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Abstract—Athletes can improve their skills by using super-
vising training devices with integrated digital feedback. For
example, martial art techniques are often complex in detail
and need to be perfectly adopted from the teacher. Distributed
event detection systems for digital devices enhance the individ-
ual training, resulting in a higher precision of the technique
repetition. Distributed event detection, as employed in Wireless
Sensor Networks, enables cooperative evaluation and detection of
spatialy or temporaly distributed events like fire or earthquakes.

We evaluate the feasibility of integrating a distributed event
detection approach into a wireless motion-based training de-
vice, to support fight stick training. We present an ubiquitous
computing device for in-network event detection, which enables
users to obtain direct feedback from the device itself. Multiple
sensors help to improve the reliability of the device, while the
wireless technology ensures flexibility in a multi-part device. After
a brief introduction to distributed event detection, we evaluate
event detection accuracy and how link quality effects different
scenarios.

I. INTRODUCTION & RELATED WORK

In the area of consumer products, multiple sensor nodes can
be integrated into training devices or rehabilitation devices.
Sensor nodes are miniaturized computers that need to cover
embedded requirements without hindering the user or the
environment. Sensor nodes are typically based on low-power
microcontroller-units, integrated memory, a radio transceiver,
energy source and one or more sensors to gather data. The
radio transceiver is the main cause of energy consumption,
which motivates the reduction of any unnecessary commu-
nication e.g. by local data processing, data compression and
aggregation in a Wireless Sensor Network (WSN) [1].

Our approach is beneficial for precise learning and evalu-
ation of complex movements with a training device. We im-
plement this approach by using in-network data processing to
extend network lifetime and to avoid the requirement of a base
station during event detection. As a result, this architecture
achieves the aims and principles of typical WSNs. We adopt
distributed event detection [2] for in-network data processing
that enables event monitoring from different perspectives or
locations. Each sensor of our multi-sensor device captures one
of those perspectives, and in conclusion gathers only parts of
the event to detect. A perspective is represented by typical
features as employed in the field of pattern recognition [3].
The features are calculated by the sensor nodes that register an

event, followed by feature distribution and in-network feature
fusion. This autarkic in-network processing performs event
evaluation without a base station. Our sensor-based training
device is thus generally applicable which is very desirable for
a training device.

Martial art students need to get corrections from their
teacher to improve their skills. During the absence of the
teacher, a student can be taught and motivated through as-
sistance that indicates whether the performed techniques and
their order are correct. To give a visual feedback to the
user, light-emitting diodes (LEDs) are attached to the sensor
nodes. Compared to other approaches, we are able to give an
immediate user feedback by using in-network feature fusion
of different sensor nodes equipped with distributed event
detection. For instance, in contrast to the Nintendo Wii [4],
our system does not need any centralized base station for
regular operation. Since the user should not be handicapped
by wires or technical extensions [5], the usage of wireless
communication is fundamental prerequisite.

In related work, Ghasemzadeh et al. [6] decompose move-
ments of a body area network into segments of movements.
Their approach is based on a string matching algorithm.
In contrast to our approach, they neither implemented nor
evaluated the distributed algorithm on a real sensor node. Prior
approaches to integrate event detection in WSNs typically
make use of threshold detection, like the fence surveillance
system introduced by Kim et al. in [7]. Li et al. [8] investigate
event detection by the example of a coal mine surveillance that
takes benefit of the raw data evaluation on a base station with
an a priori in-network validity check. Heinz et. al [5] analyse
motions of Wing Chun techniques with industrial sensors with
the goal of extracting features to roughly discriminate between
amateurs and experts performing martial art techniques. They
use a wired scenario that limits the mobility of the user during
training.

Our system for distributed event detection has previously
been applied for construction site surveillance in order to
detect different kinds of intrusions. In [2], we examined the
event detection and its dependencies on resource requirements.
In [9], a sensor and software platform is presented that is
tailored to the specific needs of distributed event detection. In
this paper, we now present a personal training device with the



Fig. 1. a) sensor nodes & socket, b) batteries, c) brass housing & coupling,
d) assembled device, e) feedback-LEDs, f) orientation marker, g) future work

look and feel of a real fighting stick, built upon our system for
distributed event detection. We employ six exemplary martial
art fighting stick techniques for evaluation. The training device
consists of two sensor nodes that give visual feedback. The
feedback illustrates whether the correct technique has been
performed. The training device can be trained freely for further
techniques and therefore remains flexible to the user.

