
Topology-Aware Overlay Construction in Dynamic Networks

Rolf Winter, Thomas Zahn, Jochen Schiller
Institute of Computer Science

Freie Universität Berlin, Germany
{winter, zahn, schiller}@inf.fu-berlin.de

Abstract

Lately, peer-to-peer overlay networks and their ability to
reflect the underlying network topology have been a focus
in research. The main objective has been to reduce routing
path lengths, stretched by the overlay routing process. In
most solutions developed, a kind of fixed infrastructure in
the form of so called landmarks or excessive message
exchange are necessary to guarantee good overlay locality
properties. Some solutions also deliberately give up even
overlay ID distribution when constructing an overlay
network with locality information.

This paper presents a topology-aware overlay network
based on Pastry which does not rely on any fixed set of
infrastructure nodes. Additionally, the approach presented
here tries to construct the overlay with only little
communication overhead and still tries to distribute
overlay IDs as evenly as possible. Two bootstrap strategies
were developed and analyzed, both explicitly designed to
work in dynamic networks.

Keywords: peer-to-peer overlays, topological proximity,
DHTs, dynamic networks

1 Introduction

Peer-to-peer (P2P) systems have recently seen a
tremendous surge in popularity which has lead to the
development of a variety of such systems. However, first-
generation systems such as Gnutella [1] suffer from serious
scalability problems [2]. Thus, current research efforts
have been devoted to distributed hash tables (DHTs) to
overcome these scalability obstacles.
DHTs are self-organizing overlay networks especially
tailored towards the need of large-scale peer-to-peer
systems. The general idea of DHTs is that each node
participating in the (overlay) network is assigned a random
ID. Each object that is to be stored on the network is also
assigned a random ID. An object is now stored at the node
whose ID is closest to the object's ID. All DHTs provide
one basic operation: lookup(key) node. Given an
object's ID, a DHT is capable of locating the responsible
node within a bounded amount of overlay routing steps.
Prominent representatives of DHTs are CAN, Chord,
Pastry, and Tapestry [3, 4, 5, 6].
In the overlay network, a node maintains an overlay
routing table containing the IDs of a small set of other

overlay nodes. Each such entry can be thought of as a
virtual, direct link between the current node and the table
entry. In overlay terms that means that messages can be
exchanged directly between a node and the nodes in its
routing table or, in other words, a node can reach all nodes
in its routing table with a single overlay hop.
However, a single overlay hop is likely to involve multiple
physical routing hops. For example, consider two overlay
nodes A and B connected to the Internet. A is located in
London and B in Chicago. It is quite obvious that even if B
resides in A's overlay routing table, the one overlay hop
between A and B would amount to several IP hops.
The main advantage of DHTs is that they provide a
guaranteed bound on the number of overlay routing hops
that have to be taken to locate any given object (i.e. any
given key) on the overlay network. For [4, 5, 6] this bound
is O(log N), where N is the number of nodes participating
in the overlay network.1 Due to the discrepancy between
overlay hops and physical hops, as explained above, it is
very likely that a significantly larger amount of physical
hops compared to the logarithmic amount of overlay hops
is involved in locating an object on the overlay network.
With high probability, the following issue arises from this
discrepancy: The number of physical hops induced by the
overlay routing process can be decidedly greater than the
direct physical routing path between the source node and
the target node.
 Consider the overlay routing example given in Figure 1.
Overlay node S initiates a lookup that will eventually be
routed to overlay node T. Since every overlay node only
has very limited knowledge of other overlay nodes, nodes
usually try to forward a lookup request to other nodes that
are closer (in terms of the overlay ID space) to the key than
they are themselves.2 In this example, three intermediate
overlay routing steps are involved until the request reaches
its final destination, clearly traveling a highly suboptimal
physical route.
As can be seen, although the target node can be located
with logarithmic overlay hops, the physical path traveled
during the overlay routing process is often less than
optimal. More technically speaking, the ratio between the
number of physical hops induced by overlay routing and

1 CAN employs a more general approach involving d-dimensional virtual
coordinate spaces. CAN has a routing effort of O(d(n1/d)). However, if the
number of dimensions d is chosen to be d=(log2n)/2, CAN achieves the
same effort as Chord, Pastry and Tapestry.
2 Exactly how many nodes an overlay node knows about and how
message forwarding is done, is an implementation-specific detail of the
respective DHT.

the number of physical hops on a direct physical routing
path is often markedly lopsided.

