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Given a d-dimensional polytope its f -vector (f0; f1; : : : fd�1) denotes its num-
ber of vertices, edges, . . . , and facets. It is an old problem to determine the
set of all f -vectors of polytopes. In dimension 3 the answer is known since
1906. Steinitz' theorem asserts that the set of all f -vectors of 3-polytopes is
the set f(f0; f1; f2) 2 Z

3j f1 = f0+f2�2; 2f2�4 � f0 � 4; 2f0�4 � f2 � 4g:
These points are the integer vectors of a 2-dimensional cone in 3-space.

In dimension 4 the problem is open. Six linear inequalities (e.g. 2f1 � f0)
and four non-linear inequalities (e.g. f1 �

�
f0
2

�
) are known. But the set of

f -vectors has a more complicated shape than in dimension 3. It is not a
cone. Moreover it is not \convex" any more, i.e. the convex hull of the set of
f -vectors contains integer vectors that are not f -vectors of any 4-polytope.
Moreover this convex hull is not a closed set [1]. Although we do not know
the shape of the entire set of 4-dimensional f -vectors its projections to the
coordinate planes are known. For every pair of components (e.g. (f0; f2)) we
know what combinations can occur (see [2]).

f -vectors also can be de�ned for strongly regular CW-decompositions of
spheres. A CW-decomposition is strongly regular if the boundary of every
cell is embedded and the intersection of any two closed cells is a closed cell.
Steinitz' theorem implies that every s.r. cell decomposition of the 2-sphere
is combinatorially equivalent to the boundary of a 3-polytope. In this sense
2-spheres and 3-polytopes are \the same." In particular the respective sets
of f -vectors are the same.

One dimension higher the situation is di�erent. There are s.r. cell de-
compositions of the 3-sphere which are not combinatorially equivalent to the
boundary of any 4-polytope. It is an open question if the respective sets of
f -vectors are di�erent. A possible candidate to distinguish these two sets of
f -vectors is a parameter called fatness which is de�ned to be the quotient
f1+f2
f0+f3

: Using hyperbolic surfaces Eppstein, Kuperberg, and Ziegler [3] have
constructed an in�nite family of 3-spheres with arbitrary high fatness. But
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the known examples of fat 4-polytopes have fatness at most 5:06. Thus it is
conjectured that fatness of polytopes is bounded.

One way to investigate the fatness of a 4-polytope is to construct a tiling
from it. To do this one �rst tiles Euclidean 3-space by congruent simplices.
Then one constructs a Schlegel diagram over a simplex facet. (See [5] for a
de�nition of a Schlegel diagram.) The last step is to insert into each simplex
of the tiling one copy of the Schlegel diagram. This yields the desired 3-
dimensional tiling.

But instead of 3-dimensional tilings I �rst considered 2-dimensional tilings.
The analogue to fatness in this 2-dimensional case is a tiling with tiles that
have many vertices. I considered shellings of fat tilings and de�ned a param-
eter that grows with each tile. The parameter is chosen such that it grows
the quicker the fatter the tiling is. If the tiling is normal (see [4, sect. 3.3]
for a de�nition) a high growth rate of this parameter implies that the tiling
\needs much area." In hyperbolic space such fast growing tilings can be
realized. In Euclidean space this is not always possible. Using this growing
parameter I could prove that normal tilings in Euclidean plane cannot have
more vertices per tile than the hexagonal tiling has.

Another way to prove this result is to de�ne an analogue to an f -vector for
tilings. Its components are the average numbers of vertices per tile, edges per
tile, etc. With the notion of an f -vector of a tiling one can prove analogues
to Euler's formula. One example can be found in Gr�unbaum & Shepard
[4, sect. 3.3]. Unfortunately this version cannot be generalized in higher
dimensions. But with a shorter proof I found a slightly di�erent version of
Euler's formula that easily can be generalized to higher dimensions.

Activities

� 27. Berliner Algorithmentag (July 6, 2001)

� 15. �OMG-Kongress, Jahrestagung der Deutschen Mathematikervereini-

gung (Vienna, September 16 - 22, 2001)

� CGC Fall SchoolDiscrete Geometry - Triangulations from various points

of view (Alt-Ruppin, October 4 - 6, 2001 )

� Block courses of CDC's Pre-Doc program. Randomized Algorithms by
Emo Welzl and Topological Methods in Combinatorics and Geometry

by Jiri Matousek (Z�urich, October 22 - November 23, 2001)
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� Mittagsseminar of EmoWelzl's research group Theory of Combinatorial

Algorithms during my stay at ETH Z�urich, including a talk on Cyclic

Polytopes and Their Symmetries (November 6, 2001)

� Lectures and colloquia of the CGC, including a talk in the colloquium
on f -Vectors of Polytopes and Tilings (February 4, 2002)

� Lecture ADM II, Lineare Optimierung by G�unter M. Ziegler at TU
Berlin.

� Brown Bag Seminar about di�erential and discrete geometry at TU
Berlin, including talk on f -Vektoren von Polytopen und Pasterungen

(January 29, 2002)

� Oberseminar Diskrete Geometrie at TU Berlin

� Reading Seminar B. Gr�unbaum Convex Polytopes at TU Berlin
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