We extend the work in [2] with the pattern recognition
features strength and orientation. Further, we extended the
hardware and housing [9] and present our threefold contri-
bution:

o A new embedded training device that has the look and
feel of a real fighting stick

o Integration of distributed event detection in a new
feedback-based ubiquitous computing device

« Evaluation of event detection accuracy and link quality
in different scenarios

II. INTEGRATION OF EVENT DETECTION

In the following paragraphs we present our system for
distributed event detection which adapts two kinds of features
to enhance the training device for martial arts.

A. System Adjustment

The distributed event detection system is divided into two
main components: first, a supervised a priori training with
an integrated feature selection [10], and second, a distributed
event detection with integrated event notification and rejec-
tion [9]. For the supervised a priori training process all
extracted features are sent to the base station. The system
calculates an optimal feature set based on leave-one-out cross-
validation [11], that supports the Euclidean-distance-based
Nearest Prototype Classifier [2]. The prototypes are calculated
by averaging the features of the gathered supervised a priori
training data for each class. These prototypes contain features
that represent characteristics of both sensor nodes. Finally,
the prototype vectors are transferred from the base station to
the integrated sensor nodes of the training device to finalize
the supervised a priori training. For the subsequent actions
(technique performance) the base station is not needed any
more.

Stab d)

Spin e) Strike f)

Fig. 2. Performing six predefined techniques with our training device.

During event detection, each node calculates the selected
features and sends the features to node 1 (right hand). The
combined feature vector will be classified as introduced in [2]
with the Euclidean-distance-based Nearest Prototype Classi-
fier.

We take advantage of several preconditions in our scenario
to reduce the complexity by using a fixed but extendible
number of sensor nodes and a predefined orientation at the
beginning of the event, see 1f). This enables us to reduce the
communication effort to an unidirectional data flow between
the sensor nodes. We attached exactly two sensor nodes, each
of them with a 3D acceleration sensor, to detect and analyse
rotations and translational movements on all axis.

In contrast to our previous work on fence monitoring [9]
we use all three degrees of freedom due to the expected
movements. A maximum of two axis are involved to collect
enough information for a typical fence monitoring scenario.
Our training device is not limited in its freedom of movement
compared to linked fence elements in [2]. Thus, we expect
a positive influence of our distributed event detection by
gathering data from all three degrees of freedom.

B. Feature Set

In contrast to Wittenburg et al. [2], given histogram and
intensity features did not perform as expected. Hence, we add
two new features to our feature pool, which are assessed as
most suitable by the integrated feature selection during the
supervised a priori training.
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For the scenario of movement detection with different ori-
entations and intensities we introduce two additional features
that are used by the distributed event detection system. Both
features are generated for n intervals with k samples of the
event to describe the event in its progress. Each interval
represents a chronological part of the event, where the interval



size is freely configurable. The acceleration values of sample
i are combined as vector ¥; in the Euclidean space IR? using
all axis namely (z,y,z). To calculate the features, all ¥; of
a certain interval are summed to the interval vector ¥;,:, see
formula (1). The first feature is called orientation feature. The
orientation feature is defined by an orientation vector 0y,
describing the physical direction of all three acceleration axis
within a certain interval. We need to process a typical vector
normalization to delete inherent strength data, see formula (2).

The second feature is called stength feature. The strength
feature directly allows us to know how much strength the per-
forming person induces into the training device. The strength
feature is calculated by separating the length of the interval
vector ¥;,,; during its normalization, as depicted in formula (2).
So both information are preserved but in different parameters.
In detail, the strength feature is calculated as the square root of
the scalar product over all degrees of freedom in formula (3).

By separating these features, we are able to regulate the dif-
ficulty for the students’ performance. Both features represent
a characteristic part of the movement. While the orientation
feature represents the movement by its sequence, the strength
feature is able to detect whether the movement is performed
with correct intensities in distinct intervals of the movements.
By varying the interval size and by focusing on selected
intervals we are able to manipulate the training focus in a
minor degree for the student.

III. PLATFORM

The training device as presented in Fig. 1d) is a combination
of multiple devices and structural components. As the splash-
proof housing is initially inspired by the demands of the
use case of distributed event detection on construction site
surveillance, only rugged materials were chosen to prevent
vandalism. Similar demands can be found in the domain
of martial art: Even if it is not the aim to harm other
persons, it is a training device for both professional and novice
students, so accidents can not be excluded. The main body is
a combination of two identical brass housings, depicted in
Fig. Ic), coupled at their lower ends. Fig. la-c) exhibit the
completely unassembled device. The power supply (6V) is
placed inside the brass housing of the stick using four standard
D-cells that can be seen in the center of Fig. 1b). Two wireless
sensor nodes shown in Fig. la) are plugged to the opposing
sides and sheltered with Makrolon(®) tubes for highest solidity,
as depicted in Fig. 1b). To ensure that the test persons knows
whether the stick is oriented properly, markings provide advice
for the correct handhold, see Fig.1 f).