Figure 1: Overlay routing

The main contribution of this paper is the design and
analysis of two approaches that optimize this ratio. Most
importantly, these two approaches have been designed to
maintain optimized routing properties even in the presence
of network dynamics such as frequent node failures (i.e.
network degression). Thus, they are well suited for highly
dynamic networks, such as ad-hoc networks.
The remainder of this paper is organized as follows.
Section 2 discusses related work. In Section 3, we present
in detail our two approaches. Section 4 analyzes and
evaluates various experimental results achieved with these
approaches. Section 5, concludes this paper and gives a
brief outlook on our future work.

2 Related Work

A significant amount of work has been dedicated to the
development of P2P overlay networks, but so far only few
approaches explicitly focus on making overlay networks
reflect the locality properties of the underlying physical
networks.
One of the general concepts used to close the gap between
physical and overlay node proximity is landmark
clustering. Ratnasamy et al. [7] use landmark clustering in
an approach to build a topology-aware CAN [3] overlay
network. They require a fixed set of landmark nodes that
all participating nodes have to know about. Prior to joining
the overlay network, a joining node has to measure its
distance (e.g., RTT, hop count, or any other appropriate
metric) to each landmark. The node then orders the
landmarks according to its distance measurements. Nodes
with the same such landmark ordering fall into the same
bin. The intuition behind this idea is that nodes with the
same landmark ordering, i.e. nodes that have similar
distances to all landmark nodes, are also quite likely to be
close to each other topologically. Each bin is now mapped

to a region in CAN's virtual coordinate space. After having
binned itself, a joining node assumes a random point in the
region associated with its bin. An immediate issue with
landmark binning is that it can be rather coarse-grained
depending on the number of landmarks used and their
distribution. Furthermore, a fixed set of landmarks renders
this approach unsuitable for dynamic networks, such as ad-
hoc networks. The most significant downside of this
approach, however, is that it can lead to an extremely
uneven overlay ID distribution. This means that a small set
of nodes could be responsible for a very large part of the
ID space, essentially turning them into hot spots. Xu et al.
[8] have verified this in their study.
[8] presents a method to fine-tune landmark binning for the
construction of overlay networks. They introduce maps
containing information on close-by nodes in a specific
regions to allow nodes to join the overlay network with a
more accurate reflection of its own position in the physical
network. A map is stored as global soft state among the
nodes of a region. This approach, however, comes with a
significant overhead. Potentially, there could be a very
large number of regions (e.g., in Pastry such a region is
considered to be a set of nodes sharing a certain ID prefix),
all of which have to maintain their map. Moreover, to
achieve a finer granularity, additional inner-bin
measurements are required.
Waldvogel and Rinaldi [9] propose an overlay network
(Mithos) that focuses on reducing routing table sizes.
Mithos also tries to establish overlay locality from physical
network proximity. A new node is assigned an overlay ID
based on the IDs of its (physical) neighbors. They employ
virtual springs to make the ID fit into the neighborhood
range. In order to avoid local minima, substantial probing
has to be undertaken. Unfortunately, only very small
overlay networks (200 – 1000 nodes) are used for
simulations and the impact of network degression is not
considered.
As a DHT, Pastry [5] uses certain heuristics to exploit
physical network proximity in its overlay routing tables. In
a thorough analysis [10], Castro et al. examine the impact
of various network parameters and node degression on
Pastry's locality properties. Unlike the other approaches
presented, Pastry does not construct its overlay structure
from the underlying physical network topology. Instead,
Pastry distributes its node evenly in the overlay ID space
regardless of the actual physical topology. One way in
which Pastry tries to exploit physical proximity is that a
new node should bootstrap itself using a node close-by.
During the join process, it then tries to choose among the
candidate nodes for a particular routing table entry a node
that is "close" to itself. During its lifetime, a node
periodically performs routing table maintenance and
improvement by asking other nodes for "better" routing
table entries. Obviously, those are mere heuristics and,
therefore, Pastry does not guarantee optimal routing table
states.

