Three questions on graphs of polytopes

Guillermo Pineda-Villavicencio

Federation University Australia

Mar 18

1/30

G. Pineda-Villavicencio (FedUni)

- 2 First question: Reconstruction of polytopes
- Second question: Connectivity of cubical polytopes
- Third question: Linkedness of cubical polytopes

A polytope as a combinatorial object

Reconstruction of polytopes (Dolittle, Nevo, Ugon & Yost)

- The *k*-skeleton of a polytope is the set of all its faces of dimension ≤ *k*.
- k-skeleton reconstruction: Given the k-skeleton of a polytope, can the face lattice of the polytope be completed?

Federatio

(Grünbaum '67) Every *d*-polytope is reconstructible from its (*d* - 2)-skeleton.

< < >>

- (Grünbaum '67) Every *d*-polytope is reconstructible from its (*d* - 2)-skeleton.
- For *d* ≥ 4 there are pairs of *d*-polytopes with isomorphic (*d* − 3)-skeleta:
 - a bipyramid over a (d-1)-simplex and,
 - a pyramid over the (d-1)-bipyramid over a (d-2)-simplex.

Mar 18

Polytopes nonreconstructible from their graphs

(a) $pyr(bipyr(T_2))$

(b) $bipyr(T_3)$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

• (Blind & Mani, '87; Kalai, '88) A simple polytope is reconstructible from its graph.

< < >>

- (Blind & Mani, '87; Kalai, '88) A simple polytope is reconstructible from its graph.
- Call *d*-polytope (*d k*)-simple if every (*k* 1)-face is contained in exactly *d k* 1 facets.
- A simple *d*-polytope is (d 1)-simple.
- (Kalai, '88) A (d k)-simple d-polytope is reconstructible from its k-skeleton.

Reconstruction of almost simple polytopes

Call a vertex of a *d*-polytope nonsimple if the number of edges incident to it is > d.

< < >>

Call a vertex of a *d*-polytope nonsimple if the number of edges incident to it is > d.

Theorem (Doolittle-Nevo-PV-Ugon-Yost, '17)

Let P be a d-polytope. Then the following statements hold.

- The face lattice of any d-polytope with at most two nonsimple vertices is determined by its graph (1-skeleton);
- the face lattice of any d-polytope with at most d 2 nonsimple vertices is determined by its 2-skeleton; and

for any d > 3 there are two d-polytopes with d - 1 nonsimple vertices, isomorphic (d - 3)-skeleton and nonisomorphic face lattices.

The result (1) is best possible for 4-polytopes.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Nonisomorphic 4-polytopes with 3 nonsimple vertices

Construct a *d*-polytope Q^d₁.

• The polytope Q_2^d is created by "gluing" two simplex facets of Q_1^d along a common ridge to create a bipyramid of Q_2^d .

Problem

Is every d-polytope with at most d - 2 nonsimple vertices reconstructible from its graph?

Mar 18

10/30

A D M A A A M M

G. Pineda-Villavicencio (FedUni)

A cubical *d*-polytope is a *d*-polytope in which every facet is a (d-1)-cube.

A D M A A A M M

Mar 18

When referring to graph-theoretical properties of a polytope such as minimum degree and connectivity, we mean properties of the graph G = (V, E) of the polytope.

• (Balinski '61) The graph of a *d*-polytope is *d*-(vertex)-connected.

Mar 18

When referring to graph-theoretical properties of a polytope such as minimum degree and connectivity, we mean properties of the graph G = (V, E) of the polytope.

- (Balinski '61) The graph of a *d*-polytope is *d*-(vertex)-connected.
- (Grünbaum '67) If $P \subset \mathbb{R}^d$ is a *d*-polytope, *H* a hyperplane and *W* a proper subset of $H \cap V(P)$, then removing *W* from G(P) leaves a connected subgraph.

When referring to graph-theoretical properties of a polytope such as minimum degree and connectivity, we mean properties of the graph G = (V, E) of the polytope.

- (Balinski '61) The graph of a *d*-polytope is *d*-(vertex)-connected.
- (Grünbaum '67) If $P \subset \mathbb{R}^d$ is a *d*-polytope, *H* a hyperplane and *W* a proper subset of $H \cap V(P)$, then removing *W* from G(P) leaves a connected subgraph.
- (Perles & Prabhu '93) Removing the subgraph of a *k*-face from the graph of a *d*-polytope leaves a max(1, *d k* 1)-connected subgraph.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Mar 18

Minimum degree vs connectivity

Figure: There are *d*-polytopes with high minimum degree which are not (d + 1)-connected.

Federation

Mar 18

Theorem (Connectivity Theorem; Hoa, PV & Ugon)

Let $0 \le \alpha \le d - 3$ and let P be a cubical d-polytope with minimum degree at least $d + \alpha$. Then P is $(d + \alpha)$ -connected.

