentlichen komplexen Funktionen?</td>
</tr>
<tr>
<td>Entwicklungspfad</td>
<td></td>
<td>Wie haben sich typische Funktionen und Strukturen aus den Vorläufern (älteren Versionen, verwandte Artefaktklassen) entwickelt? Welche Erweiterungen / Veränderungen sind in naher Zukunft absehbar (z.B. angekündigte neue Versionen)</td>
</tr>
<tr>
<td>Struktur</td>
<td></td>
<td>Welches sind die wesentlichen Strukturen des dA? Strukturen können sein: wichtige informtische Konzepte (Backtracking, Schichten, Geheimnisprinzip, Benutzungsmetapher), das Konzept der verwendeten Datenstruktur (Container als Listen, Graphen oder Bäume), (wesentliche Ideen der zentralen) Algorithmen.</td>
</tr>
</tbody>
</table>

Abbildung 1.3.: Leitfragen für die Dualitätsrekonstruktion

[Sch09]
Kapitel 1. Einleitung

Für eine erfolgreiche Analyse sollten weiterhin die folgenden Regeln der Dualitätsrekonstruktion berücksichtigt werden[Sch09].

1. **Exemplarische Inhalte herausrbeiten:** Die vorwiegenden Aspekte des digitalen Artefakts werden herausgearbeitet. Eine komplette Erklärung von Funktionen und Struktur soll vermieden werden.

2. **Innere Vernetzungen herausrbeiten:** Die einzelnen Aspekte, die herausgearbeitet wurden, sollen aufeinander bezogen werden. Es sind immer logische und inhaltliche Beziehungen vorhanden. Die Weltbilder beispielsweise, die in Präkonzepten angenommen wurden, beziehen sich meist auf Mangel an Wissen über die Struktur. Daraus leiten sich dann die Ziele ab. Die Funktionsaspekte und die dazugehörenden Strukturelemente sollen deutlich gemacht werden.

3. **Ideen geschichte herausrbeiten:** Im Unterricht sollte kurz auf die Entwicklungs geschichte eines dA eingegangen werden. Carsten Schulte begründet dies in seinem Artikel mit folgenden Argumenten:
 - Man kann Merkmale eines dA besser verstehen, da diese durch die Entwicklungsgeschichte beeinflusst werden.
 - Kenntnisse der Entwicklungsgeschichte ermöglichen ein gewisses Verständnis für den Artefaktcharakter.
 - Mit Hilfe der Entwicklungsgeschichte kann ein realistisches Bild der Wissenschaft Informatik vermittelt werden.

4. **Aus Fakten Erkenntnisse gewinnen:** Die Lernziele sollen stets im Auge behalten werden und immer auf allen drei Dimensionen: Weltbild, Selbstbild und Handlungsmuster betrachtet werden. Es dient dazu die Vermittlung von reinem Faktenwissen zu vermeiden. Wichtig ist, dass die Lernenden aus Fakten Erkenntnisse gewinnen, die es ihnen ermöglichen neues Wissen zu erlangen, Fakten zu verknüpfen, Orientierung zu geben und handlungsleitend wirken. Im Fokus müssen die Handlungsmöglichkeiten der Lernenden stehen, anstatt ausschließlich reines Faktenwissen zu überprüfen.
Kapitel 1. Einleitung

1.2.2.2. Didaktische Ziele der Dualitätsrekonstruktion

Das Verfahren sollte den IU verbessern und für die SuS interessanter machen. Im Wesentlichen hat diese Theorie folgende Ziele [Sch09]:

1. **Aktualität ermöglichen:** Der Lehrende kann die Aktualität im IU auf verschiedene Weisen herstellen. Das hier vorgeschlagene Verfahren ist informative Inhalte mit Hilfe der Zusammenstellung von Funktion und Struktur aktueller dA zu verdeutlichen. Dieser Weg wird vorgeschlagen, um die Wissenschaft "Informatik" mit dem IU zu verknüpfen. Der Vorteil dieses Verfahrens ist, dass die Lehrkraft die Dualitätsrekonstruktion auf neue dA anwenden kann, weil fast jedes neue dA auf einer Vorgängerversion basiert. Die Technologien des neuen und alten dA sind sehr ähnlich. Dies lässt sich auch im Entwicklungspfad des dA beobachten. Der Unterricht wird damit auf Dauer einfacher und ist immer aktuell.

Kapitel 2.

Analyse des Artefakts mobiles Internet

2.1. Präkonzepte und Ziele

Auch wenn die Einstellungen und Erwartungen der SuS an das mobile Internet sehr unterschiedlich sind, könnte man sie wie folgt analysieren. Auf der Abbildung 2.1 werden die potenziellen Präkonzepte und Ziele vorgestellt. Es ist zu erkennen, dass zwischen Präkonzepten und Zielen Verbindungen bestehen. Während die SuS bei Problemen beispielsweise die Trial Error-Methode nutzen, ist das Ziel die Probleme hypothesengesteuert lösen zu können.
Kapitel 2. Analyse des Artefakts mobiles Internet

Abbildung 2.1.: Analyse der Präkonzepte und Ziele

2.1.1. Präkonzepte

Kapitel 2. Analyse des Artefakts mobiles Internet

Eine gute Lernstandanalyse ist auch bei dem schülerorientierten Unterricht besonders wichtig. Der IU sollte sich möglichst an seinen Schülern orientieren. Dieses kann nur ermöglicht werden, wenn die Vorstellungen und Erwartungen der Lernenden bekannt sind.

Da das mobile Internet eine Mischung aus diesen beiden digitalen Artefakten ist, lässt sich sagen, dass die SuS auch das dA "mobiles Internet" kennen. Aber was genau kennen sie? Was haben sie für Erwartungen? Wie nutzen sie es? Um diese Fragen zu beantworten und die Einstellung der SuS zum mobilen Internet herauszufinden nutzen wir die 3-Dimensionen [Sch09].

- **Weltbild:** Kaum ein Schüler kommt in den IU als unbeschriftetes Blatt. Die subjektiven Annahmen und Alltagsvorstellungen über das mobile Web prägt das Weltbild der SuS. Es werden Antworten auf folgenden Fragen gesucht:
 - Was könnten die SuS schon über das mobile Web wissen oder was glauben sie zu wissen?
 - Welche Funktionen des mobilen Webs könnten sie schon kennen.
 - Kennen sie nur die Funktionen oder haben sie auch Wissen über die Struktur?
 - Welche Rolle hat das mobile Internet?
 - Nutzen sie das dA als Arbeitsgerät oder als Freizeitbeschäftigung?

- **Selbstbild:** Die Analyse des Selbtsbildes beschäftigt sich mit der Einstellung der SuS zum mobilen Web. Im Allgemeinen werden die folgende Fragen beantwortet:
 - Welche Einstellung könnten die SuS dem mobilen Web gegenüber haben. Haben sie Interesse am dA, sind sie neugierig?
 - Sind sie nach eigener Einschätzung kompetent oder nicht?
Kapitel 2. Analyse des Artefakts mobiles Internet

– Sehen sie sich als typischer oder möglicher Nutzer?

– Werden die Kompetenzen, die SuS aus Nutzungserfahrungen gewonnen haben, als Anwendungswissen oder als informative Kenntnisse wahrgenommen?

• **Handlungsmuster:** Hier geht es um die Analyse von Reaktionsmustern auf Probleme und von verfestigten Handlungsstrategien und Alternativen. Es werden folgende Fragen in Betracht gezogen:
 - Wie lernen die SuS das mobile Web kennen?
 - Gibt es bestimmte Nutzungsszenarien?
 - Welche typischen Funktionen werden benutzt?
 - Welche komplexen Funktionen werden nicht benutzt?