node S

node B

node C

node D

node T

overlay hop

physical hop shortest path

3 Random Landmarking and Closest
Neighbor Prefix Assignment

As mentioned previously, our approaches actively exploit
physical proximity in the creation of overlay networks.
Their main focus is on achieving good locality properties
in the overlay network by inducing as little construction
and maintenance overhead as possible while still
maintaining an even overlay ID distribution. This will
translate into an optimized overlay vs. physical routing
distance ratio, which is particularly crucial in dynamic
networks. Maintaining an even overlay ID distribution is
especially important in ad-hoc networks with extremely
heterogeneous devices where devices with scarce resources
should not become hotspots.
The implementation of our approaches is based on a Pastry
overlay network. Pastry is a very well-known DHT that
provides built-in locality heuristics. We chose Pastry
because these heuristics – as mentioned above – have been
thoroughly analyzed [10]. This analysis makes a good
background against which to compare the experimental
results achieved with our approaches. However, we believe
that their mechanisms are DHT-independent and could,
thus, be ported to other DHTs.
Our approaches differ primarily from Pastry's approach by
the way in which overlay IDs are assigned. Pastry's overlay
construction basically works in a top-down fashion, i.e.
Pastry randomly assigns overlay IDs regardless of the
underlying topology. It, then, tries to make the physical
proximity fit into the overlay routing state through the join
process and table maintenance. In contrast, we construct
the overlay network in a bottom-up fashion, i.e. the overlay
is built considering locality information from the
underlying network. Before a node joins the overlay, it
gathers information concerning its physical neighborhood
and uses it to assign itself an appropriate overlay ID. Two
approaches are examined in this context: random
landmarking (RLM) and closest neighbor prefix
assignment (CNPA).
To analyze the different effects of Pastry's and our
approaches, at this point Pastry's overlay routing is
discussed briefly (for a thorough discussion see [5, 10]).
Each Pastry node essentially maintains a routing table and
a leaf set. The routing table consists of a number of rows
equal to the number of digits in an overlay ID and a
number of columns equal to the ID base. From row to row,
the matching prefix between the current node's ID and the
row's entries increases by one. The leaf set contains the
numerically closest nodes to the current node regardless of
physical proximity. When a node has to forward a lookup,
it first checks whether the requested ID is covered by its
leaf set and forwards the lookup directly to the
corresponding leaf. Otherwise, it uses its routing table to
identify a node that has a matching prefix with the
requested key that is one digit longer than the current
node's matching prefix. This process continues until the
node numerically closest to the requested ID is located.
Intuitively, this approach allows Pastry to locate a node
responsible for a certain key with logarithmic effort

because in each routing step the matching prefix length is
likely to be increased by one.
Since the prefix increases by one from routing table row to
routing table row, there are also exponentially less
candidates with which to fill a routing table entry as the
row number increases. In Pastry, this leads to the effect
(see [5, 10]) that from overlay routing step to overlay
routing step the physical distance between nodes is likely
to increase. Thus, the last routing step tends to dominate
the overall physical routing path length of a key lookup.
Since the last overlay routing step is usually taken from the
leaf set, with our approaches this routing step is likely to
be close. This is because leaf set entries are numerically
closest to the current node, and thus they are also likely to
be physically close to the current node due to our ID
assignment strategies. In other words, our approaches
promise to optimize the "last mile" of the overlay routing
process.

