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Thank you!
My thesis is finished and submitted. Since this is my last semester report I want to
thank all members of the graduate program who made this work possible: the co-
ordinators Bettina Felsner and Andrea Hoffkamp, and the speaker of the program
Helmut Alt. Especially I want to thank my supervisor Günter M. Ziegler for his
initial inspiration for this project and his enduring support. Thank you very much!

Field of Research and Results
My thesis combines two basic mathematical concepts: the concept of duality and
the concept of independent sets of graphs. Duality has several meanings in math-
ematics. We use it in the sense of dual polytopes. The octahedron and the cube,
for example, are dual. The octahedron has 8 triangles, 12 edges, and 6 vertices.
These faces form a partially ordered set (poset) – they are ordered by inclusion.
Each vertex is contained in four edges; each edge is contained in two triangles.
Now we reverse this partial order, which yields the so called dual poset. We ask
an innocent question: “Is there a polytope that corresponds to this dual poset?”
The answer is “Yes, the cube.” The cube has 8 vertices, 12 edges, and 6 squares.
Each square contains four edges, each edge contains two vertices. Thus each ver-
tex of the octahedron corresponds to a square of the cube and each triangle of the
octahedron corresponds to a vertex of the cube. We say the octahedron and the
cube have dual face posets and they are dual polytopes. In general every polytope
has a dual polytope; see [20].

The second concept is that of independent sets in graphs. A graph G is a set
of nodes, some of which are connected by edges. A subset of the set of nodes
is independent if it does not contain any pair of nodes that are connected. For
example an independent set of the graph shown in Figure 2 is {1, 3, 4, 6}. Now we
define a geometric object from these independent sets, the independence complex
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Figure 1: The octahedron and the cube are dual.

IC(G). It is a simplicial complex, which means that it consists of simplices. The
simplices of dimensions 0, 1, 2 and 3 are vertices, edges, triangles and tetrahedra.
The simplices of the independence complex IC(G) are the independent sets of
the graph G. Thus each vertex of IC(G) corresponds to a node of the graph G.
Two nodes that are not connected in the graph now define an edge in the complex
IC(G). Three nodes that are independent form a triangle in IC(G). An independent
set with four nodes defines a tetrahedron and so on. For an example see Figure 2.
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Figure 2: A graph T and its independence complex IC(T ).

Independent sets form an important model structure for optimization. An ex-
ample is coding theory. To design a code means to try to find a maximum set of
words of a given length of a given alphabet such that any two words of this set are
“very different”, which is needed for error correcting. The Hamming graph rep-
resents this information. Its nodes are the words of the alphabet of given length.
They are connected by an edge if they are not “very different.” A code of maxi-
mal size now is equivalent to an independent set of maximal size in the Hamming
graph. Neil J. A. Sloane maintains a list [18] of graphs arising in this way from
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coding theory. Finding independent sets of maximal size in general graphs is NP-
hard [12]. This is also hard from a practical point of view – in contrast to several
other problems, for example the traveling salesman problem, for which one can
solve non-trivial instances that have about 25’000 nodes; see [1], [2].

Independent sets are even more striking in another class of hard problems:
graph coloring. A coloring of a graph G assigns a color to each node such that
neighbors get different colors. Thus nodes that get the same color form an in-
dependent set. The chromatic number χ(G) is the minimum number of colors
that is needed for coloring G. For general graphs it is NP-hard to determine
their chromatic number [12]. It is even NP-hard to decide if a planar graph is
3-colorable [11].

In 1977 László Lovász [15] found a new way to obtain lower bounds for χ(G)
by using topological methods. He proved Kneser’s conjecture, which he formu-
lated as a question on the chromatic number of certain graphs, now called Kneser
graphs. Lovász constructed a simplicial complex N(G) that reflects the neigh-
borhood relations in G. He showed that the connectivity of N(G), which is a
topological invariant, gives a lower bound to χ(G). Lovász’s proof, which uses
the Borsuk-Ulam Theorem [6], was the inspiration for many other “topological”
proofs. (The first proof [4] taking up the idea of using the Borsuk-Ulam Theorem
already appeared on the subsequent pages in the same journal.) For an intro-
duction to topological methods in combinatorics we recommend Jiří Matoušek’s
book [16]. For a brief historical survey see the article by Mark de Longueville [9].
Several descendants of Lovász’s neighborhood complex were defined and studied.
Each yields some lower bound on the chromatic number. Jiří Matoušek and Gün-
ter M. Ziegler surveyed these bounds and their interrelations in [17]. For upper
bounds to these lower bounds see [8] and [19].