2.1.2. Ziele

Das Mobiltelefon und/oder das Internet werden in vielen Schulen als störender Faktor für die SuS betrachtet und zuweilen sogar verboten. Dafür gibt es unterschiedliche Gründe, auf die an dieser Stelle allerdings nicht eingegangen werden kann.

• **Weltbild:** Die SuS sollten in der Lage sein die Relation zwischen Struktur- und Funktionselementen zu verstehen, um die Natur des mobilen Internets zu durchblicken. Sie müssen verstehen, welche Strukturelemente bei bestimmten Funktionen
Kapitel 2. Analyse des Artefakts mobiles Internet

Wie das mobile Internet in den Schulalltag erfolgreich integriert werden kann zeigt uns das "iPhone Projekt" einer Schweizer Grundschule [fMuS11]. In dieser Schule wurden im Jahr 2009 im Rahmen dieses Projektes allen Kindern der 5. Klasse ein eigenes iPhone gegeben, das sie sowohl in der Schule als auch privat nutzen können. Das Ziel dieses Projektes war:

„Damit haben die Kinder jederzeit und überall ein Gerät zur Verfügung, mit dem sie lesen, schreiben, rechnen, zeichnen, fotografieren, Musik und Töne hören und aufzeichnen, telefonieren sowie im Internet surfen und kommunizieren können. Die Kinder sollen das Gerät innerhalb und ausserhalb der Schule als Teil ihrer persönlichen Lern- und Arbeitsumgebung nutzen und damit emanzipiert und kritisch mit zukünftig immer verfügbarer Informations- und Kommunikationstechnologie (ICT) umgehen lernen.“[fMuS11]

Kapitel 2. Analyse des Artefakts mobiles Internet

Im Internet suchten die SuS nach nützlichen Apps und stellten diese im Unterricht vor. Mit Hilfe des iPhones hatten sie mehr Spaß und mehr Erfolg beim Lernen.

Auf dem folgenden Diagramm ist zu erkennen, dass dies von den Eltern bestätigt wird. Sie sind überzeugt, dass Smartphones eine gute Lernhilfe sind und dass Ihre Kinder in ihrer Freizeit öfter lernen. Des Weiteren würden 81% der Eltern anderen Eltern empfehlen, an so einem Projekt teilzunehmen [Rot09].

Zu Hause sprechen wir des Öfteren über das iPhone-Projekt.

Zu Hause sprechen wir vermehrt über Technik im Allgemeinen.

Mein Kind zeigt mir den Umgang mit dem iPhone.

Mein Kind lernt mit mir den Umgang mit dem iPhone.

Mein Kind zeigt mir die Inhalte auf dem iPhone (Photos, Lernprogramme, Musik, usw.).

Mein Kind erklärt mir die Inhalte auf dem iPhone (Photos, Lernprogramme, Musik, usw.).

Auch für mich ist auf Grund des Projektes ein iPhone interessant geworden.

Ich bin überzeugt, dass das iPhone eine gute Lernhilfe ist.

Das Kind lernt viel öfter in seiner Freizeit.

Weitere Bemerkungen: Grosses Suchtpotenzial feststellbar

Abbildung 2.2.: Umgang mit der Technik in der Familie [Rot09]
2.2. Funktion und Struktur

2.2.1. Funktionen des mobilen Internets

Obwohl das mobile Web nicht gleich dem Desktop Web ist, sind die besuchten Seiten inhaltlich identisch. Auch im mobilen Web ist "Google" die meist besuchte Seite, gefolgt von "Facebook" und "Youtube" [GS11].

Abbildung 2.3.: Arten der mobilen Internetnutzung

[Acc]
Kapitel 2. Analyse des Artefakts mobiles Internet

2.2.1.1. Location Based Services

LBS’s werden von Schiller und Voisard wie folgt definiert;

"...as services that integrate a mobile device’s location or position with other information so as to provide added value to a user." [SCV04]

Tatsächlich haben die LBS eine lange Tradition, aber erst durch die Verbreitung des mobilen Webs werden sie immer mehr benutzt. LBS werden klassifiziert in [Rot05]:

- **Ortsbezogene Dienste**: Der Benutzer bekommt Informationen über den Ort. z.B: Point of Interest, Lokale Nachrichten, Position bei Notruf
- **Navigationsassistenz**: Routenplanung, Verkehrsinformationen und Fahrpläne
- **Sicherheit**: Eigene Position, Position von Kindern und Gegenständen.
- **Community**: Eigene Position an Freunde weiterleiten oder umgekehrt.
- **Commerce**: Werbung und Bezahlung.

2.2.1.2. Web 2.0 Anwendungen

- Wikis
- Weblogs
- Media Sharing Platform
Kapitel 2. Analyse des Artefakts mobiles Internet

- Social Taging
- Social Network

2.2.2. Struktur

2.2.2.1. Hardware

Die Hardware-Voraussetzungen um eine mobile Datenverbindung zum Internet herzustellen erfüllen viele Mobiltelefone. Zum Mailen und gelegentlichen Surfen sollte das Gerät den Übertragungsstandard EDGE unterstützen, wer jedoch schnellere Verbindung möchte, benötigt ein UMTS-Handy oder die aktuelle HSDPA-Technologie. Ganz gleich, ob Teilnehmer die modernsten Datenstandards benutzen oder nur eine GPRS-Verbindung aufbauen wollen: Ihre mobilen Endgeräte müssen vom Hersteller für die jeweils gewählte Variante spezifiziert sein.

Zum bequemen Surfen wird ein Drei-Zoll-Display mit einer Mindestauflösung von 480 mal 320 Bildpunkten (QVGA) empfohlen, noch besser ist eine VGA-Auflösung mit 640 mal 480 Pixeln. Insbesondere für den Gebrauch im Freien muss der Bildschirm eine hohe Leuchtdichte und ein gutes Kontrastverhältnis aufweisen – ansonsten ist das mobile Surfen bei starkem Sonnenlicht nicht möglich. Was allerdings die Augen der Anwender schont,
Kapitel 2. Analyse des Artefakts mobiles Internet

strapaziert gleichzeitig den Akku des Handys. Sofern dessen Kapazität bei einem Touch-Screen-Modell nicht bei wenigstens 1.200 mAh liegt, muss das Handy bei häufiger Nutzung täglich an die Steckdose. Dabei ist nicht zu vergessen, dass das Herstellen einer mobilen Datenverbindung ebenfalls die Akkulaufzeit verkürzt.

2.2.2.2. Software

Mobile Endgeräte sind durch die neuen Betriebssysteme und Browser immer besser in der Lage, das bekannte Internet vom PC auch mobil abzubilden. Trotz dieser erfreulichen Entwicklungen ist das Interneterlebnis auf mobilen Endgeräten nicht identisch. Die W3C empfehlen in ihren Richtlinien "Mobile Web Best Practices 1.0" Inhalte so zu gestalten und auszuliefern, dass sie auch auf mobilen Geräten intuitiv funktionieren. Insgesamt zehn Empfehlungen hat die W3C zusammengetragen [W3C11a]:

2. Einhalten der Webstandards: Die beste Lösung für Interoperabilität im hochfragmentierten Markt der Geräte zu sorgen, ist die konsistente Einhaltung von Standards.

Im Allgemeinen jede Form von Anwendungsprogramm. Im Text sind jedoch Anwendungen für moderne Smartphones gemeint, die über einen in das Betriebssystem integrierten Onlineshop bezogen und so direkt auf dem Smartphone installiert werden können.
Kapitel 2. Analyse des Artefakts mobiles Internet

10. Planen für mobile Nutzer: Präsentieren Sie Ihre mobilen Informationen so kompakt wie möglich, denn die Zeit der Nutzer ist knapp und die Ablenkungsmöglichkeiten sind vielfältig.