3.1 Random Landmarking

Conventional landmarking, as introduced in [7, 8], suffers
from the limitation that it assumes a set of fixed, stationary
landmark nodes. All overlay nodes are expected to know
the landmark nodes and to measure their respective
distances to those landmarks. This, obviously, reintroduces
the client-server concept into the bootstrap process.
Especially in networks where nodes are expected to fail
frequently, there are usually no sets of fixed nodes
available, which renders this approach infeasible.
Therefore, we introduce random landmarking (RLM) into
the overlay construction process.

Figure 2: Prefix distribution as generated by RLM. Equal
symbols and colors represent equal prefixes.

RLM utilizes the overlay lookup capabilities to locate
overlay nodes responsible for a fixed set of landmark keys

(overlay IDs). These nodes serve as temporary landmarks
for a joining node. It is important to understand that the
keys have to be chosen in a way that they divide the
overlay ID space into equal portions. For example, in a
network with an ID base of 16, an appropriate set of
landmark keys would be: 000..00, 100..00, 200..00, …,
F00..00. The joining node then measures the distances to
those temporary landmarks and assigns itself an ID based
on its landmark ordering. The advantage of this approach
is that "landmark nodes" can fail and others will simply
step in as Pastry will automatically redirect future key
lookups to those nodes now responsible for the landmark
keys. After having measured its landmark distances, the
joining node adopts an ID prefix of a certain length from
the landmark node closest1 to itself. The ID remainder can
be assigned randomly or can be based on an algorithm that
further takes into account the physical neighborhood. The
length of the ID prefix that the new node shares with its
closest landmark node can be determined using the
following formula:

prefix length =  kblog

where b is the ID base and k the number of landmark keys.
As can be seen, the number of landmark keys should
preferably equal a power of b.
This approach has the following effects. First of all, it
leads to physically close nodes forming regions with
common ID prefixes, which means these nodes are also
likely to be numerically close to each other in the overlay
ID space, as can be seen in figure 2. This, in turn, leads to
the desired effect that a node's leaf set is likely to reference
physically close nodes (bear in mind that the leaf set of a
node contains the numerically closest nodes). Since the
leaf set is normally utilized for the last routing step, that
step is likely to travel a short physical distance. Note that
there are still less and less candidate nodes to choose from
to fill a certain overlay routing table entry as the row
number increases, but with our approaches the likelihood
of these candidates being physically close to the current
node also increases from row to row.
Special care has to be taken when a network is first created
from scratch. To prevent temporary landmark nodes from
being located too close to each other in the underlying
network, the notion of a landmark gravitation range is
introduced. If a new node discovers during its landmark
measurement process that a temporary landmark node is
responsible for a landmark key with which it shares no
common prefix – i.e. that landmark must, therefore, be
responsible for more than one landmark key – the new
node should make itself a new landmark. However, it will
only do so if its physical distance to any other landmark
node exceeds a certain threshold, the landmark gravitation
range. Again, various distance metrics are conceivable.
The gravitation range is only a measure of reassurance that
no physical landmark clusters form. It is therefore only

1 Conceivable metrics include hop count, RTT etc.

significant during the initial network build-up because after
all landmark keys are properly covered, this process ceases
to have any importance.
To make the whole landmarking process more lightweight
and efficient, a node obtains from its bootstrap node a list
of the landmarks that the bootstrap node itself had used
when it first joined the network. The idea here is that those
"old" landmarks could still be valid. Thus, the new node is
spared to initiate lookups for all landmark keys. The
joining node now measures the distances to its inherited
landmarks. When one of these landmarks receives the
measure request from the joining node, it checks whether it
is still responsible for the corresponding landmark key. If it
is not, it will signal so in its measure response. Only in this
case will the joining node reinitiate a landmark key lookup.
Afterward, it will measure its distance to the proper
landmark. This can reduce the overall bootstrap traffic
significantly.

