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Field of Research

W. Schnyder introduced a labelling of the angles in a planar triangulated
graphs to show that planar graphs have a dimension ≤ 3, [3].

Due to its nice combinatorial properties, this labelling can be used to
obtain to a convex embedding of a planar triangulated graph with n vertices
in a grid of small size, [4]. It furthermore induces an edge-labelling in three
colors, partitioning the inner edges into three spanning trees. Both notions,
the labelling of the angles and of the edges, can be generalized to all 3-
connected planar graphs, [1].

A different point of view on the structure of these labelled graphs is offered
by the orthogonal surfaces in dimension 3. Let V ⊂ N3 ⊂ R3 be an antichain
in the dominance order. The filter generated by V is the set

〈V 〉 = {α ∈ R3 : α ≥ v for some v ∈ V }

The boundary of this set is called an orthogonal surface. There is a
bijection between certain orthogonal surfaces (rigid, with three special outer
vertices) and Schnyder-colored 3-connected planar maps, [2].

While the definition of the Schnyder-colorings can only be applied to
3-connected planar graphs, the definition of an antichain, a filter and an
orthogonal surface can of course be generalized to arbitrary dimensions.

The main field of my research so far is the task of characterizing the ob-
jects (for example the graphs) that arise from orthogonal surfaces of dimen-
sion 4, and to check whether there is an analogue to the Schnyder-labelling
in higher dimensions.

Since the graphs that relate to 3-dimensional orthogonal surfaces are ex-
actly the graphs of 3-dimensional polytopes (by the Theorem of Steinitz, the
3-connected and planar graphs), one might ask whether the higher dimen-
sional structures are also related to polytopes.
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All graphs that can be embedded in a 4-dimensional orthogonal surface
have order dimension at most 4. Therefore, certainly not all graphs of 4-
polytopes have such an embedding, since the complete graphs Kn have order
dimension > 4 for all n > 12 and can occur as subgraphs of the edge graphs
of 4-polytopes.

I examined how many 1-, 2- and 3-dimensional faces can occur in the
orthogonal surface of an n-element antichain.

If the elements of the antichain are in general position, two elements
cannot lie in the same orthogonal plane, that means that they differ in each
coordinate. That implies that all faces are simplices. In this case, the minimal
number of faces is reached if and only if the graph is stacked, having 4n −
6 edges, and then there is a corresponding 4-polytope, which is a stacked
polytope. There are other embeddable triangulations with up to 4n + n2

4
+

O(n) edges.
For the labellings, that means that a coloring of the edges with 4 colors

does generally not result in a decomposition into 4 spanning trees. However,
a four-color-labelling of the angles with nice properties can be defined.

To visualize some aspects of the structures decribed above, I wrote a
program that represents a 4-dimensional orthogonal surface as a sequence of
3-dimensional orthogonal surfaces.

Many questions remain open so far. In the future, I will hopefully resolve
some of the following:

• Are there small structures that can not be embedded and thus indicate
whether the induced graphs etc. are polytopal? For example, I would
like to find a proof that Barnette’s topological 3-sphere is not realizable
on an orthogonal surface of dimension 4.

• Are there other notions that can be generalized? In three dimensions,
the projection of an orthogonal surface onto a plane naturally leads to
a tiling of the plane with 4-gons. In four dimensions, there could be a
similar tiling of 3-space with combinatorial cubes.

• In 3 dimensions, an the orthogonal surface of an arbitrary antichain
might contain degeneracies. To ensure that the surface produces a
graph, these cases have to be excluded. In higher dimensions, there
might be even more possibilities of degenerate situations. How can
these be characterized? Which of them have to be forbidden to main-
tain a good (graphs etc.) structure?
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Activities

• CGC-Workshop in Neustrelitz (September 28th - October 1st)

• CGC Fallschool on Computational Geometry in Neustrelitz

(October 2nd - October 4th)

• Attended the lecture ”Topology” of Professor G. M. Ziegler

• Attended the ”Monday lectures and Colloquia” of the CGC

• Attended the ”Kolloquium on Combinatorics” in Magdeburg (Novem-
ber 14th-15th)

Preview

• CGC-Doccourse in Prague, January 2004-March 2004

• COMBSTRU-Workshop in Bordaux (April 1st - 3rd 2004)
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