2.2.2.3. Mobilfunknetz

Das GSM-Netz bildet die Grundlage für die paketbasierte Erweiterung GPRS und deren Nachfolgesysteme UMTS und LTE. GSM-Mobilfunknetze werden zu den leitungsvermittelnden Kommunikationsnetzten (Circuit Switched Networks) gezählt [Mar08].

Ein GSM-fähiges Mobiltelefon wählt sich nur mit GPRS/EDGE oder HSCSD ein, wohingegen ein UMTS-Handy schnellere Verbindungen aufbauen kann, wenn ein passender Tarif existiert. Bei Texten, E-Mails und seltenem Surfen reicht es aus, wenn das Telefon über
Kapitel 2. Analyse des Artefakts mobiles Internet

Um den Zusammenhang zwischen Funktionen, für die Funktionen benötigte Strukturen und deren Entwicklungspfad zu betrachten, ist die folgende Mind-Map hilfreich.

Abbildung 2.4.: Analyse der Funktionen und Struktur
Kapitel 3.

Entwicklungspfad des mobilen Internets

3.1. Entwicklung des Mobilfunks

Im Jahr 1879 entdeckte David Edward Hughes das Phänomen der elektromagnetischen Wellen. Ein paar Jahre danach reproduzierte Heinrich Rudolf Hertz die Beobachtungen von Hughes: In einem Empfänger wurde eine Spannung durch Funken von einem Oszillator erzeugt. Das war der Anfang der drahtlosen Kommunikation zwischen zwei entfernten Punkten [Sch08].

Kapitel 3. Entwicklungspfad des mobilen Internets

Das erste Mobilfunknetz in Deutschland wurde 1958 von der Bundespost eingeführt. Die Verbindungen wurden vom "Fräulein vom Amt" handvermittelt und waren natürlich analog. Eine Verbindung konnte nur zwischen zwei mobilen Telefonen (die Geräte waren so groß und schwer, dass sie im Auto eingebaut werden mussten) aufgebaut werden.

Handover wurde nicht unterstützt. D.h., die Verbindung wird abgebrochen, sobald einer der Gesprächspartner die Funkstelle verließ. In der neuen Funkstelle musste die Verbindung wieder aufgebaut werden [Leh03].

Das C-Netz war als Zellularsystem mit Zellradien von 2 bis zu 30km aufgebaut. Während A- und B-Netze nur für die Sprachübertragung benutzt wurden, erlaubte das C-Netz auch eine Datenübertragung. Im C-Netz gab es auch tragbare Geräte (Siemens C450), denn die Geräte sollten nicht mehr im Auto fest eingebaut werden. Das Netz ermöglichte auch Handover. Die Vermittlung von Verbindungen war vollautomatisch, dadurch konnten die Standorte von Mobilfunkgeräten andauernd aktualisiert werden. In ganz Deutschland konnte ein Nutzer unter einer Nummer erreichbar sein. [Leh03].

3.2. GSM (2. Generation)

Kapitel 3. Entwicklungspfad des mobilen Internets

Für das GSM-Netz wurden folgende Kriterien festgelegt [Sco95].

- gute Sprachqualität
- geringe Betriebs- und Servicekosten
- international einsetzbar
- ISDN-kompatible
- effiziente Nutzung der verfügbaren Frequenzen
- erweiterbar

3.2.1. Datendienste auf dem Mobiltelefon

Das GSM-Mobilfunknetz ist seit jeher auf die Übertragung von Sprache ausgelegt. Zu seiner Entstehungszeit ahnte noch niemand, dass der Datenverkehr einmal so rasant wachsen würde. GSM-Datendienste haben aus heutiger Sicht zwei Nachteile: Zum Einen eine begrenzte Bandbreite von 9,6 kbit/s, die sich aus der Digitalisierung der analogen Sprachsignale durch die Kompression mit Hilfe der Pulse Code Modulation (PCM) ergibt. Zum Anderen eine ineffiziente kanalvermittelte Übertragungsart, die in der Gebührenabrechnung nach Dauer der Übertragung, nicht nach Menge der übermittelten Daten berücksichtigt wird. Wollte man diese Nachteile eliminieren, müsste GSM um neue Datendienste erweitert werden [Ahr03].

Allerdings basierte die erste Datendiensterweiterung, HSCSD, ebenfalls noch auf Kanalvermittlung. Hierbei wurden jedem Netzteilnehmer wie bei der Sprachübertragung eine exklusive Verbindung zugewiesen. Da Datenquellen oft ein schwankendes Verkehrsaufkommen haben, führte eine kanalorientierte Vermittlung zu einer ineffizienteren Ausnutzung der Funkkanäle und zieht die bereits angedeuteten hohen Gebühren nach sich [HRM03].
Kapitel 3. Entwicklungspfad des mobilen Internets

HSCSD bietet für den Datendienst eine höhere Bandbreite, dennoch hat diese Erweiterung von GSM auch Nachteile. Das verbindungsorientierte System ist für das typische Surfverhalten eines Nutzers nicht besonders effektiv. Der Nutzer lädt viele Daten aus dem Internet, dann lange Zeit nicht. Während dieser Zeit sind die Kanäle reserviert und können nicht von anderen Teilnehmern benutzt werden, was die Kosten erhöht [Sch03]. Außerdem dauert der Verbindungsaufbau bis zu 40 Sekunden. Aus diesen Gründen haben viele Betreiber HCSCD nicht angeboten.

GPRS beseitigt die Unzulänglichkeit von Verbindungen mit fester Kapazität, wie sie bei GSM und HSCSD nötig sind. Die Technologie erweitert den GSM-Standard für eine effizientere Datenübertragung und ermöglicht somit mobilen Endgeräten schnelleren Zugriff auf das Internet. Im Prinzip teilt GPRS physikalisch vorhandene Basiskanäle einer Funkzelle nach Bedarf auf mehrere Teilnehmer auf [Les02].

Weil das GPRS-zertifizierte mobile Endgerät in der Lage ist, mehrere Frequenzen im selben Zeitfenster zu nutzen, erhöht sich durch ihr Zusammenschalten die Übertragungsrate. Die Paketvermittlung erlaubt niedrige Kosten und Tarifmodelle. Für die Rechnungsstellung wird nicht mehr die Dauer, sondern auch das Übertragungsvolumen zugrunde gelegt. Die Tarifwahl kann demzufolge volumenbasiert oder zeitorientiert sein. GPRS ermöglicht durch die Abrechnung nach Datenmenge eine „Always on“-Verbindung zum Internet. Die Verbindung muss also auch bei längerer Inaktivität nicht beendet werden. Diese Betriebsart ermöglicht es, auch auf dem Mobiltelefon E-Mailprogramme (Clients) zu nutzen, die permanent auf den Eingang neuer Nachrichten warten oder aus dem Internet auf Mobiltelefone portierte Instant-Messaging-Dienste wie ICQ oder AIM zu benutzen [Mar08].

Kapitel 3. Entwicklungspfad des mobilen Internets

Ähnlich seinen Vorgängerversionen können mit EDGE keine Musik- oder Videostreams ohne Unterbrechungen empfangen werden. Auch das Laden von Internetseiten mit vielen Elementen ist eine Geduldsprobe. EDGE punktet vor allem bei Downloads.