3.2 Closest Neighbor Prefix Assignment

Obviously, RLM will drive more node bootstrap / join
traffic to those nodes temporarily responsible for a given
landmark key. Although RLM is likely to cause only
marginal overhead, in some network settings it can be
desirable to be able to join the network without such
additional overhead. Closest Neighbor Prefix Assignment
(CNPA) was designed explicitly for such situations.
CNPA takes advantage of Pastry's specification that a new
node should always bootstrap itself using the physically
closest neighbor. After having identified its closest
neighbor employing methods such as expanding ring
search, hill climbing strategies, etc., a new node assumes
the ID prefix of that neighbor. The remainder of its ID can
be determined in the same fashion as described with RLM.
The prefix length which has to be adopted by a new node
is expected to be known by all nodes.
With CNPA the problem of the initial network
construction is solved slightly differently. Since this
approach employs no landmarks, a balanced ID prefix
distribution is achieved using another strategy. If the node
is close to its bootstrap node according to a metric similar
to RLMs gravitation range, it only then assumes the
bootstrap node's ID prefix and generates the rest of the ID
as mentioned previously. According to Pastry's join
specifications, a new node always receives the first row of
its routing table from its bootstrap node. If the node is
further away from the bootstrap node than the threshold
mentioned above, it would also query for landmark prefix
length - 1 more table rows. Taking advantage of this, the
joining node inspects these inherited rows for empty
entries. Intuitively, an empty row entry hints at the fact that
there is no node on the overlay having the landmark ID
prefix. The joining node now assumes the missing ID
prefix for itself, generates the rest of its ID randomly and
then goes through Pastry's usual join procedure. As in
RLM, this process is only significant during the initial
network build-up.

The effects of CNPA are exactly the same as with RLM.
CNPA, though, induces less overhead at the expense of
being more coarse-grained.

4 Experimental Results

In order to examine the behavior and performance of our
approaches, we simulated both a Pastry and a network
utilizing both our approaches with the discrete event
simulator Omnet++ [11]. Since we wanted to especially
evaluate the overlay behavior and resilience in extremely
dynamic networks, we chose to run Pastry and our
overlays in ad-hoc scenarios employing an AODV [12]
physical routing layer.
To put our simulation results into perspective, we
implemented a Pastry reference overlay in Omnet++ in
strict conformance with the Pastry papers [5, 10]. Although
these papers describe simulation results in detail, we
implemented Pastry to have a reference basis which can be
exposed to exactly the same networking conditions as our
implementations. Additionally, the result of our Pastry
implementation can be compared to the paper results to
give confidence in the correctness of our implementation
details.
We evaluated our approaches in two main network
settings:

• static networks
• networks with degression

In a static network, the initial network topology remains
unchanged over the entire course of a simulation run. In
networks with degression, random nodes leave and join the
network with a certain rate. As our initial physical
topology, we chose a plain where nodes are distributed
randomly and with a certain density.
For each network setting and scenario, we conducted
multiple simulation runs.

4.1 Static Networks

The first set of simulations were run in order to verify the
correctness of our Pastry reference implementation and to,
thereby, create a background against which to compare our
results. For our simulations, we considered randomly
distributed plain topologies with 1,000, 2,000, 5,000, and
10,000 participating nodes. All participating nodes form an
underlying ad-hoc network. The average node connectivity
is about 14, i.e. on average each node is within the
transmission range of 14 other nodes. Furthermore, each
physical node also participates in the overlay network.
During a simulation run, 20,000 random key lookups are
initiated by randomly picked overlay nodes.
We examined various Pastry bootstrap mechanisms. As a
lower bound, we implemented an artificial bootstrap
procedure where we used global knowledge to fill all
overlay routing tables. This means that for each routing
table entry the physically closest candidate is always
known and chosen. However, global knowledge is an

absolutely unrealistic assumption and, thus, this was only
utilized to be able to compare further results to Pastry's
theoretical best state in our scenarios.
We also examined a bootstrap mechanism that uses
Pastry's standard join procedure. According to [10], after a
new node has bootstrapped itself, it sends the nth row of its
routing table to each entry in that row. These entries, then,
update their own routing tables. This optimization serves
both to propagate information about newly joined nodes
and to avoid cascading routing table inefficiencies.
Obviously, it also induces a hefty network overhead.