Another prominent complex is the homomorphism complex Hom(H,G). This
cell complex represents all homomorphisms from the graph G to H. For an in-
troduction and further references see [14]. Eric Babson and Dmitry Kozlov [3]
proved a conjecture by Lovász which infers a lower bound on χ(G) from the con-
nectivity of Hom(C2r+1,G), where C2r+1 is a cycle of odd length. Independent sets
play an important role in these homomorphism complexes Hom(G,H). Hence the
proof of Babson and Kozlov is another motivation to the study of independent
sets.

In the context of simplicial complexes there are two main points of interest: the
homotopy type or their homeomorphism types. Roughly speaking the homotopy
type characterizes the number of holes of a topological space. The homeomor-
phism type specifies the space in much more detail. For example, the indepen-
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dence complex IC(G) in Figure 2 is homotopy equivalent to the sphere S 1, the cir-
cle. But it is not homeomorphic to S 1 because IC(G) is not purely 1-dimensional.
Homeomorphism type “sees” the dimension. But it does not recognize bends; for
example S 1 is homeomorphic to the boundary of a quadrilateral.

The homotopy types of the independence complexes of paths, cycles and trees
are known. Louis J. Billera and Amy N. Myers [5] proved non-pure shellability
of interval orders. This implies that the independence complex of each path is a
wedge of spheres. Kozlov [13] showed that the independence complex of each cy-
cle Cn is homotopy equivalent to a sphere or to a wedge of two spheres. This result
was also proved by Manoj K. Chari and Michael Joswig [7] using discrete Morse
functions. The following result is a corollary of Kozlov’s theory of complexes of
directed trees. It sharpens the result by Billera and Myers. Richard Ehrenborg and
Gábor Hetyei generalized it in [10].

Proposition 1. The independence complex IC(T ) of a tree T either is contractible
or it is homotopy equivalent to a sphere.

This fact is the starting point of the construction suggested in the present work.
We explain this construction with the help of the example illustrated in Figure 2.
We start with the poset IP(T ) of independent sets of T ordered by inclusion. We
reverse this order and get the dual poset IPop(T ), which is shown in Figure 3. Now
we ask: “Is there a complex DIC(T ) such that its face poset is IP(T )op ?”

At first sight the reader might think that the answer is “No”. This is correct –
there is no such complex. But let us have a closer look. Let us try to construct a
dual independence complex although it is not possible. We proceed analogously
to the construction of dual polytopes. We choose the maximal independent sets of
T as the vertices of DIC(T ). They are {1, 3, 4, 6}, {1, 3, 5}, {2, 5}, and {2, 6}. So far
so good. The next thing we need are the edges of DIC(T ). A good candidate is
the set {1, 3}; it is incident to exactly two vertices namely {1, 3, 4, 6} and {1, 3, 5}.
Thus we choose it as the edge between them. Because of the same reason we
choose {6}, {2}, and {5} as edges of DIC(T ).

In contrast the set {3, 4, 6} behaves completely differently. This set belongs
to only one simplex, namely {1, 3, 4, 6}. Thus {3, 4, 6} cannot be an edge. On
the other hand, we cannot make it a vertex because it is a subset of {1, 3, 4, 6}.
At this point we act like topologists. We say that the set {3, 4, 6} is not essential
for the topology of IC(T ) – we simply ignore it. This set does not appear in the
dual complex. Generally we omit all independent sets I whose link(I, IC(T )) is
contractible. In our example we cross out more than half of all the independent
sets. What remains is the dual independence poset DIP(T ), shown in Figure 3.
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Figure 3: The face poset of the graph T and its dual

Now we have a second try and ask whether this poset DIP(T ) is the face poset
of a regular cell complex. This time the answer is “Yes.” The poset DIP(T ) is the
face poset of the quadrilateral shown in Figure 3.

There is no reason why this construction should work for general graphs. Let
us consider the mother of all counterexamples the Petersen Graph GP. It is shown
in Figure 4. Let p be an arbitrary node. Let R := GP \ N[p] be the subgraph ob-
tained from GP by deleting p and its neighbors. It follows from a general principle
that link(p, IC(GP)) = IC(R). This link is homotopy equivalent to a wedge of two
spheres S 1 as shown in Figure 4. In particular link(p, IC(GP)) is not contractible.
Thus by construction the independent set {p} is an element of the poset DIP(GP).

In our imaginative dual independence complex this link(p, IC(GP) turns into
the boundary of the cell p ∈ K. More precisely p would be a cell whose boundary
is homotopy equivalent to a wedge of two spheres. This is not possible. Hence
the dual independence poset DIP(GP) of the Petersen Graph is not the face poset
of a cell complex.