3.3. UMTS (3.Generation)

- Das 3G-Netz muss alle Eigenschaften unterstützen, die von den einzelnen Systemen/Vorläufern angeboten werden (Kompatibilität und Koexistenz).
- Neue Dienste mit einer dem Festnetz entsprechenden Qualität UND Sicherheit müssen verfügbar sein.
- Hohe Netzkapazität, unterstützt durch eine hohe Marktdurchdringung

Kapitel 3. Entwicklungspfad des mobilen Internets

Mit UMTS lassen sich Spitzenraten von bis zu 2 MBit/s erzielen. Man erreicht diese hohe Geschwindigkeit nur, wenn sich die Mobilstation im Ruhezustand befindet und kein anderer Nutzer die Datenübertragungsraten in Anspruch nimmt. Einen realistischen Wert stellt daher die Datenrate von maximal 384 KBit/s dar, der sechsfachen ISDN-Geschwindigkeit [Ahr03].

3.3.1. Das UMTS-Netz

Wie das GSM-Netz ist auch das UMTS-Netz aus einem Kernnetz und einem Zugangsnetz aufgebaut, die durch die Iu-Schnittstelle miteinander verbunden sind. Iu verknüpft das Kernnetz mit verschiedenen Technologien wie dem Breitband-Zugangsnetz BRAN, den Satellitenzugangsnetzen SRAN und UTRAN sowie dem UMTS-Zugangsnetz [Les02].

Die grundlegende Architektur des Kernnetzes basiert auf GSM und GPRS, wobei die gesamte Ausrüstung für den UMTS-Betrieb und UMTS-Dienste modifiziert wurde. Das UTRAN stellt die Luftschnittstelle zum Mobiltelefon, jetzt User Equipment, dar [Fox08].

\(^2\)3GPP: Eine weltweite Kooperation internationaler Gremien für die Standardisierung neuer Dienste im Mobilfunkbereich ist seit 1998 tätig.

29

3.3.2. Unterschiede zu 2G

Während die Anwendungsfelder der Normen der 2G-Netze sich auf Telefonie, Datenübertragung mit niedriger Geschwindigkeit und den SMS-Dienst beschränkten, waren die Ziele der 3G-Netze deutlich weiter gesteckt: Sie orientierten sich an der Entwicklung der Dienste im Festnetz und zielten auf eine ungleich höhere Dienstvielfalt ab als es im GSM-Netz der Fall war. Außerdem galten die Funkzugangsschichten der 2G-Netze als unflexibel. Daher legten die Entwicklergremien Wert darauf, sowohl die Netzarchitektur als auch die funktionelle Gliederung bei UMTS offener zu gestalten [Les02].

- **Keine Unterbrechung bei Zellwechsel:** Auch hier ist die Vergabe eines geeigneten Kanals für paket- und leitungsvermittelte Datenübertragung von Vorteil. Bei GPRS ist der von der Mobilstation selbständig durchgeführte Zellwechsel mit einer
• **Höhere Bandbreite:** Die Ausrichtung an Sprachtelefonie machte schnelle Bitraten im GSM-Netz nicht möglich, daran änderte auch die Zeitschlitz-Bündelung bei GPRS nichts. Maximal verfügbare 200 kHz pro Träger schränkten die Bandbreite stark ein. Weil UMTS von vorneherein auch Breitband-Datendienste berücksichtigte, gelang es die Downloadgeschwindigkeit mittels Spreizfaktor von 8 auf 384 kbit/s zu erhöhen. Zwar erreicht die sendeschwächere Antenne in umgekehrter Richtung nur maximal 128 kbit/s, doch ist das ausreichend für komfortables Surfen, VoIP- und Videotelefonie, die auf Grund langer Verzögerungszeiten und Unterbrechungen beim Zellwechsel unter GPRS nicht realisierbar waren.

• **Videotelefonie mit 64 kbit/s:** Leitungsbasierter Datenverbindung mit 64 kbit/s in beiden Richtungen macht Videotelefonie zwischen UMTS-Teilnehmern möglich.

• **Flexible Code-Änderung:** Im Gegensatz zum rigiden Verhalten des GSM-Netzes ist UMTS in der Lage, flexibel auf die aktuelle Signalqualität des Teilnehmers zu reagieren, indem sein Spreizfaktor erhöht wird, wenn er sich vom Zellmittelpunkt weg bewegt. Dadurch reduziert sich wohl seine Datenrate, doch der Übertragungskanal bleibt erhalten. Auch verschiedene Lastzustände sind für das UMTS-Netz ausgleichbar: Bei zu hoher Interferenz oder einem Engpass an Codes bekommen bestehende und neue Teilnehmer einen höheren Spreizfaktor zugewiesen [Mar08].

muss der Einzelne mit höherer Leistung senden (2 Watt sind in Europa als Obergrenze festgelegt), um das Rauschen zu überlagern. Der größte Vorteil des Codemultiplexings ist seine Störsicherheit: Signale können selbst dann herausgehört werden, wenn ihre Leistung kleiner ist als das überlagernde Rauschen. Allerdings muss die Störsicherheit durch eine hohe Bandbreite erkauft werden [Wei02].

3.3.3. UMTS-Erweiterungen

Kapitel 3. Entwicklungspfad des mobilen Internets

3.4. LTE

Kapitel 3. Entwicklungspfad des mobilen Internets

Abbildung 3.1.: Entwicklung des Datenvolumens
[Ind11]

Primäreigenschaften und Vorzüge von LTE sind [Gut10]:

- theoretisch bis 100mbps Datenübertragungsrate
- weniger Kosten
Kapitel 3. Entwicklungspfad des mobilen Internets

- skalierbare Frequenzbandnutzung von 1,25MHz bis 20MHz
- mehr Mobilität (Optimierung für die Geschwindigkeiten von 0km/h bis zu 15Km/h)
- weniger Interferenzen auf der Funkschnittstelle
- komplett IP-basiert
- Unterstützung für multimedia Broadcasting
- Koexistenz mit anderen Standards wie GSM und UMTS

Technisch betrachtet ist LTE der Nachfolger der HSDPA-Technologie, dennoch ist LTE nicht nur eine Technik, sondern bringt viele neue Entwicklungen mit sich.

Bei OFDMA wird die verfügbare Bandbreite für die Signalübertragung in mehrere schmalbandige Unterträger aufgeteilt. Diese Trägersignale stehen orthogonal zueinander. Dies verhindert Interferenzen, da die Trägersignale sich wenig beeinflussen können [SS09].

Des Weiteren wird die Bandbreite, die einem Teilnehmer zur Verfügung steht, je nach Bedarf zugeteilt. Dadurch ist das System in der Lage die Bandbreite unter mehreren Nutzern optimal aufzuteilen.

Eine weitere Technik, die bei LTE angewendet wird, ist das Mehrantennensystem, das so genannte MIMO. Durch MIMO werden gleichzeitig mehrere Datenströme auf der gleichen Frequenz übertragen. Das ist eigentlich auch von HSPA+ bekannt. In LTE wird die Konfiguration 2x2 oder 4x2 benutzt [Gut10].
Kapitel 3. Entwicklungspfad des mobilen Internets

3.4.1. Sprachübertragung

Als Lösung für dieses Problem werden verschiedene Techniken vorgeschlagen:

Circuit Switched Fallback: Eine von mehreren Lösungen für Sprachübertragung für LTE-Netzen ist CS-Fallback. Dies ermöglicht einen Rückgriff auf leitungsgebundene Netze wie UMTS oder GSM.

Meldet sich ein Endgerät beim LTE-Netz an, so meldet sich das Gerät automatisch auch bei den UMTS/GSM-Netzen. Das Endgerät kann die LTE-Dienste nutzen bis es einen Anruf bekommt oder selber einen Anruf betätigen möchte. Wenn das Gerät einen Anruf bekommt, meldet sich das Gerät beim LTE-Netz ab und baut mit dem 2G/3G-Netz eine leitungsverbundene Verbindung für die Sprachübertragung auf.

