Semester Report WS05/06 of Carsten Schultz

Name:
Supervisor:
Field of Research:
Topic:
Postdoc

Carsten Schultz
Günter M. Ziegler
Topological Combinatorics
Homomorphism complexes of graphs
at the program from June to December 2005

Field of Research

In the proof of Kneser's Conjecture, Lovász introduced the neighbourhood complex of a graph and showed that a graph whose neighbourhood complex is $(k-1)$-connected for some integer $k \geq 0$ has chromatic number at least $k+2$ Lov78], connecting combinatorics and topology in a surprising way. Subsequently, other graph complexes have been studied. In particular, for graphs G and H, the complex $\operatorname{Hom}(H, G)$ has been introduced, whose vertices are the graph homomorphisms from H to G. Since $\operatorname{Hom}\left(K_{2}, G\right)$ is homotopy equivalent to the neighbourhood complex of G, it is natural to ask if similar results may be obtained by replacing K_{2} with other graphs. As a starting point in this direction, Lovász conjectured that the chromatic number of G is at least $k+3$ if $\operatorname{Hom}\left(C_{2 r+1}, G\right)$ is $(k-1)$-connected. Here $C_{2 r+1}$ denotes a circuit of odd length.

These questions gained new impetus by the work of Babson \& Kozlov BK06a, BK06b]. The complex $\operatorname{Hom}\left(C_{2 r+1}, G\right)$ carries a natural free \mathbb{Z}_{2}-operation induced by an automorphism of $C_{2 r+1}$ that flips an edge. Babson \& Kozlov proposed to study the cohomological index of this action. Because of the functoriality of Hom, Lovász' conjecture would follow from

$$
\begin{equation*}
\text { cohom-ind } \mathbb{Z}_{2} \operatorname{Hom}\left(C_{2 r+1}, K_{n}\right) \leq n-3 \quad \text { for all } n \geq 3 \text { and } r \geq 1 \tag{1}
\end{equation*}
$$

They proved this for odd n and proved Lovász' conjecture in full generality by doing a similar calculation for even n.

Plan of Research

In my application to the CGC program, I had stated that the calculations in the proof by Babson \& Kozlov are involved enough to make it worthwhile to attempt a simplification of their proof as a starting point for studying Homcomplexes, and that some Hom-complexes are interesting to combinatrial geometers in their own right.

Results

In [Sch05a] I gave a proof a of (1) for all n that is also considerably simpler than the previous proof for odd n. For this it had been useful that I had learned from Frank Lutz, who is an associate member of Günter Ziegler's Discrete Geometry Group, about a conjecture by Péter Csorba, which states that $\operatorname{Hom}\left(C_{5}, K_{n}\right)$ is homeomorphic to a Stiefel manifold, the unit tangent space of the $(n-2)$-sphere Cso05], and which had led to their work on Homcomplexes which are manifolds [L05]. I proved this conjecture in Sch05b. In December I greatly profited from discussions with Rade Živaljević, who spent a week in Berlin partly on invitation of the CGC program. This led me to generalise his elegant argument which he had used in [Živ05] to prove a special case of Lovász' conjecture. I was able to obtain the following result.

Theorem (Sch06]). Let G, G^{\prime} be graphs with involutions, the involution on G fipping an edge, and $k \geq 1$. If
$\triangleright \operatorname{coind}_{\mathbb{Z}_{2}} \operatorname{Hom}\left(G, G^{\prime \mathbb{Z}_{2}}\right) \geq k-1$,
\triangleright there is a graph homomorphism from G to G^{\prime} that commutes with the involutions, and
$\triangleright \operatorname{Hom}\left(G, G^{\prime}\right)$ is $(k-1)$-connected,
then

$$
{\left.\operatorname{cohom}-\operatorname{ind}_{\mathbb{Z}_{2}} \operatorname{Hom}\left(G^{\prime}, H\right)+k \leq{\operatorname{cohom}-\operatorname{ind}_{\mathbb{Z}_{2}}}^{\operatorname{Hom}}(G, H)\right) .}
$$

for all graphs H with $\operatorname{Hom}\left(G^{\prime}, H\right) \neq \varnothing$.
Here, $G^{\mathbb{Z}_{2}}$ is a graph whose vertex set is the set of all orbits of the involution on G^{\prime}. Its edge set is the largest one such that $\left\{o_{0}, o_{1}\right\} \in E\left(G^{\prime \mathbb{Z}_{2}}\right)$ and $u_{i} \in o_{i}$ together imply $\left\{u_{0}, u_{1}\right\} \in E\left(G^{\prime}\right)$.

This yields an even simpler proof of (1) as the special case $G=K_{2}$, $G^{\prime}=C_{2 r+1}, k=1$. It also yields new graphs T for which $\operatorname{Hom}(T, G)$ gives a lower bound on the chromatic number of G and results on the relative strengths of these bounds.

Activities

I attended the workshop of the CGC program on Hiddensee where I presented [Sch05b]. I presented [Sch05a] at the program's colloquium.

Preview

I presented the results of [Sch06] immediately after the end of the program at the combinatorics workshop in Oberwolfach. I attend an Algebraic Topology program at the Institut Mittag-Leffler for four weeks in January and February and will continue to be a member of Günter Ziegler's group in 2006. There I will further study applications of Algebraic Topology to Combinatorics. I also plan to take part in the fall program at the MSRI dedicated to this field.

References

[BK06a] Babson, E. and Kozlov, D. N. Complexes of graph homomorphisms. Isr. J. Math., 2006. In press, math.CO/0310056.
[BK06b] -. Proof of the Lovász conjecture. Annals of Mathematics, 2006. In press, math.CO/0402395.
[CL05] Csorba, P. and Lutz, F. H. Graph coloring manifolds, 2005. 22 pp., math.CO/0510177.
[Cso05] Csorba, P. Non-tidy Spaces and Graph Colorings. Ph.D. thesis, ETH Zürich, 2005.
[Lov78] Lovász, L. Kneser's conjecture, chromatic number and homotopy. J. Combinatorial Theory, Ser. A, 25:319-324, 1978.
[Sch05a] Schultz, C. A short proof of $w_{1}^{n}\left(\operatorname{Hom}\left(C_{2 r+1}, K_{n+2}\right)\right)=0$ for all n and a graph colouring theorem by Babson and Kozlov, 2005. Preprint, 8pp., math.AT/0507346.
[Sch05b] -. Small models of graph colouring manifolds and the Stiefel manifolds $\operatorname{Hom}\left(C_{5}, K_{n}\right)$, 2005. Preprint, 19 pp., math.CO/0510535.
[Sch06] -. The relative strength of topological graph colouring obstructions, 2006. Draft available from the author on request.
[Živ05] Živaljević, R. T. Parallel transport of Hom-complexes and the Lovász conjecture, 2005. 17 pp., math.CO/0506075.