Furthermore, if the minimum degree of P is exactly $d + \alpha$, then, for any $d \ge 4$ and any $0 \le \alpha \le d - 3$, every separator of cardinality $d + \alpha$ consists of all the neighbours of some vertex and breaks the polytope into exactly two components.

This is best possible in the sense that for d = 3 there are cubical *d*-polytopes with minimum separators not consisting of the neighbours of some vertex.

14/30

Mar 18

Federation

Figure: Cubical 3-polytopes with minimum separators not consisting of the neighbours of some vertex. Vertex separator coloured in gray.

Note: Infinitely many more examples can be generated by using well know expansion operations such as those in "Generation of simple quadrangulations of the sphere" by Brinkmann et al.

Mar 18

Connectivity Theorem and cubes

Figure: Every minimum separator of a cube consists of the neighbours of some vertex.

Note: This can be proved by induction on *d*, considering the effect of the separator on a pair of opposite facets. Federation

Mar 18

Ingredient 1: Strongly connected (d - 1)-complex. A finite nonempty collection C of polytopes (called faces of C) satisfying the following.

- The faces of each polytope in \mathcal{C} all belong to \mathcal{C} , and
- \bullet polytopes of ${\mathcal C}$ intersect only at faces, and
- each of the faces of C is contained in (d-1)-face, and
- for every pair of facets *F* and *F'*, there is a path
 F = *F*₁ · · · *F_n* = *F'* of facets in *C* such that *F_i* ∩ *F_{i+1}* is a (*d* − 2)-face, ridge, of *C*.

Ingredient 1: Strongly connected (d - 1)-complex. A finite nonempty collection C of polytopes (called faces of C) satisfying the following.

- The faces of each polytope in C all belong to C, and
- polytopes of C intersect only at faces, and
- each of the faces of C is contained in (d-1)-face, and
- for every pair of facets F and F', there is a path $F = F_1 \cdots F_n = F'$ of facets in C such that $F_i \cap F_{i+1}$ is a (d-2)-face, ridge, of C.

(Sallee '67) The graph of a strongly connected (d - 1)-complex is (d - 1)-connected.

Figure: (a) The 4-cube, a strongly connected 4-complex. (b) A strongly connected 3-complex in the 4-cube. (c) A strongly connected 2-complex in the 4-cube.

- Ingredient 2: The Connectivity Theorem holds for cubes.
- Ingredient 3: Removing the vertices of any proper face of a cubical *d*-polytope leaves a "spanning" strongly connected (*d* 2)-complex, and hence a (*d* 2)-connected subgraph.

Ingredient 3 is proved using Ingredient 1.

Mar 18

Let $0 \le \alpha \le d - 3$ and let *P* be a cubical *d*-polytope with minimum degree at least $d + \alpha$. Then *P* is $(d + \alpha)$ -connected.

Let X be a minimum separator of the graph G(P) of P, with vertices u and v of P being separated by X.

Mar 18

Let $0 \le \alpha \le d - 3$ and let *P* be a cubical *d*-polytope with minimum degree at least $d + \alpha$. Then *P* is $(d + \alpha)$ -connected.

Let X be a minimum separator of the graph G(P) of P, with vertices u and v of P being separated by X.

• Claim 1. If $|X| \le d + \alpha$ then, for any facet *F*, the cardinality of $X \cap V(F)$ is at most d - 1.

Let $0 \le \alpha \le d - 3$ and let *P* be a cubical *d*-polytope with minimum degree at least $d + \alpha$. Then *P* is $(d + \alpha)$ -connected.

Let X be a minimum separator of the graph G(P) of P, with vertices u and v of P being separated by X.

- Claim 1. If $|X| \le d + \alpha$ then, for any facet *F*, the cardinality of $X \cap V(F)$ is at most d 1.
- Claim 2. If |X| ≤ d + α then the set X disconnects at least d facets of P.

Let $0 \le \alpha \le d - 3$ and let *P* be a cubical *d*-polytope with minimum degree at least $d + \alpha$. Then *P* is $(d + \alpha)$ -connected.

Let X be a minimum separator of the graph G(P) of P, with vertices u and v of P being separated by X.

• Suppose $|X| \le d - 1 + \alpha$ (Proceeding by contradiction).

Mar 18

Let $0 \le \alpha \le d - 3$ and let *P* be a cubical *d*-polytope with minimum degree at least $d + \alpha$. Then *P* is $(d + \alpha)$ -connected.

Let X be a minimum separator of the graph G(P) of P, with vertices u and v of P being separated by X.

- Suppose $|X| \le d 1 + \alpha$ (Proceeding by contradiction).
- Take a facet *F* being disconnected by *X* (it exists by **Claim 2**). Then $|V(F) \cap X| = d - 1$ (by **Claim 1**).

