Semester Report SS05 of Taral Guldahl Seierstad

Name:	Taral Guldahl Seierstad
Supervisor(s):	Prof. Dr. Hans Jürgen Prömel
Topic:	Random graph processes
PhD Student	at the program since January 2004

Field of Research

My field of research is random graph process. Mostly I have been studying the minimum-degree random graph process, see [1]. Let $G_{\min}(n, 0)$ be the empty graph on n vertices, and for M > 0 let $G_{\min}(n, M + 1)$ be obtained from $G_{\min}(n, M)$ by first choosing a vertex of minimum-degree in $G_{\min}(n, M)$ uniformly at random, and then connecting it by an edge to another vertex chosen uniformly at random from the remaining vertices in $G_{\min}(n, M)$. We say that a property holds asymptotically almost surely if it holds with probability tending to one as n tends to infinity. We set t = M/n, and we consider the graph $G_{\min}(n, tn)$.

The previous semester, Dr. Mihyun Kang and I proved that the minimum degree graph process exhibits a *phase transition* similar to the standard random graph $G_{n,p}$. We found a value $h_g \approx 0.8607$, such that if $t < h_g$, then asymptotically almost surely the largest component in $G_{\min}(n, tn)$ has $O(\log n)$ vertices, whereas if $t > h_g$, then there is a unique giant component with $\Theta(n)$ vertices, while any other component in the graph has $O(\log n)$ vertices.

This semester we have finished writing our article with this result. Furthermore, we have continued to study the minimum-degree process. We have proved that when $t = h_g$, the largest component in $G_{\min}(n, tn)$ has asymptotically almost surely $\Theta(n^{2/3})$ vertices, and we are studying the behaviour of $G_{\min}(n, tn)$ when $t \sim h_g$, which is called the *critical phase*. It appears that in this phase the minimum-degree graph process behaves similar to $G_{n,p}$ does in many ways, and I believe we will be able to prove this.

I have also studied other aspects of the minimum-degree graph process, such as the Hamiltonicity and the cycle distribution of the graph.

Activities

- Attended weekly lectures and colloquia of the CGC. (23 May 2005 I held a talk titled *The giant component in the minimum degree graph process.*)
- Attended weekly seminar of the research group Algorithmen und Komplexität at the HU Berlin. (1 April 2004 I held a talk titled The giant component in the mindegree process.)
- Attended Learn- & Workshop "Random Graphs and Probabilistic Methods" at HU Berlin, 7 to 9 March 2005. (8 March I held a talked titled *The minimum degree multi-graph process.*)
- Attended the Spring School of the CGC on Enumerative Combinatorics in Netzeband, 1 to 4 June 2005.
- Attended the Berlin-Poznan Seminar in Discrete Mathematics, 4 June 2005. (I held a talk titled *The giant component in the minimum degree graph process.*)
- Attended the IPCO XI Summer School at TU Berlin, 6 to 7 June 2005.

Preview

I will continue to study the phase transition of the min-degree random graph process together with Dr. Mihyun Kang. Our first goal is to describe the structure of $G_{\min}(n, M)$ for $M = h_g n + s$, where s = o(n). Another problem I have been a little involved in, and which I plan to study more next semester is that of counting, exactly or asymptotically, the number of bipartite cubic graphs.

References

 Mihyun Kang, Youngmee Koh, Tomasz Łuczak, and Sangwook Ree. The connectivity threshold for the min-degree random graph process. submitted.