Semester Report SS 04 of Stephan Hell

Name:
Supervisor:
Field of Research:
Topic:
PhD Student

Stephan Hell
Prof. Dr. Günter M. Ziegler
Discrete Geometry
Topological Methods in Combinatorics and Geometry
at the program since May 2003

Results and Perspectives

In my third semester I was working in two different fields. First, I'm still in topological combinatorics where I was able to obtain a new result concerning the number of Tverberg partitions. Second, initiated by a project in the framework of the block course Discrete Geometry (Polytopes and More) of my advisor, I studied f-vector-type questions for cubical 4 -polytopes. In the following, I will discuss both directions in detail. As usual, I suppose that the reader is familiar with my previous semester reports.

At the beginning of this semester, I have written up my new result on the number of Tverberg partitions and splitting necklaces. A Tverberg partition for a continuous map $f: \Delta^{(d+1)(q-1)} \rightarrow \mathbb{R}^{d}$ is a collection of disjoint faces $F_{1}, \ldots, F_{q}<\Delta^{(d+1)(q-1)}$ satisfying $\bigcap_{1}^{q} f\left(F_{i}\right) \neq \emptyset$. The existence of Tverberg partitions is proven for general d and prime powers q. The number of Tverberg partitions of such maps f is conjectured by G. Sierksma to be at least $((q-1)!)^{d}$. This problem is also known as the Dutch cheese problem. In [2], I was able to extend the currently best known lower bound for the prime case of [5] to the prime power case. The lower bound equals

$$
\frac{1}{(q-1)!} \cdot\left(\frac{q}{r+1}\right)^{\left\lceil\frac{(d+1)(q-1)}{2}\right\rceil}, \text { where } q=p^{r} \text { and } p \text { prime. }
$$

The proof is inspired by the \mathbb{Z}_{p}-index version of the proof for the prime case in [4], and uses Volovikov's Lemma. The proof can also be seen as an application of Rade Živaljević's configuration space/test map paradigm. For big q and d my lower bound equals roughly the square root of the conjectured lower bound. See Table 1 for the state of art. Analogously, I have extended the lower bound for the number of splittings of generic necklaces from primes, see [5], to prime powers. There the lower bound equals

$$
q \cdot\left(\frac{q}{r+1}\right)^{\left\lceil\frac{d(q-1)}{2}\right\rceil} .
$$

My future studies will be based on Torsten Schöneborn's approach. He has

Lower bound $\backslash q$	prime	prime power	arbitrary
1 (existence)	Bárány et al. '81	Volovikov '96	open
$[5]$-type bound	$[5]$	\checkmark	open
$((q-1)!)^{d}$ (Sierksma)	open	open	open

Table 1: Current state around the Topological Tverberg Theorem
reduced - among other results - the case $d=2$ to a graph theoretic question. At the conference Geometry, Topology, and Combinatorics, KTH Stockholm, I had very encouraging discussions with Anders Björner and Rade Živaljević. Rade Živaljević has drawn my attention to the article [3] of Gil Kalai which I had overlooked until now.

Three-dimensional polytopes are quite well known combinatorial objects due to Steinitz (1906). The description of the set of all f-vectors $f(P)=\left(f_{0}, f_{1}, f_{2}\right)$ is complete, where P is a 3 -polytope and f_{i} the number of its i-dimensional faces. In dimension 4 much less is known about the set of f-vectors. In my project, I studied f-vectors of the family of cubical 4 -polytopes with few vertices. Recall, a polytope is called cubical if all its facets are combinatorial cubes. Gerd and Roswitha Blind have classified all cubical d-polytopes with up to $f_{0}=2^{d+1}$ vertices in series of five articles. The f-vector of a cubical 4-polytope is of the form $\left(f_{0}, f_{0}+2 f_{3}, 3 f_{3}, f_{3}\right)$. The following results on cubical 4 -polytopes follow from their classification:

- The entry f_{0} is even.
- Let P be a cubical 4 -polytope, different from the 4 -cube, then there is to every vertex v of P at least two diagonal vertices - two vertices that do not lie in facets through v.
- There are exactly ten cubical 4 -polytopes with $f_{0} \leq 32$ vertices and $f_{0} \in\{16,24,28,30,32\}$. All of them can be obtained by a projection of the 5 -cube to some 4 -dimensional hyperplane.
- Let P be cubical 4 -polytope and v a vertex of degree d. Then the following equality holds: $f_{0}(v)=6 d-9$, where $f_{0}(v)$ is the number of vertices of P lying in facets through v.

The computer software polymake - developed in our group - is available for studying and visualizing polytopes. As part of my project, I have a obtained electronic models of the ten cubical 4-polytopes with ≤ 32 vertices: They can be visualized via their Schlegel diagrams. The main task was to study f-vectors of cubical 4-polytopes or, more generally, cubical 3-spheres on 34 vertices. Two constructions are known for constructing cubical 3 -spheres out of cubical 3 -spheres. The first one is called (cubical) stacking, and it adds 8 vertices to the polytope. The second one called bistellar flip construction adds 12 vertices. Neither of the constructions leads to a 4 -polytope on 34 vertices, as there is no such polytope on 26 resp. 22 vertices (same for cubical 3 -spheres). So $f_{0}=34$ is the last candidate for a gap. Using the lower bound theorem for general polytopes, and observing that the maximal degree of a cubical 4 -polytope on 34 vertices equals 6 , one obtains for $f_{0}=34$:

$$
(34,72,57,19) \leq\left(f_{0}, f_{1}, f_{2}, f_{3}\right) \leq(34,102,102,34)
$$

Using methods from [1], one can show that a 4 -polytope on 34 vertices has a vertex of degree 6 with a stacked simplex as vertex figure. This proof involves shelling sequences and graph colorings of the 1 -skeleton. The number of cases to be checked in the proof gets quite large and cannot be written up in a compact form. This method could be used for checking the classification of Blind and Blind, enumerating all cubical 3-spheres on a "small" number of vertices (especially the case $f_{0}=34$), and it has also shown up in other related problems. Axel Werner and I plan to start a computer project to implement the setup for this enumeration procedure.

Activities

- Lectures and Colloquia of the CGC
- Talk at Colloquium of the CGC, May 3, TU Berlin
- Talk on my block course project at Mittagsseminar Diskrete Geometrie at TU Berlin
- Attended Block course Discrete Geometry (Polytopes and More) of G. M. Ziegler in the framework of the Prague/Berlin DocCourse and Lectures Diskrete Geometrie
- Attended the Conference Geometry, Topology, and Combinatorics, July 3-6, 2004, KTH Stockholm, Sweden

Preview

- Annual workshop of the CGC, October 4-7, Stels, Switzerland
- Long stay for 4 months at KAM institute, Prague, visiting Prof. Dr. Jiří Matoušek, scheduled start in September 2004

References

[1] G. Blind and R. Blind, Cubical 4-polytopes with few vertices, Geom. Dedicata 66 (1997), pp. 223-231.
[2] S. Hell, On the number of Tverberg partitions in the prime power case. Preprint arXiv.math.CO/0404406, 2004. Submitted.
[3] G. Kalai, Combinatorics with a geometric flavor: some examples, in Visions in mathematics 2000 (GAFA Special Volume), Birkhäuser Basel, 2001, pp. 742-792.
[4] J. Matoušek, Using the Borsuk-Ulam theorem, Universitext, SpringerVerlag, Berlin, 2003. Lectures on topological methods in combinatorics and geometry.
[5] A. Vućić and R. T. Živaluević, Notes on a conjecture of Sierksma, Discr. Comput. Geom. 9 (1993), pp. 339-349.