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

3.00

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

of nodes

ov
er

la
y

vs
 d

ire
ct

 p
at

h
ra

tio

optimal
artificial
Pastry with optimization
Pastry without optimization

Figure 3: Overlay vs. direct path ratio of the various Pastry
bootstrap mechanisms.

To study what a Pastry network without any such overhead
performs like, we also implemented a bootstrap
mechanism that does not try to optimize the routing tables
after node arrivals. With this mechanism, Pastry's locality
properties have to rely on the mere heuristic embedded in
its join process. This approach can be viewed as the upper
bound on Pastry's performance in our scenarios.
Figure 3 shows the average ratio between the number of
physical hops induced by an overlay lookup and the direct
physical routing path between the source node and the
target node for the Pastry bootstrap mechanisms mentioned
above. As expected, the results correlate directly with the
original Pastry results in [5, 10]. When global knowledge
is applied during the bootstrap process, Pastry can achieve
a ratio of around 1.33 on average. In the more practical
case of Pastry's original bootstrap strategy, an average ratio
of 1.45 is achieved. With no optimization, the ratio rises to
around 2.47 as the number of participating nodes increases.
Figure 4 depicts the total number of messages that have to
be exchanged among all nodes during the bootstrap
process in order to build up and optimize the overlay
routing tables. Obviously, these different message efforts
cause the varying ratios between Pastry with and without
optimization as displayed in Figure 3.
As can be seen, Pastry's bootstrap optimization introduces
a significant overhead. With optimization, 6 to 7 times
more messages have to be exchanged compared to Pastry's
bootstrap without optimization. These messages include
join requests and forwards, distance measurements, and
messages containing routing table state information. In a

network of 10,000 nodes, 6.88 million messages have to be
processed in order to optimize the overlay routing tables so
that a ratio of 1.47 can be achieved. Bear in mind that
without such optimization the ratio deteriorates to 2.47.
Note that there is no data about the artificial bootstrap
mechanism. This is because in this case the routing tables
were not constructed using the actual overlay join
procedure, but instead all entries were artificially selected
employing global knowledge.

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

8,000,000

1000 2000 5000 10000

of nodes

of

 m
es

sa
ge

s

Pastry without optimization
Pastry with optimization

Figure 4: Total number of messages exchanged during
bootstrap (Pastry).

Next, we used the same network settings (static, random
plain topologies of sizes 1000, 2000, 5000, and 10,000) to
evaluate the performance of our approaches in static
networks. We considered 4 different approaches: RLM,
RLM with bootstrap optimization, CNPA, and CNPA with
bootstrap optimization. For RLM we used 16 landmark
keys.

0.80

1.00

1.20

1.40

1.60

1.80

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

of nodes

ov
er

la
y

vs
 d

ire
ct

 p
at

h
ra

tio

optimum
RLM without optimization
RLM with optimization
CNPA without optimization
CNPA with optimization

Figure 5: Overlay vs. direct path ratio with RLM and
CNPA

Figure 5 shows the overlay vs. direct path ratios achieved
with our approaches. As can be observed, both approaches
achieve better or equal ratios in all tested networks without
any optimization than Pastry does with its optimization. If
they also utilize the same bootstrap optimization as Pastry,

both RLM and CNPA gain a ratio of 1.19, which is
significantly lower than the best possible ratio that Pastry
can only score when artificially bootstrapped. This is due
to the fact that we construct the overlay network exploiting
physical proximity directly whereas Pastry assigns its IDs
oblivious to the physical topology. Pastry can only
subsequently try to optimize its routing tables to reflect
physical proximity as best as possible to supplement its
built-in heuristics.