Der Nachteil dieser Technik ist, dass die Nutzer für den Aufbau der leitungsverbundenen Verbindung lange Zeit warten müssen. Ein weiterer Nachteil wäre, dass die Datenverbindungen, die für die LTE-Dienste aufgebaut werden, in 2G/3G-Netzen nicht aufrecht erhalten werden können. Erweiterungen um die Datenverbindungen auch in 2G/3G-Netzen aufrecht zu erhalten, wurden zwar auch implementiert diese sind jedoch nicht zuverlässig [Mot09].

Bei diesem Verfahren muss sich der Teilnehmer im IMS-Netzwerk registrieren, um telefonieren zu können. Die Signalisierungsdaten und die Sprachübertragung erfolgt über IP-Pakete. Der Netzbetreiber reserviert hierfür spezielle Träger um geringe Latenz und Gleichmäßigkeit bei der Übertragung zu sichern.

3.4.2. LTE Advanced (4.Generation)

Folgende Standards hat ein 4G-Netz zu erfüllen [3GP08]:

- Kompatibilität zu bereits vorhandenen Netzwerken, das heißt, 4G-Geräte müssen in der Lage sein, mit den älteren Technologien zu arbeiten – wie z. B. GSM, UMTS.
- theoretisch sind 1 GBit/s Datenrate im Downlink
- bis 500 MBit/s im Uplink.
- spektrale Bandbreite bis zu 100Mhz
- Latenzzeiten von nur noch zehn Millisekunden.
- weltweite Kompatibilität.

Kapitel 4.

Greenfoot Szenarien

4.1. Entwicklerumgebung

Für Java Programmierer existieren je nach Bedarf viele unterschiedliche integrierte Entwicklerumgebungen. Die für dieses Projekt gewählte Umgebung "Greenfoot" definiert der Mitentwickler Michael Kölling wie folgt:

„Greenfoot ist eine Programmierumgebung, die zum Selbststudium oder in Anfängerkursen auf Schul-/Hochschulniveau eingesetzt werden kann, um die Prinzipien der Programmierung zu lehren und zu lernen. Dank ihrer Flexibilität und Skalierbarkeit eignet sie sich für Schülerinnen und Schüler sowie Studierende gleichermaßen“[Köl10]

- objektorientiert
- grafische Oberfläche
- leichte Anwendung
- sowohl für Anfänger als auch für Erfahrene geeignet
Kapitel 4. Greenfoot Szenarien

- neben Java Bibliotheken bietet es auch eine eigene Bibliothek
- unter gängigen Betriebssystemen ausführbar

Abbildung 4.1.: Greenfoot Benutzeroberfläche

Die Akteure/Objekte können aus dem Bereich "The Classes" (blau markiert) in den Bereich "The World" (rot markiert) hinzugefügt werden. In dem Bereich "Execution Controls" kann das Programm ausgeführt oder pausiert werden, sowie die Geschwindigkeit der Ausführung angepasst werden kann.
Kapitel 4. Greenfoot Szenarien

Um die folgenden Szenarien auszuführen, muss Greenfoot 2.0\(^1\) oder höher installiert sein. Greenfoot benötigt Java 5\(^2\) oder höher.

4.2. Auswahl der Szenarien

Die Szenarien sollten die verschiedenen Aspekte des Mobilfunks erklären und veranschaulichen. Während jedes Szenario eigene Funktionen und Ziele besitzt, stellen sie alle zusammen die Harmonie zwischen der Struktur und der Funktionen des Mobilfunks dar. Sie bilden zusammen eine Einheit.

Neben den Funktionen, die die Szenarien beinhalten, bieten sie auch die Möglichkeiten für Experimente, Projektarbeiten und Erweiterungen an, die im Kapitel 5 erklärt werden.

Im diesem Abschnitt werden die Auswahlgründe der Szenarien erklärt und eine dazugehörige einfache Anforderungsanalyse erstellt.

- **Szenario 1:** Wie viele andere Benutzer sind die SuS im Allgemeinen nur Anwender der Funktionen des Mobilfunks. Sie telefonieren, wenn nötig oder gehen ins Internet, wenn sie online sein wollen. Die meisten kennen nur das Mobiltelefon und die Basisstation als Netzwerkkomponenten. Wie genau die Basisstation arbeitet und mit welchen Komponenten sie noch verbunden ist bleibt verborgen. Somit wird die Netzwerkarchitektur zum besseren Verständnis des Mobilfunksystems in diesem Szenario behandelt.

Im April 2009 fiel das Mobilfunknetz der Telekom für mehrere Stunden aus. Die Kunden konnten nicht telefonieren, SMS versenden/beantworten oder die Online-Dienste nutzen. Die Zeitung "Die Welt" berichtete über den Vorfall damals wie folgt:

"...Am Abend war noch unklar, wie es zum folgeschweren Ausfall der Server der sogenannten HLR-Datenbank (Home Location Register) kommen konnte. Mit ihrer Hilfe wird die Telefonnummer der SIM-Karte des Mobilgeräts zugeordnet. Nach Angaben der T-Mobile-Sprecherin sollte das System langsam wieder hochgefahren werden und im Laufe der Nacht stabil laufen."[Onl01]

\(^1\)Greenfoot Download: http://www.greenfoot-center.de/download.html

Im Zeitungsbericht wird als Ausfallgrund die Störung eines Datenbankservers und dessen Funktion genannt. Interessant hierbei ist, dass die technischen Strukturen und deren Funktionen nicht nur in Fachbüchern zu finden sind, sondern auch in Zeitungsberichten aus dem Alltag.

Daher scheint es umso wichtiger den SuS diese Thematik nahezubringen. Dem Anwender werden die Definitionen und Funktionen der jeweiligen Komponente durch eine Simulation erklärt. Mit Hilfe dieses Szenarios sind die SuS in der Lage, die Struktur des Mobilfunknetzes grob zu verstehen und beschreiben zu können.

Das Szenario 1 übernimmt genau diese Aufgabe, in dem es einen einfachen Einstieg in die Struktur des Mobilfunknetzes ermöglicht gleichzeitig sich aber mit Hilfe einer abstrakten Netzarchitekturdarstellung nicht in Details verliert.

• **Szenario 2:** Während beim ersten Szenario die Struktur der Netzarchitektur eine große Rolle spielt, dominieren bei diesem Szenario die Funktionen des mobilen Webs. Die meist genutzten Funktionen im mobilen Web sind nach Instant Message und Nachrichten die lokal basierten Dienste wie Map und Point of Interest. Diese Funktionen werden im Szenario realisiert. Weiterhin bietet es die Möglichkeit Funktionen zu erweitern und ggf. neue hinzuzufügen.

Bei diesem Szenario wurde die abstrakte Ebene verlassen und eine realitätsnahe Umgebung den SuS geschaffen. Dadurch wird den SuS ermöglicht das Gelernte auf die reale Welt zu übertragen.

• **Szenario 3:** Experimentieren im Unterricht ist für jedes Fach wichtig, aber besonders im IU ist es von großer Bedeutung. Durch das Experimentieren können sich die SuS vom Anwender, zum professionellen Anwender, zum Gestalter oder sogar zum Mitentwickler hocharbeiten.

Kapitel 4. Greenfoot Szenarien

Daher wurde auch bei diesem Szenario den SuS ein Experimentierszenario angeboten, um ihr Interesse zu wecken und spielerisch die Thematik näher zu bringen. So haben sie in diesem Szenario die Möglichkeit interessante Situationen aus dem Alltag zu visualisieren.

