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Results

Partitions of graphs with high minimum degree or connectivity

Hajnal [9] and Thomassen [12] independently proved that the vertex set of
every highly connected graphG can be partitioned into sets S and T such that
the graphs G[S] and G[T ] induced by these sets still have high connectivity.
With Daniela Kühn [10], I strengthened this result by showing that we can
additionally require that every vertex in S has many neighbours in T :

For every ` there exists k = k(`) such that the vertex set of every k-connected
graph G can be partitioned into non-empty sets S and T such that both G[S]
and G[T ] are `-connected and every vertex in S has at least ` neighbours
in T .

This is best possible in the sense that we cannot additionally require the
entire bipartite subgraph of G between S and T to have large minimum
degree. Applying the result of Mader that every graph of sufficiently large
average degree contains a subdivision of a given graph H to the graph G[S]
obtained by the above theorem, it immediately follows that every highly
connected graph G contains a “non-separating” subdivision of H:

For every ` and every graph H there exists k = k(`,H) such that every k-
connected graph G contains a subdivision TH of H such that G− V (TH) is
`-connected.

We also proved several related results about partitions of graphs.

Random planar graphs

Due to the high dependence between the existence of different edges in a
random planar graph, rather little is known so far about the number of
planar graphs and about their typical properties, in particular about their
likely number of edges. Let Pn be the set of labelled planar graphs with n
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vertices. Denise, Vasconcellos and Welsh [6] proved the upper bound |Pn| ≤
n! 75.8n+o(n) and recently Bender, Gao and Wormald proved the lower bound
|Pn| ≥ n! 26.1n+o(n). Also, combining results by McDiarmid, Steger and
Welsh and by Gerke and McDiarmid shows that almost all graphs in Pn
have at least 13/7n edges. On the other hand, together with Hans Jürgen
Prömel and Anusch Taraz [11], I showed the following upper bounds.

Almost all graphs in Pn have at most 2.56n edges. Also, |Pn| ≤ n! 37.3n+o(n).

This considerably improves on our earlier bounds, which I described in the
previous semester report. The proof relies on a result of Tutte on the number
of plane triangulations, the above result of Bender, Gao and Wormald and
the following result, which we also prove in [11]:

Every labelled planar graph G with n vertices and m edges is contained in at
least ε3(3n−m)/2 labelled triangulations on n vertices, where ε is an absolute
constant.

In other words, the number of triangulations of a planar graph is exponential
in the number of additional edges which are needed to triangulate it. We
also show that this bound on the number of triangulations is essentially best
possible.

Popularity based random graph models

Although a great deal of research has been done on random graphs, only very
recently has data on large real world networks become available. For instance,
the world wide web may be viewed as a graph by considering the nodes or
vertices to be the individual web-pages, while the connections or edges are
links going from one document to another. Empirical studies of the world
wide web and other large networks indicate structural characteristics which
differ substantially from those of the graph models used in most previous
research.

In particular, experimental evidence collected by several authors (see for
example [4]) suggests that the fraction Pin(d) of web pages with a particular
number d of in-links decreases as a scale-free power law, namely proportional
to d−γin , with γin ' 2.1. This is also the case for networks as diverse as
the movie actor collaboration graph (γ ' 2.3, [2]), scientific collaboration
networks (γ ' 3, [2]) and the Western US Power Grid (γ ' 4, [2]).

This lead to the search for simple growth mechanisms which lead to the
above (and other) observed phenomena. Dorogovtsev, Mendes and Samuk-
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hin [7] and Drinea, Enachescu and Mitzenmacher [8] introduced the following
random graph model, which generalizes an earlier model of Barabási and
Albert [1]: at each time step we add a new vertex incident to r edges. The
other endpoints of these edges are chosen with probability proportional to
their in-degrees plus an initial attractiveness ar, where a is a constant. Thus,
popular vertices (i.e. those with large in-degree) will tend to become even
more popular as time increases. For all a, r ∈ N, we determine the asymptotic
form of the degree distribution for most of the vertices. Confirming non-
rigorous arguments in [7, 8], this shows that for such a, the proportion P (d)
of vertices of degree d almost surely obeys a power law, where P (d) is of the
form d−2−a for large d. The case a = 1 (which corresponds to the model
in [1]) was proved earlier by Bollobás, Riordan, Spencer and Tusnády [3].

Activities

• 26. Berliner Algorithmentag, ZIB, 16.2.2001 (with a talk on “Random
planar graphs”)

• Workshop on Random Structures, HU Berlin, 23.-24.3.2001

• Workshop on Combinatorics and Random Structures, HU Berlin, 5.-
7.7.2001 (with a talk on “Induced subdivisions of graphs”)

• Conference “Random Structures and Algorithms”, Poznań, 6.-10.8.2001
(with a talk on “Induced subdivisions of graphs”)

• Joint organization of the seminar “Algorithmen und Kombinatorik”

• Referee for the journals “Random Structures & Algorithms” and “SIAM
journal on Discrete Mathematics”

• “Forschungsseminar Algorithmen und Komplexität” at the HU (with
talks on “Colourings and independent sets in triangle-free graphs” and
“Partitions of graphs of high minimum degree or connectivity”)

• attendance of the lectures and the colloquium of the graduate school
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