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

8,000,000

1000 2000 5000 10000

of nodes

of

 m
es

sa
ge

s

CNPA without optimization
RLM without optimization
Pastry with optimization

Figure 6: Total number of messages exchanged during
bootstrap (Pastry, RLM, CNPA).

Again, one of the main goals was to achieve those ratios
with as little overhead as possible. Figure 6 presents
RLM's and CNPA's costs in terms of the total number of
messages exchanged. As already observed, both our
approaches perform comparable to Pastry with
optimization, but they produce significantly less overhead.
For example, in a network of 10,000 nodes, Pastry has to
exchange 5 to 7 times more messages to obtain the same
ratio (1.42) as RLM and CNPA do without optimization
(6.88 million compared to 1.35 and 0.98 million,
respectively).
If one focused on optimizing the ratio instead of the
network traffic, RLM and CNPA could also utilize
bootstrap optimization. In this case, their advantage in
terms of the message total would be given up deliberately
with the effect of lowering the factor to 1.19, as described
above.
Another crucial issue with overlay networks is the equal
distribution of overlay ID ranges that an individual node is
responsible for, i.e. the number of overlay IDs that every
node covers. Clearly, in a perfectly distributed overlay
network, each node would be responsible for an ID range
of the size of the total ID space divided by the number of
participating nodes, the optimal ID range. Figure 7 shows
the average ID coverage distribution in a 10,000 node
Pastry, RLM, and CNPA overlay network.
In true DHT spirit, Pastry achieves a very well distributed
ID coverage. On average, 5,911 nodes cover the optimal
ID range, 3,318 nodes are responsible for twice the optimal
ID range, and so forth, and only a single node is
responsible for 7 times the optimal ID range. As can be
seen, RLM manages to retain a comparable distribution.

6,320 nodes cover the optimal ID range, 2,566 are
responsible for twice the optimal ID range, and so forth. At
its extreme, merely 4 nodes have to handle 8 times more
IDs than optimal, and only 3 nodes cover 9 times the
optimal ID range.

0

1000

2000

3000

4000

5000

6000

7000

8000

ID coverage

of

 n
od

es

Pastry 1
RLM 1
CNPA 1

Pastry 1 5911 3218 700 139 25 6 1

RLM 1 6320 2566 775 217 86 22 7 4 3

CNPA 1 7096 1755 610 233 126 57 26 26 15 43 10 2 1 1

1 2 3 4 5 6 7 8 9 10-
19

20-
29

30-
39

40-
49

50-
59

Figure 7: Average overlay ID coverage distribution in a
10,000 node network (Pastry, RLM, CNPA).

On the other hand, CNPA does not perform quite as well.
The vast majority of nodes appears well distributed, but at
its extreme a single node covers more than 50 times the
optimal ID range. It is, thus, likely to attract 50 times more
traffic than in an ideal overlay network. This is the trade-
off of CNPA's lower message overhead in achieving the
same ratio as RLM. Both RLM and CNPA obtain equal
ratios, but RLM induces a higher message total whereas
CNPA sacrifices a perfectly equal ID distribution.

4.2 Networks with Degression

In a next step, we evaluated the performance of Pastry,
RLM, and CNPA in networks with degression. For all test
runs, we used 5,000-node networks. In the first set of
simulations, randomly selected 40% of all nodes leave the
network and the same amount of new nodes join the
network at random. In the second set, the degression rate is
100%, i.e. the entire network topology is changed once
before the 20,000 random lookups are issued. The focus of
these experiments is to analyze how the different
approaches deal with network degression without inducing
any additional overhead. Therefore, in all scenarios, none
of the joining nodes employed bootstrap optimization in
order to keep the network traffic as low as possible.
The Pastry networks were always bootstrapped artificially,
but the new nodes joined at random using the standard
Pastry join procedure without bootstrap optimization. In
the RLM networks, the nodes also failed and joined the
network at random, but extra care was taken to ensure that
one in every 10 failing nodes was a temporary landmark
node. Figure 8 depicts the overlay vs. direct routing path
ratios as maintained in the different degression scenarios.