4.3. Entwurf

4.3.1. Szenario 1

Im Folgenden wird eine Abbildung des Szenarios dargestellt.

Um das Programm zu starten, nutzt man den Start Button der Greenfoot-Umgebung. Nachdem das Programm gestartet wurde, kann der Mauszeiger über die Komponenten bewegt werden, wodurch die Definition dieser Komponente im Fenster links oben erscheint.

Wird eine Mail gesendet oder eine Seite aus dem Netz geladen, kann der Ablauf des Prozesses Schritt für Schritt in der Simulation verfolgt werden. Während in der Status-Anzeige der Ablauf protokolliert und im Nachhinein betrachtet werden kann. Somit wird
Kapitel 4. Greenfoot Szenarien

Abbildung 4.2.: Szenario 1

 einen Einblick in die Hintergrundabläufe und die verwendeten technischen Komponenten erhalten.

Als weitere Funktion des Szenarios wird das Deaktivieren technischer Komponenten angeboten. Die Komponenten können außer Betrieb gesetzt werden, bevor das Szenario gestartet wird. Mit der rechten Maustaste wird auf eine beliebige Komponente geklickt und die Methode `deaktivieren()` ausgewählt, wodurch dieses Element inaktiv wird und seine Aufgaben nicht erfüllen kann. Es wird ein technischer Ausfall simuliert.

Um zu testen was passiert, wenn eines der technischen Elemente ausgefallen ist, wird ein Online Dienst (wie oben beschrieben) benutzt. Während des Ablaufs erscheint dann die Fehlermeldung, dass die Komponente ausgefallen ist. Aus diesem Grund bleibt auch der Verbindungsaufbau mit dem Handy ins Internet erfolglos.

Unabhängig davon, ob eine Verbindung hergestellt wird oder nicht, wird eine Log-Datei, welche sich im Programmpordner befindet, erstellt. In dieser werden die Schritte des Prozesses, sowie das Ergebnis mit Datum und Zeitangaben gespeichert.
Kapitel 4. Greenfoot Szenarien

Während das Szenario diese Funktionen anbietet, wurde beim Entwurf und der Implementierung großer Wert auf Verständlichkeit und Einfachheit gelegt, um die im Kapitel 5 vorgeschlagenen Erweiterungen bzw. Experimente zu ermöglichen.

Die Implementierung basiert auf dem folgenden Klassendiagramm:

Abbildung 4.3.: Szenario 1 - Klassendiagramm

Die Oberklasse World ist eine Standardklasse der Greenfoot-Umgebung. Für dieses Szenario wurde eine Mobilfunk-Welt-Klasse erstellt, in welcher das Errichten und die Initialisierung des Szenarios implementiert wurde.

44
• **Struktur:** Die technischen Komponenten der Welt werden von dieser Klasse abgeleitet. Während die Komponenten: Datenpaket, Handy und Basisstation als Unterklasse abgeleitet werden, werden die anderen Strukturelemente als Objekte dieser Klasse erstellt.

Die untere Abbildung zeigt nochmal einen Teil der Klasse Struktur mit ihren wichtigen Methoden:

```java
/** Diese Methode liefert den aktuellen Zustand einer Komponente. */
* Die Objekte können entweder "Aktiviert" oder Deaktiviert" oder Bereit" sein.
*/
public String istAktiv() {
    return zustand;
}

/** Methode um den Zustand der Komponente zu aktivieren. Die Komponente ist aktiv. */
public void aktivieren() {
    // Zustand wird auf aktiv gestellt und das Bild wird geändert.
    zustand="Aktiv";
    bildSetzen();
}

/** Methode um den Zustand der Komponente zu deaktivieren. Die Komponente ist ausgefallen. */
public void deAktivieren() {
    // Zustand wird auf deaktiviert gestellt und das Bild wird geändert.
    zustand="Deaktiviert";
    bildSetzen();
}

/** Methode um den Zustand der Komponente auf Bereit zu stellen. */
* Die Komponente ist bereit und wartet auf Anweisungen.
*/
public void bereit() {
    // Zustand wird auf Bereit gestellt und das Bild wird geändert.
    zustand="Bereit";
    bildSetzen();
}

/** Hier wird je nach dem Zustand der Komponente das Bild geändert. */
* Die Bilder sind in dem Ordner "/images" gespeichert
*/
public void bildSetzen() {
    if (zustand=="Bereit") {
        // Das Bild ist im Ordner /Images und der Name besteht aus
    }
}
```
Für jedes Objekt dieser Klasse existieren im Ordner "/Images" drei Bilder, die sich je nach aktuellem Zustand der Komponente abwechseln.

- **Funktion:** Das ist die Oberklasse der Online-Dienste des Mobilfunks. Programmierungstechnisch betrachtet, hat diese keine Funktionalität jedoch dient sie der Lesbarkeit und Ordnung des Codes.

Einer der Online-Dienste des Szenarios ist es eine Mail zu verfassen und diese zu versenden. Um eine Mail zu verschicken, müssen Benutzereinstellungen (Benutzername, Passwort, SMTP-Server Adresse) konfiguriert werden.

```java
public void actionPerformed (ActionEvent e) {
    try {
        String username = "BENUTZERNAME";
        String password = "PASSWORT";
        String senderAddress = "SENDER@MUSTERMANN.DE";
        String smtpHost = "SMTP-SERVER";
        String emp=senderAddress ;
        // Mailinhalt und die Empfängeradresse werden über GUI eingegeben.
        String send= GuiComponente.eMailSend.getText();
        String betr= GuiComponente.eMailBetr.getText();
        String text= GuiComponente.eMailText.getText();
        // Die Mail wird gesendet.
        new MailSender().sendMail(smtpHost, username, password, emp, send, betr, text);
        GuiComponente.funktionsPanel.removeAll();
        GuiComponente.funktionsPanel.repaint();
        GuiComponente.funktionsFenster.dispose();
        paketWert=1;
    } catch (Exception E){
    }
}
```
Kapitel 4. Greenfoot Szenarien

Die Methode `Sendmail()` ist eine Methode der Hilfsklasse `MailSender`. Um diese Methode nutzen zu können, sollte Javamail-API\(^3\) installiert werden.

- **Gui-Komponente:** Sie ist eine weitere Unterklassen der Akteur-Klasse. Sie hat für die Funktionalität, ähnlich wie die Klasse "Funktion" keine Wirkung, dennoch ist sie wichtig, da sie alle Gui-Elemente miteinander vereint. Diese Gui-Elemente wurden mit Swing implementiert, die von Java zur Verfügung gestellt wird.

4.3.2. Szenario 2

Bei diesem Szenario wurden alltägliche Situationen entworfen, wofür verschiedene Funktionen implementiert wurden. Ein Teil dieser Funktionen werden explizit vom Benutzer betätigt (Mail, POI usw.), während ein anderer Teil vom Mobilfunksystem ausgeführt wird (Handover, Verbindung).

Das Handy-Objekt kann mit den Pfeiltasten gesteuert werden. Befindet sich das Handy in der Reichweite einer Basisstation wird eine Verbindung von diesem Objekt zur Basisstation aufgebaut. Wird das Handy-Objekt von der Reichweite einer Station zu einer anderen Station bewegt, findet ein Übergang statt. Dieser Übergang wird "Handover" genannt.

Durch einen Klick auf das Handy-Objekt erscheint das Funktionsfenster, in dem verschiedene Funktionen ausgewählt werden können. Die bereits implementierten Funktionen sind unter anderem die "Handy Positionierung" und das Feature "Interessante Orte" finden.