Mar 18

21/30

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $0 \le \alpha \le d - 3$ and let *P* be a cubical *d*-polytope with minimum degree at least $d + \alpha$. Then *P* is $(d + \alpha)$ -connected.

Let X be a minimum separator of the graph G(P) of P, with vertices u and v of P being separated by X.

- Suppose $|X| \le d 1 + \alpha$ (Proceeding by contradiction).
- Take a facet *F* being disconnected by *X* (it exists by Claim 2). Then $|V(F) \cap X| = d - 1$ (by Claim 1).
- Removing all the vertices of *F* from *P* produces a (*d*-2)-connected subgraph *S* (by Ingredient 3).

Mar 18

Let $0 \le \alpha \le d - 3$ and let *P* be a cubical *d*-polytope with minimum degree at least $d + \alpha$. Then *P* is $(d + \alpha)$ -connected.

Let X be a minimum separator of the graph G(P) of P, with vertices u and v of P being separated by X.

- Suppose $|X| \le d 1 + \alpha$ (Proceeding by contradiction).
- Take a facet *F* being disconnected by *X* (it exists by Claim 2). Then $|V(F) \cap X| = d - 1$ (by Claim 1).
- Removing all the vertices of *F* from *P* produces a (*d*-2)-connected subgraph *S* (by Ingredient 3).
- Removing X doesn't disconnect S (as $|V(S) \cap X| \le \alpha \le d-3$).

Mar 18

Let $0 \le \alpha \le d - 3$ and let *P* be a cubical *d*-polytope with minimum degree at least $d + \alpha$. Then *P* is $(d + \alpha)$ -connected.

Let X be a minimum separator of the graph G(P) of P, with vertices u and v of P being separated by X.

- Suppose $|X| \le d 1 + \alpha$ (Proceeding by contradiction).
- Take a facet *F* being disconnected by *X* (it exists by **Claim 2**). Then $|V(F) \cap X| = d - 1$ (by **Claim 1**).
- Removing all the vertices of *F* from *P* produces a (*d*-2)-connected subgraph *S* (by Ingredient 3).
- Removing X doesn't disconnect S (as $|V(S) \cap X| \le \alpha \le d-3$).
- So *u* can be assumed in *F*. Every neighbour of *u* in *F* is in *X* (by **Ingredient 1**).

Federation

21/30

э.

Let $0 \le \alpha \le d - 3$ and let *P* be a cubical *d*-polytope with minimum degree at least $d + \alpha$. Then *P* is $(d + \alpha)$ -connected.

Let X be a minimum separator of the graph G(P) of P, with vertices u and v of P being separated by X.

- Suppose $|X| \le d 1 + \alpha$ (Proceeding by contradiction).
- Take a facet *F* being disconnected by *X* (it exists by **Claim 2**). Then $|V(F) \cap X| = d - 1$ (by **Claim 1**).
- Removing all the vertices of *F* from *P* produces a (*d*-2)-connected subgraph *S* (by Ingredient 3).
- Removing X doesn't disconnect S (as $|V(S) \cap X| \le \alpha \le d-3$).
- So *u* can be assumed in *F*. Every neighbour of *u* in *F* is in *X* (by **Ingredient 1**).

Federation

Mar 18

21/30

• Since $\deg(u) \ge d + \alpha$, there is a neighbour of u in $V(S) \setminus X$, and u can be linked to v.

Corollary

There are functions $f : \mathbb{N} \to \mathbb{N}$ and $g : \mathbb{N} \to \mathbb{N}$ such that, for every d,

- the function f(d) gives the maximum number such that every cubical d-polytope with minimum degree δ ≤ f(d) is δ-connected;
- the function g(d) gives the maximum number such that every cubical d-polytope with minimum degree δ ≤ g(d) is δ-connected and whose minimum separator consists of the neighbourhood of some vertex; and
- the functions f(d) and g(d) are bounded from below by 2d 3.

< < >>

An naive exponential bound in *d* for f(d) is readily available. Taking the connected sum of two cubical *d*-polytope P_1 and P_2 with minimum degree δ we can obtain a cubical *d*-polytope *Q* with minimum degree δ and a separator of cardinality 2^{d-1} , the number of vertices of the facet along which we glued.

