Arnold Waßmer

Supervisor: Prof. Dr. Günter M. Ziegler
Field of Research: Discrete and Combinatorial Geometry
Topic
PhD Student

Field of Research

This semester I worked in the field of topology and its applications to graph theory. I was able to find a shorter proof of a quantified version of the Borsuk-Ulam theorem. In joint work with Ingo Schurr and Carsten Lange I managed to show that graphs without a $K_{k, k}$-subgraph have a box complex of small index.

In 1978 Lovász [2] proved Kneser's conjecture, a theorem of graph theory, using a classical topological ingredient, the Borsuk-Ulam theorem. Kneser's conjecture is concerned with the chromatic number of certain graphs. The Borsuk-Ulam theorem asserts that there is no continuous antipodal map from a sphere to its equator, i. e. $\exists f: S^{d+1} \rightarrow S^{d}, f(-x)=-f(x)$,

In the notation of [4], Lovász' idea can be interpreted as follows. Given a graph G, use all its complete bipartite subgraphs to define a simplicial complex $\mathcal{B}(G)$. In this so called box complex $\mathcal{B}(G)$ every simplex has a unique antipodal counterpart, i. e. there is a free \mathbb{Z}_{2}-action on $\mathcal{B}(G)$. On the sphere S^{d} we also have a \mathbb{Z}_{2}-action by the antipodal map. Hence we can define the index of the complex $\mathcal{B}(G)$ as the lowest dimension d of a sphere S^{d} into which we can map $\mathcal{B}(G) \mathbb{Z}_{2}$-equivariantly (see [3]).

$$
\operatorname{ind}(\mathcal{B}(G)):=\min \left\{d \mid \exists f: \mathcal{B}(G) \xrightarrow{\mathbb{Z}_{2}} S^{d}\right\}
$$

Based on the Borsuk-Ulam theorem Lovász proved the following essential relation between the chromatic number of a graph and the index of this complex:

$$
\chi(G) \geq \operatorname{ind}(\mathcal{B}(G))+2
$$

This formula gives us a lower bound for the chromatic number of a graph. But this lower bound is not always tight. In joint work with Ingo Schurr and Carsten Lange I succeeded in proving the following. If a graph G does not contain a complete bipartite graph $K_{k, k}$ as a subgraph then the index of its box complex is bounded by $\operatorname{ind}(\mathcal{B}(G)) \leq 2 k-3$.

To prove this we constructed a \mathbb{Z}_{2}-equivariant map from the box complex $\mathcal{B}(G)$ to a simplicial complex of dimension at most $2 k-3$. Since the dimension of a space is an upper bound to its index this proves the assertion.

A negative application of this result is the chromatic number of the plane \mathbb{R}^{2}. The nodes of the corresponding graph are all points in the plane. Two of them are connected by an edge if their euclidean distance is 1 . This graph does not contain a $K_{3,3}$-subgraph. Hence the corresponding index is at most 3. This shows that Lovász' bound could yield at most $\chi\left(\mathbb{R}^{2}\right) \geq 5$ but could not prove $\chi\left(\mathbb{R}^{2}\right) \geq 6$ or $\chi\left(\mathbb{R}^{2}\right) \geq 7$.

My second project was a quantification of the Borsuk-Ulam theorem. We can reformulate the Borsuk-Ulam theorem as "Every antipodal map f : $S^{d+1} \rightarrow S^{d}$ must be discontinuous." This discontinuity was quantified by Dubins and Schwarz [1] as follows. For any antipodal map $f: S^{d+1} \rightarrow S^{d}$ and any small $\varepsilon>0$ there are two points x and y with distance less than ε such that their images are at least $|f(x)-f(y)| \geq \Delta(d)$ apart. This constant $\Delta(d)$ is the edge length of a regular simplex inscribed to the sphere S^{d}. In particular it does not depend on the map f. The proof by Dubins \& Schwarz takes around 9 pages. I could shorten it to two pages. It is now based on the classical version of the Borsuk-Ulam theorem and some elementary linear algebra only.

Activities

- Organized the Fachschaftstagung des Cusanuswerkes "Diskrete Mathematik", May 8 - 12, 2002, Uder, Germany
- Conference in honour of Peter McMullen's 60th birthday, May 17 - 18, 2002, London
- CGC Spring School on "Approximation Algorithms for Hard Problems", May 20-23, 2002, Chorin, Germany
- "Mostly Discrete", A birthday colloquium for Martin Aigner, June 7, 2002, ZIB Berlin
- Poster Presentation at the review meeting of the CGC program by the DFG, June 24, 2002, FU Berlin
- Berliner Algorithmentag, July 19, 2002, FU Berlin
- Conference on "Discrete, Combinatorial and Computational Geometry", satellite conference of the ICM 2002, August 13 - 18, 2002, Beijing, China
- International Congress of Mathematicians, August 20 - 28, 2002, Beijing, China
- Lectures and Colloquia of the CGC
- Attended the lectures of Günter M. Ziegler on "Integer Programming" and of Volker Kaibel on "Enumerative Combinatorics" at TU Berlin
- Attended the Oberseminar Diskrete Geometrie and the Brown-BagSeminar at TU Berlin

References

[1] Lester E. Dubins and Gideon Schwarz, Equidiscontinuity of Borsuk-Ulam functions, Pacific J. Math., 95 (1981), pp. 51-59.
[2] LÁszló LovÁsz, Kneser's conjecture, chromatic number, and homotopy, Journal of Combinatorial Theory, Series A, 25 (1978), pp. 319-324.
[3] Jiňí Matoušek, Using the Borsuk-Ulam theorem (lectures on topological methods in combinatorics and geometry). Book in preparation, written partially in collaboration with G. M. Ziegler and A. Björner, to be published by Springer.
[4] Jiří Matoušek and Günter M. Ziegler, Topological lower bounds for the chromatic number: A hierarchy. preprint, 2002.