The wireless sensor nodes are inspired by the concept of a
MSB-A2 [12] that has been extended to the aims of motion-
based applications and localization, called AVS-EXTREM sen-
sor node. It is further based on an ARM7 NXP LPC2387 MCU
with 96KB RAM and 512KB ROM, 868MHz transceiver
CCI1101 from Texas Instruments. For acquiring movement
data, the applied sensor is a triaxial acceleration sensor, a
SMB380 with a range of up to 8g and 10-bit resolution. Sensor
data is forwarded by an interrupt-driven architecture to an
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Fig. 4. Packet Delivery Ratio

internal buffer in system memory. This enables time-delayed
concurrent access to the data, e.g. from different processes
using distinct algorithms for analysis. By using buffered data,
important tasks like radio communication and routing can
already be preferred prior analysing acceleration data.

Furthermore, the FireKernel [13] low-power operating sys-
tem was chosen to support our concepts to evaluate concurrent
algorithms on a sensor platform.

The expected runtime based on a continuous training is
about 400 hours with the prior mentioned energy source while
the pure stand-by time is about 250 days by benefiting of the
all energy saving optimizations in FireKernel. As a conclusion,
for one day training sessions, standard AAA-cells are also
sufficiently dimensioned and can be inserted with a standard
adapter as alternative energy source. As a side effect the
device weight will be lowered and can optionally be optimized
further by changing the brass made housing to light-weighted
synthetic materials.

IV. EXPERIMENTS
We perform two experiments to evaluate accuracy of the
distributed event detection and link quality.
A. Link Quality

Since the sensor nodes are aligned horizontally to one
another, both antennas have a suboptimal orientation for direct
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communication. For ideal communication, a line of sight path
between antennas is highly recommended [14]. In contrast
to typical needs, we have to deal with opposing orientations
of antennas (see Fig. 1d)) and have to evaluate the expected
drawbacks in communication reliability.

The resulting communication characteristics are evaluated in
section V-A. We investigate Packet Delivery Ratio (PDR) and
latency. Inevitably, PDR needs to be high enough and latency
needs to be low enough to give a continuous user experience
without inappropriate pauses while performing the techniques.
We evaluate the link quality based on the given techniques in
different scenarios: indoor vs. outdoor and steady vs. in mo-
tion. We compare PDR and latency during the energy-saving
mode Wake-On-Radio (WOR) of the CC1101 Transceiver
introduced in [15] to the standard transceiver mode (CRX).
Even if the communication in our scenario is unidirectional,
we simplify our experimental setup by measuring the round-
trip time (RTT) of 800 packets in each test to avoid focusing
on clock drift between both nodes, and in conclusion, avoiding
a mandatory time synchronization between them. Packets are
transmitted once a second, comparing the RTT and PDR in
steady state while repeating techniques with the device.

B. Distributed Event Detection

In martial arts, a typical training part consists out of a
series of techniques and is called a form. In our scenario, we
distinguish six martial art techniques (three different strikes,
one block, one pad, one spin), which are generally called
classes. All techniques start at the same position, but end in
different ones, see Fig. 2. During operation, each technique
is classified by the distributed event detection system. This
evaluation is done by the training device after performing the
technique without the need for a base station. An LED feed-

back signalizes the evaluation result. As depicted in Fig.1 e),
we currently support three kind of LEDs. The green LED will
light up, if the user performs the technique correctly. The red
LED will light up, if the user did not perform the technique
correctly or the user performs the wrong technique. The blue
LED is reserved for future work. It is for example conceivable
that after performing a complete series of techniques in the
correct order, blue LED will light up finally.

For event detection evaluation the following configuration
is chosen as a well balanced setting: To acquire the wide range
of occurring acceleration forces, we set the sensitivity of the
accelerometer to 8g and the sampling frequency to 100 Hz.
Each class is trained 20 times by a teaching person using the
training device, in order to generate reference data. Further-
more, WOR is activated to evaluate a real world scenario and
to extend the lifetime.