Grob betrachtet hat dieser Entwurf große Ähnlichkeit mit dem Entwurf des ersten Szenarios. Die Akteure wurden wieder in drei Oberklassen unterteilt: Struktur, Funktion und GUI.

Die Klasse Basisstation sorgt für die Verbindung über die Luftschnittstelle. Die Reichweite dieser Luftschnittstelle und die maximale Anzahl von Mobiltelefonen, die sich über diese Schnittstelle mit der Basisstation verbinden können, können durch die entsprechenden

Variablen geändert werden. Alle Handy-Objekte, die sich in Reichweite einer Basisstation befinden, werden in einem Array gespeichert, so dass von der Station zu jedem dieser Objekte eine Verbindung aufgebaut wird.

```java
public boolean stationWahl(int id)
{
    for (int i = 0; i < handys.length; i++)
    {
        if (handys[i] == id) //Es wird überprüft ob das Handy bereits in Array ist.
            return true;
        else if (handys[i] == 0) // Das neue Handy wird in die Array genommen.
            {
                handys[i] = id;
                return true;
            }
    }
    return false;
}
```
So wie die Basisstationen haben auch die Handy-Objekte eine Reichweite, in der sie nach Basisstationen suchen und sich ggf. mit der nächsten Station verbinden können. Dafür wird zuerst mit der Methode `naechsteStation()` die in der Nähe liegende Station gesucht und mit dieser die Verbindung aufgebaut.

```java
public Basisstation naechsteStation() {
    for (int i = 0; i < handy_Reichweite; i++) { // Nächste Station wird gefunden wird das Handy mit dieser Station verbunden.
        List<Basisstation> stationen = getObjectsInRange(i, Basisstation.class);
        if (!stationen.isEmpty())
```

Abbildung 4.5.: Szenario 2 - Klassendiagramm
Die Klasse Funktion ist die Oberklasse der Funktionen des Mobilfunks. Für jede implementierte Funktion wurde eine Unterklass e erstellt. Wenn in Zukunft im Rahmen der Erweiterungen durch die SuS neue Funktionen implementiert werden, können sie diese Ordnung beibehalten.

Die andere implementierte Funktion ist das Finden von interessanten Orten auch POI (Point of Interest) genannt. Die Adresskoordinaten von POIs werden in einem Array gespeichert, die sowohl eigenständig als auch aus zufälligen Zahlen automatisch erstellt werden kann. Wenn nach einem POI gesucht wird, wird die Position vom Mobiltelefon mit den Koordinaten der gesuchten POI verglichen; diejenigen, die sich in der Nähe befinden, werden angezeigt.

4.3.3. Szenario 3

Das letzte Szenario wurde so entworfen, dass die SuS selbst die Möglichkeit haben Experimente mit Mobilfunkelementen durchzuführen und mitzugestalten. Den Schülern werden verschiedene Komponenten und Methoden zur Verfügung gestellt, die sie kreativ nutzen können. Dieses Szenario besteht aus zwei Unterszenarien, die in der Klasse Erweiterung

Kapitel 5.

Anwendung von Szenarien im Unterricht

Die im vorherigen Kapitel beschriebenen Szenarien basieren auf der Idee der Dualitätsrekonstruktion. Wie im Kapitel 2.1.1 beschrieben wird zunächst eine Lernstandsanalyse durchgeführt, welche dazu dient die Vorerfahrungen der SuS herauszufinden. Die Dualitätsrekonstruktion geht davon aus, eine konkrete Zielgruppe zu haben und anhand dieser die Lernstandsanalyse durchzuführen. Jedoch war dies im Rahmen dieser Arbeit nicht möglich. Daher war das Ziel die Szenarien vorzugsweise allgemein zu halten, was eine Schwierigkeit darstellte. Die im Kapitel 1 erwähnten Studien halfen bei der Überwindung dieses Problems. Sie gaben einen groben und sehr allgemeinen Überblick über die Vorerfahrungen der Jugendlichen mit dem mobilen Internet.

Die im Kapitel 1 angegebenen Ziele der Dualitätsrekonstruktion sind eine Voraussetzung für einen erfolgreichen IU. Deshalb wurde bei den Experimenten und Erweiterungen auf diese Ziele großer Wert gelegt.

Die im Kapitel 4 beschriebenen Szenarien wurden vor einer Schulklasse präsentiert. Den SuS wurde ermöglicht Experimente durchzuführen. Dies diente dem Zweck mir einen
Überblick zu geben, wie die SuS mit den Szenarien umgehen. Es entsprach keiner groß angelegten Studie.

5.1. Experimente

5.1.1. Ausfall

Bei den digitalen Artefakten ist es wichtig zu wissen wie die einzelnen Komponenten funktionieren. Es ist aber genauso wichtig zu wissen was passieren kann, wenn eine oder mehrere Komponenten ausfallen.

Das erste Szenario gibt einen Überblick über die Architektur des Mobilfunks. Damit können die SuS die Aufgaben, Funktionen und Verbindungen der einzelnen Komponenten verfolgen. Die Schüler haben aber auch die Möglichkeit eine oder mehrere Komponenten zu deaktivieren. Hierfür wird mit der rechten Maustaste eine Komponente angeklickt und die Methode "deaktivieren()" ausgewählt. Wie in der Abbildung 5.1 zu erkennen ist.

![Abbildung 5.1: inaktive Komponente](image)

Wird die Simulation nun gestartet, wird eine Fehlermeldung generiert, in der erklärt wird, welche Komponente ausgefallen ist und welche Aufgabe nicht durchgeführt werden konnte.
Kapitel 5. Anwendung von Szenarien im Unterricht

Dies kann im Unterricht auf verschiedene Weisen angewendet werden. Beispielsweise wie folgt:

Der Lehrende deaktiviert eine Komponente und fragt die SuS warum eine Verbindung nicht aufgebaut werden konnte. Die SuS versuchen den Fehler herauszufinden ohne vorerst die Simulation zu nutzen. Sie überlegen, welche Aufgabe diese Komponente haben könnte und was passieren könnte, wenn diese Aufgabe nicht ausgeführt werden kann. Aus welchem Grund beispielsweise keine Verbindung zum Internet aufgebaut werden kann, wenn der SGSN ausgefallen ist.

Dadurch werden die SuS animiert nicht immer die Trial-Error-Methode zu nutzen, sondern gezielt nach dem Fehler zu suchen. Außerdem üben sie das erlernte Strukturwissen anzuwenden, wenn Fehler auftreten.

5.1.2. Standort

Eine der wichtigsten Voraussetzungen für einen erfolgreichen Informatikunterricht ist die Aktualität der zu behandelnden Themen. Es würde die SuS nicht motivieren, wenn das Lehrpersonal das Thema Mobilfunk nur auf analoge Netze beschränken würde. Insbesondere da die Verwendung von Smartphones auch unter SuS heutzutage selbstverständlich ist und über 4G Netze schon diskutiert wird.

\(^1\)Laut Apple wird das ab iOS-Versionen 4.3.3 nicht mehr gemacht
5.1.3. Handover

Handover ist ein Ereignis mit dem die Mobilfunkteilnehmer, ob bei Sprach- oder Datenverbindungen in den meisten Fällen ohne zu merken täglich mehrmals konfrontiert werden. In der Fachliteratur wird dieses Phänomen wie folgt beschrieben:

„A mobile station that approaches a cell boundary can pass into a soft handover. This means that it is communicating simultaneously with up to three base stations. Each base transmits the same information on its own physical channel. The mobile station must therefore be able to decode up to three physical channels of different base stations and merge the data streams.“[Alt03]

Das zweite Szenario ermöglicht das Testen der Handover-Funktion. Bei diesem Szenario können die SuS das Mobiltelefon zwischen den Basisstationen bewegen und dabei die Verbindungen zwischen Basisstationen und dem Mobilgerät beobachten.