As can be observed, without bootstrap optimization for the
new nodes, Pastry's ratio that was artificially lowered to
1.35 deteriorates significantly with both degression rates.
As expected, with 100% degression, Pastry's ratio reaches
the level (2.3) that Pastry without optimization achieves in
static networks (see figure 3). For mild degression rates
(40%), CNPA slightly outperforms RLM as it does not
have the problem of frequently changing landmark nodes.
However, as the degression rate increases (100%), CNPA's
ID assignment becomes too coarse-grained and its ratio
deteriorates markedly. On the other hand, RLM maintains
a ratio clearly below 2.

0

0.5

1

1.5

2

2.5

40% 100%

degression rate

ov
er

la
y

vs
 d

ire
ct

 p
at

h
ra

tio

RLM
CNPA
Pastry

Figure 8: Overlay vs. direct routing path ratios with
different degression rates (without bootstrap optimization).

5 Conclusion & Future Work

In this paper we have analyzed two approaches designed to
construct topology-aware overlay networks. Our goal was
to reduce the ratio between overlay routing path lengths
and the length of direct physical routing paths. Compared
to Pastry, the basis for our approaches, we were able to
achieve comparable ratios with significantly less
communication effort. Up to 5 to 7 times more messages
have to be exchanged using Pastry compared to RLM and
CNPA achieving the same ratio. On the other hand, when
adding the same optimization effort as with Pastry, our
approaches were able to achieve a ratio decidedly lower
than the theoretical Pastry optimum. Furthermore, we were
able to preserve an even ID distribution employing RLM
or at least being close to such a distribution using CNPA.
In networks with mild degression rates, we showed that
without any overhead our two approaches can keep up a
better ratio than Pastry. RLM can retain a good ratio even
in highly dynamic networks.

The next evaluations of our approaches will include
different network topologies, parameters and settings.
Another focus of our work is the consideration of mobile
nodes common in ad hoc networks. We also want to
examine the effect of a combination of RLM and CNPA on
the path length ratio and overlay ID distribution and to
extend our study to include even more degression rates and
to evaluate overlay ID reassignment strategies.

References

[1] The Gnutella Protocol Specification

v0.4.www9.limewire.com/developer/gnutella_protoc
ol_0.4.pdf

[2] J. Ritter. Why Gnutella Can't Scale. No, Really.
http://www.darkridge.com/~jpr5/doc/gnutella.html

[3] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content-Addressable
Network. In Proc. of ACM SIGCOMM, Aug. 2001.

[4] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In Proc. of
ACM SIGCOMM, Aug. 2001.

[5] A. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location and routing for large-
scale peer-to-peer systems. In International
Conference on Distributed Systems Platforms
(Middleware 2001). Nov. 2001.

[6] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph.
Tapestry: An infrastructure for fault-resilient wide-
area location and routing. Technical Report
UCB//CSD-01-1141, U.C. Berkeley, April 2001.

[7] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Topologically-Aware Overlay Construction and
Server Selection. In IEEE Infocom '2002.

[8] Z. Xu, C. Tang, and Z. Zhang. Building Topology-
Aware Overlays using Global Soft-State. In
ICDSC'2003, May 2003.

[9] M. Waldvogel and R. Rinaldi. Efficient Topology-
Aware Overlay Network. HotNets 2002,
SIGCOMM/CCR 2003.

[10] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron.
Exploiting Network Proximity in Peer-to-Peer
Overlay Networks. International Workshop on
Future Directions in Distributed Computing
(FuDiCo), June 2002.

[11] Omnet++. Discrete Event Simulation System.
http://www.omnetpp.org

[12] Ad hoc On-Demand Distance Vector Routing.
http://www.ietf.org