V. EVALUATION

A. Link Quality

In order to guarantee a higher reliability than standard UDP
we used a stateless TCP derivative, by supporting a retransmis-
sion function in case of packet loss. Latencies of indoor and
outdoor scenarios indicate only a slight increase on average
outdoor latencies, while at the same time maximum latencies
increase up to 20 seconds in rare cases. We conclude that
while movement in CRX mode, indoor radio wave reflection
helps to maximize PDR on antipodal omnidirectional antennas,
which are practically out of sight otherwise. The energy
savings achieved by WOR consistently result in approximately
400 ms to 500 ms higher latencies compared to CRX mode.
Furthermore, movements result in an additional latency of
approximately 130 ms to 230 ms in WOR mode. Movements
have only a slight effect in CRX mode in both scenarios
resulting in a median of 89 ms. As a conclusion, both, steady
and in motion deliver acceptable PDR and latency values for
our scenario. Only in very rare cases, the communication failed
for a certain time and the user received no feedback for up
to 74 seconds. Due to the fact that a user is not interested
in waiting for an indefinite period of time, all packets with a
higher latency than 15 seconds will be marked as lost in our
tests. This rule affects about 1% of all transmitted packets. In
complex surroundings PDR and latency can be optimized by
choosing CRX, but this was not necessary in our experiments.
As long as the latencies do not interfere the process of data
collection and distribution, the resulting data aggregation will
proceed successfully.

B. Event Detection Accuracy

During the supervised a priori training, the strength and
orientation features are extracted from raw data. The best fea-
tures are selected by performing cross-validation, as described
in [2]. For both nodes five strength and five orientation features
are selected. For node 1 (right hand) two orientation features
for the X-Axis and three for the Z-Axis are selected. For
node 2 (left hand) two orientation features for the X-Axis,



two for the Y-Axis and one for the Z-Axis are selected. The
strength features always involve all axis.

We decided to evaluate the event detection by choosing a
learning person that is not involved in the previous training.
The learning person attempts to imitate the training of the
teacher by performing each motion class 50 times. It should
be mentioned that both the teacher and the student are familiar
with some kind of martial art.

We evaluate the training using the strength and orientation
features in Fig. 6, by applying the metric of specificity,
sensitivity, positive predictive value (PPV), negative predictive
value (NPV) and accuracy defined in [2]. Furthermore, we
present the confusion matrix in Fig. 5 of our experiments. All
techniques have been detected with an accuracy of at least
90%. The confusion matrix clearly indicates a well-marked
principal diagonal. Thus, we conclude that the distributed
event detection classifies the techniques very good, except of
slight interferences between some classes.

Strike a) has very good characteristics, but classifies itself
once as each of all other classes, except for Strike f) which is
mistakenly classified four times. Spin e) reaches an accuracy
of 93%, but interferes with Strike a) that reaches an accuracy
of 90%. In general, sensitivity is below specificity which
leads to some lacking insensitivity especially in the cases
of Spin e). In general, Strike b), Block c), Stab d), Strike f)
deliver a very high accuracy of at least 94%. By the usage
of strength and orientation features, we are able to reach an
overall classification accuracy of 94%. The learning person
was able to learn from the feedback given by the training
device, and improves his own technical skills during technique
performance. The training motivation is increased by the direct
feedback through the LED. The absence of the teacher could
compensate in the way that rough mistakes can be easily
detected by the training device.

VI. CONCLUSION

Distributed event detection enhances training devices to
supervising devices that operate independently from a base
station. Activating WOR or performing techniques outdoor
increases latency and decreases PDR. Nevertheless, communi-
cations are very stable and make a continuous user experience
possible. Overall, the device is adequate for users improving
the their abilities. The detection accuracy reaches an average of
94%, but some techniques interfere with each other, especially
Spin e) often is interpreted as strike Strike a). The functionality
is reached, which can be seen by the fact that the motivation
and the technical skills of the student is raised during the
training. Nevertheless, the given results show that our system is
well balanced, as prior stick fight experiments with histogram
features and intensity features as used in Wittenburg et al. [2]
were unsuitable for the training device application.

VII. FUTURE WORK

In future work, we want to reduce the self-calibration
time of three seconds that is necessary after each technique.
Analysis of optimized features will help to improve our event

detection accuracy. Further, we plan to optimize the brass
housing and its weight for a better handling in the future.
As depicted in Fig. 1g), we aim to have a fully flexible device
that will be used in manifold application like training of double
weapons and probably also in a miniaturized version that can
be attached as a body sensor network to expand the quality of
our distributed event detection system.
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