This example shows that the dualization construction is restricted to a small
class of independence complexes. Now Proposition 1 comes into play. It implies
that links in the independence complexes of trees are either homotopy equivalent
to spheres or they are contractible. Thus the “boundaries” of the potential cells of
the dual complexes are homotopy equivalent to spheres. But we still need much
more. We need that these boundaries are homeomorphic to spheres. The exciting
result of this thesis is that for paths and cycles this condition is actually fulfilled.
Moreover, it is true for forests whose components all are paths. We call such
forests p-forests. (The letter p stands for “paths”). For the precise statement of
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Figure 4: The Petersen Graph GP, the complement of N[p] and its independence complex.

our result we say a forest T is spherical if IC(T ) is homotopy equivalent to a
sphere. We define the size of a path of length ` to be b `+2

3 c; the size of p-forest is
the sum of the sizes of its components.

Theorem 2 (Dualization for paths). For every path and more generally for every
p-forest T there is a regular cell complex DIC(T ) such that its face poset is the
dual independence poset

F (DIC(T )) = DIP(T ).

This cell complex DIC(T ) is a shellable ball of dimension size(T ). If the p-forest T
is spherical then the empty set ∅ is the maximal cell of DIC(T ); its boundary is a
shellable sphere.

This construction generalizes to cycles Cn because the complement of an in-
dependent set in a cycle is a p-forest. With a slight modification of the definition
(omitting ∅ as a maximal cell) the dual independence complex DIC(Cn) is ho-
motopy equivalent to the non-dual complex IC(Cn). Thus DIC(Cn) is homotopy
equivalent to a sphere or to a wedge of two spheres. Given these homotopy types
the dual independence complexes turn out to be beautiful models of these types.

Theorem 3 (Dualization for Cycles). For every cycle Cn, n ≥ 2 there is a regu-
lar cell complex DIC(Cn) such that its face poset is the dual independence poset
DIP(T ). This complex is homeomorphic to the following spaces

DIC(Cn) �































S k−1 if n = 3k − 1,

S k−1
3/2 if n = 3k,

S k−1 if n = 3k + 1.
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The space S k
3/2 is homeomorphic to a union of three k-dimensional balls glued

together along their boundaries via homeomorphisms to S k−1. For example the
dual independence complex of the cycle C9 is drawn in Figure 5. It is homeo-
morphic to the the space S 2

3/2, a 2-sphere with a “third hemisphere”. It consists
of 9 pentagons; each of them corresponds to one node of the graph C9. Nodes
at distance 3 and 6 correspond to pentagons that lie in the same “hemisphere”.
Adjacent nodes in correspond to disjoint pentagons.

Figure 5: The dual independence complex of the cycle C9. It is homeomorphic to the union of
three 2-balls glued together along their boundaries.

In the following we sketch the proof of Theorem 2 and its generalizations
to trees and forests. Let T be a forest (not necessarily a p-forest). In order to
show that DIP(T ) is the face poset of a regular cell complex we study its ideals
DIP(T )≤F For each ideal of this type there is a spherical forest S such that DIP(S )
is isomorphic to it. Thus we focus on spherical forests. In particular we study
the facets of spherical forests S , which are the coatoms of the posets DIP(S ). As
an example Figure 6 shows the facets of the path P8. In order to understand the
structure of these facets we classify the nodes of trees and forests into six different
types: α∗, α†, β∗, β†, τ, µ. Given a node of a certain type we prove which types
of neighbors it may have, which it must have, and which it cannot have. Based
on this classification we group the nodes according to their types into families,
a, b, c . . . Then we build certain subtrees from them, so called flocks; for example
ab. These notions enable us to describe the intricate structures of the facets in
surprisingly simple terms.

Lemma 4 (Characterization of Facets). Let S be a spherical forest. An inde-
pendent set F is a facet if and only if either F = {p} for some α-node p or if F is
the set of leaves of some flock.
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Figure 6: The dual independence complex of the path P8 and its facets.

We use this characterization which is valid for trees and forests in order to show
that the dual independence poset DIP(T ) for every path T (and more generally
every p-forest)
• has a rank function,
• has the diamond property, and
• admits a recursive coatom ordering,

These claims imply Theorem 2. We generalize some of these results to trees.

Theorem 5 (Rank and Diamonds on Trees). Let T be a tree or more generally
a forest. Its dual independence poset DIP(T )
• has a rank function, and
• has the diamond property.

The dual independence posets of a path (and a tree) is not a semi-lattice, nor is
it semimodular in general. For trees T the structure of DIP(T ) can be even more
intricate: its not even a pure poset in general. As a consequence, if T is a tree
then the intersection of two principal ideals DIP(T )≤F ∩DIP(T )≤G is not necessar-
ily pure. This is the reason why we cannot easily transfer the recursive coatom
ordering of paths to the realm of trees. Despite these difficulties we conjecture
that also for trees there is a dual independence complex.

Conjecture 1 (Dualization for trees). For every tree T , or more generally every
forest, there is a regular cell complex DIC(T ) such that its face poset is DIP(T ).
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