Im Szenario ist das Handover so implementiert, dass ein Mobiltelefon gleichzeitig mit bis zu zwei Basisstationen verbunden sein kann. In der oberen Definition des Handovers wird aber angegeben, dass ein Mobilgerät Verbindungen mit bis zu drei Stationen aufbauen kann. Im Rahmen dieses Experimentes haben die SuS als Herausforderung die Implementierung des Handovers im zweiten Szenario so zu erweitern, dass Verbindungen von einem Mobiltelefon mit bis zu drei Basisstationen möglich sind. Hierfür sind die Methoden handoverStation() und handoverVerbindung() hilfreich.

Während für den ersten Teil des Experimentes keine Programmierkenntnisse benötigt werden, fordert der zweite Teil Grundkenntnisse in Java.

Bei diesem Experiment wird eine Brücke von der Funktion zur Struktur geschlagen. Es wird deutlich, dass ein funktionierendes Handover-System benötigt wird, um ohne Verbindungsprobleme beispielsweise ein Telefonat zu führen. Das heißt, dass für die Funktion "Verbindung" die Struktur "Handover" angewendet wird. Die Güte der Verbindung hängt auch vom Handover ab.

Die SuS üben weiterhin sich in ein Thema einzuarbeiten. Sie lernen erst wie das Handover funktioniert, um anschließend das Erlernte umzusetzen, indem sie das Programm erweitern.
Kapitel 5. Anwendung von Szenarien im Unterricht

5.1.4. Mobilfunkversorgung

Im dritten Szenario werden die Makro- und Mikrozellen genutzt. Makrozellen werden hauptsächlich großräumig dimensioniert und ermöglichen Datenraten bis zu 144kbit/s, während die Mikrozellen kleinräumig dimensioniert werden, bieten sie Datenraten bis zu 384kbit/s an [TW11].

In diesem Experiment können die SuS einen Stadtteil mit Funkzellen versorgen. Dabei ist wichtig mit wenigen Basisstationen mehr Mobilfunkteilnehmer zu bedienen. Bei diesem Experiment könnte ein folgendes Spiel konzipiert werden:

1. Es wird einen Stadtteil oder eine Region ausgewählt. (Unter dem Ordner /images sind verschiedene Stadtkarten vorhanden) Diese Stadtkarten werden als Hintergrundbild eingestellt.

3. Das Programm wird gestartet.

4. Es wird die Anzahl an Mobiltelefonen ausgegeben, die zu irgendeiner Basisstation eine Verbindung haben.

5. Der Spieler, der die größere Zahl hat, gewinnt.
5.1.5. Zellatmung

Mit der Zellatmung können die SuS experimentieren, indem sie im dritten Szenario eine Makrozelle in die Welt einfügen. Die maximale Anzahl der Mobiltelefone, die in dieser Zelle versorgt werden können, wird durch die Variable "ANTENNENLASTMakro" geregt. Anschließend werden mehrere Mobiltelefone zur Welt hinzugefügt. Wenn in der Reichweite der Station die Anzahl der Handys größer als der Wert der Variable "ANTENNENLASTMakro" ist, verkümmert sich die Zelle. Das heißt, dass die Zelle atmet.

5.2. Erweiterungen

5.2.1. Sprachverbindung

Eine alltägliche Nutzungssituation der Mobilfunkteilnehmer ist Telefonate auszuführen. Dies erfolgt, indem sie die gewünschte Nummer wählen, auf die Anruftaste drücken und einige Sekunden später steht schon die Gesprächsverbindung. Während des Verbindungsaufbaus erledigt die Struktur des Netzes im Hintergrund viele notwendige Aufgaben.

Die 2G/3G-Netzarchitektur wird im Szenario 1 den SuS vorgestellt. In diesem Szenario wird der Verbindungsaufbau vom Mobiltelefon ins Internet dargestellt. Die Aufgabe der SuS ist nun ein Szenario für eine Sprachverbindung zu erstellen. Diese Aufgabe besteht aus zwei Teilaufgaben. Als Erstes wird recherchiert, was die Struktur des Mobilfunks macht, um eine Verbindung aufzubauen. Der zweite Teil ist, dass aus dem Recherchieren erhaltene Wissen zu nutzen, um das Szenario 1 so zu erweitern, dass nicht nur Datenverbindungen, sondern auch Sprachverbindungen möglich sind.
Während die SuS diese Aufgaben lösen, üben sie u.a. das entdeckende Lernen. Nach Jerome Bruner werden die SuS bei dieser Art des Lernens angeregt und befähigt, Probleme relativ selbstständig anzugehen und effektiv zu lösen. Der Lernende wird dazu ermutigt, die Problemstellung zu analysieren, Hypothesen zu formulieren, diese zu überprüfen und Lösungen zu finden. Ludger Numbert veranschaulicht den entdeckenden Unterricht wie in der Abbildung 5.2:

Als Problemsituation für diese Erweiterung gilt es herauszufinden, was die Struktur des Mobilfunknetzes macht, um eine Sprachverbindung aufzubauen. Die SuS analysieren dieses Problem, formulieren Hypothesen und finden eine Lösung, die sie anschließend anwenden, um das Szenario 1 zu erweitern.

5.2.2. Positionierung

In der heutigen Kommunikationswelt verbreiten sich immer LBS (Location Based Services) oder auch standortbezogene Dienste genannt. Über diese Dienste können sich die Teilnehmer beispielsweise die nächste Apotheke anzeigen lassen. Im Szenario 2 wurden die LBS implementiert. Der Hauptbestandteil dieser Dienste ist es die Positionierung des Mobiltelefons herauszufinden, weil die LBS von der aktuellen Position des Mobilgerätes abhängt.
Kapitel 5. Anwendung von Szenarien im Unterricht

In der Praxis werden verschiedene Positionierungstechniken angewendet, die unterschiedliche Genauigkeiten, sowie Vor- und Nachteile haben. Auf diese Techniken wird hier nicht eingegangen. Für mehr Informationen wird auf die Fachliteratur verwiesen.

Kapitel 6.

Fazit

Mit Hilfe der Dualitätsrekonstruktion wurden die Rahmenbedingungen der Aufbereitung des dA festsgelegt. Diese Regeln haben dazu beigetragen das breite und komplexe Thema Mobilfunk auf das einzuschränken, was für SuS im IU wichtig sein könnte.

Eine der Schwierigkeiten dieser Arbeit stellte die Auswahl der Szenearien dar, da diese möglichst einfach gehalten werden sollten gleichzeitig aber einem gewissen Abstraktionsniveau entsprechen und die Komplexität der Struktur bewahrt bleiben sollte. Zu diesem Zweck wurden die Experimente und Erweiterungen beschrieben.

Kapitel 6. Fazit

Des Weiteren können die SuS nicht nur das Konzept des Mobilfunks mit Hilfe der Szenarien besser verstehen, sondern auch selber Experimente gestalten und verändern, so dass sie auch das Konzept der OOP kennenlernen.

Im Rahmen dieser Arbeit kann der tatsächliche Erfolg im IU nicht weiter untersucht werden. Allerdings bietet dieser Bereich potenzielle Forschungsaufgaben, denen beispielsweise im Rahmen empirischer Studien nachgegangen werden könnte.
Literaturverzeichnis

Literaturverzeichnis

Literaturverzeichnis

[Rot09] Reto Käser; Oliver Lux; Marcel Montanari; Christine Roth. Evaluation des iphone-projektes an der primarschule goldau. 2009.

Anhang A.

Anhang

A.1. Inhalt der CD-ROM