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Fields of research

I mainly work on approximation algorithms and nonapproximability. Expan-
der graphs are “sparse” graphs with “high” connectivity and have various
applications in these areas. They can be used for both lower bound proofs
(e.g. [5]) and also upper bounds (e.g. [1]). The existence of the desired ex-
panders can be shown by probabilistic arguments (e.g.[8]), but very little is
known about how to construct them deterministically [6, 7, 11].

Results

One example for the use of expanders are nonapproximability results. We
improved the best known lower bound for the Steiner Tree Problem – this
follows from a nonapproximability result for VERTEX-COVER in graphs of
bounded degree [5] – by a factor of 3. This result [10] will be presented at
MFCS2001.

Expanders

What makes a graph a good expander? How difficult is it to approximately
calculate the expansion properties of a graph?

These are the questions I’m working on. It is known to be hard to calculate
expansion of a given graph exactly [4]. One (only) knows that expansion
is closely related to the second largest eigenvalue of the adjacency matrix
of the graph [2, 3, 9]. The expanders constructed in [7] have an optimal
second largest eigenvalue, but probabilistic arguments prove that there exist
constructions with even better expansion.
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Therefore, our approach is different. We try to prove expansion properties
directly without using eigenvalues. One problem with this is that there is no
general framework to do this.

Since we do not use randomness, all the constructions we use are in a sense
regular. This regularity is necessary to efficiently construct the graphs and to
analyze them. On the other hand it often produces some “hidden” regularity
which was not intended and which destroys the expansion property.

One approach to overcome this difficulty is to use the same kind of regu-
larity two times (in a nested way) with in some sense different signs. What
also seems helpful is to use regularities which produce unbalanced structures.

Using these two ideas we constructed two families of very sparse graphs
(maximum degree 4). Fibonacci numbers are used to define the construction
which leads to both regularity and unbalanced behaviour. Empirically these
graphs are higly expanding (we are able to test this with some simple but
useful heuristcs up to a few thousend nodes).

Activities

• Lectures and Colloquium of the CGC program

• Berlin-Poznan-Seminar, HU Berlin, 23.-24.03.01

• Research seminar “algorithms and complexity” at HU with talks “Ge-
neralized Submodular Cover Problems and Applications” and “Undi-
rected Connectivity in O(log1.5 n) Space”

Preview

The above mentioned ideas which led to our construction have now to be
formalized to really prove the expansion property of these graphs.
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