Mar 18

An naive exponential bound in *d* for f(d) is readily available. Taking the connected sum of two cubical *d*-polytope P_1 and P_2 with minimum degree δ we can obtain a cubical *d*-polytope *Q* with minimum degree δ and a separator of cardinality 2^{d-1} , the number of vertices of the facet along which we glued.

$$2d-3 \le g(d) \le f(d) \le 2^{d-1}.$$
 (1)

Mar 18

An naive exponential bound in *d* for f(d) is readily available. Taking the connected sum of two cubical *d*-polytope P_1 and P_2 with minimum degree δ we can obtain a cubical *d*-polytope *Q* with minimum degree δ and a separator of cardinality 2^{d-1} , the number of vertices of the facet along which we glued.

$$2d-3 \le g(d) \le f(d) \le 2^{d-1}.$$
 (1)

Problem

Provide precise values for the functions f and g or improve the lower and upper bounds in (1).

Mar 18

 A graph with at least 2k vertices is k-linked if, for every set of 2k distinct vertices organised in arbitrary k pairs of vertices, there are k disjoint paths joining the vertices in the pairs.

- A graph with at least 2k vertices is k-linked if, for every set of 2k distinct vertices organised in arbitrary k pairs of vertices, there are k disjoint paths joining the vertices in the pairs.
- A *k*-linked graph is at least (2k 1)-connected.

(If it had a separator X of size 2k - 2, choose k-pairs $(s_1, t_1), \ldots, (s_k, t_k)$ to be linked such that $X := \{s_1, \ldots, s_{k-1}, t_1, \ldots, t_{k-1}\}$ and the vertices s_k and t_k are separated by X.)

Mar 18

Classification of 2-linked graphs and 3-polytopes

- (Seymour '80 and Thomassen '80) The graph of every simplicial 3-polytopes is 2-linked; that is, every 3-connected planar graph with triangles as faces is 2-linked.
- No other 3-polytope is 2-linked.

- (Larman & Mani '70) Every *d*-polytope is $\lfloor (d+1)/3 \rfloor$ -linked.
- (Werner & Wotzlaw '11) Slightly improved to $\lfloor (d+2)/3 \rfloor$.

Mar 18

26/30

< < >>

- (Larman & Mani '70) Every *d*-polytope is $\lfloor (d+1)/3 \rfloor$ -linked.
- (Werner & Wotzlaw '11) Slightly improved to $\lfloor (d+2)/3 \rfloor$.
- (Thomas & Wollan '05) Every *d*-polytope with minimum degree at least 5*d* is [*d*/2]-linked.

Mar 18

- (Larman & Mani '70) Graphs of simplicial *d*-polytopes, polytopes with all its facets being combinatorially equivalent to simplices, are $\lfloor (d+1)/2 \rfloor$ -linked.
- This is the maximum possible linkedness given that some of these graphs are *d*-connected but not (*d* + 1)-connected.

(Wotzlaw '09) In his PhD thesis he asked whether *d*-cubes were [*d*/2]-linked and whether cubical *d*-polytopes were [*d*/2]-linked.

Mar 18

28/30

< ∃ > < ∃

A D M A A A M M

Cubical *d*-polytopes

- (Wotzlaw '09) In his PhD thesis he asked whether *d*-cubes were [*d*/2]-linked and whether cubical *d*-polytopes were [*d*/2]-linked.
- (Meszaros '15) *d*-cubes are ⌊(*d* + 1)/2⌋-linked for *d* ≠ 3. This was as part of a study of linkedness of cartesian products of graphs.

Mar 18

- (Wotzlaw '09) In his PhD thesis he asked whether *d*-cubes were [*d*/2]-linked and whether cubical *d*-polytopes were [*d*/2]-linked.
- (Meszaros '15) *d*-cubes are ⌊(*d* + 1)/2⌋-linked for *d* ≠ 3. This was as part of a study of linkedness of cartesian products of graphs.

Theorem (Linkedness Theorem; Hoa, PV & Ugon)

Cubical d-polytopes are $\lfloor (d+1)/2 \rfloor$ -linked for every $d \neq 3$.

This is best possible since there are cubical d-polytopes which are d-connected but not (d + 1)-connected.

Mar 18

28/30

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 (Handbook of Computational Geometry 1st Ed) Is every d-polytope is [d/2]-linked?

A D M A A A M M

- (Handbook of Computational Geometry 1st Ed) Is every *d*-polytope is [*d*/2]-linked?
- (Gallivan '70) False: there are *d*-polytopes which are not $\lfloor 2(d+4)/5 \rfloor$ -linked.

- (Handbook of Computational Geometry 1st Ed) Is every *d*-polytope is [*d*/2]-linked?
- (Gallivan '70) False: there are *d*-polytopes which are not $\lfloor 2(d+4)/5 \rfloor$ -linked.
- All the known counterexamples have fewer than 3[d/2] vertices

Mar 18

- (Handbook of Computational Geometry 1st Ed) Is every *d*-polytope is [*d*/2]-linked?
- (Gallivan '70) False: there are *d*-polytopes which are not $\lfloor 2(d+4)/5 \rfloor$ -linked.
- All the known counterexamples have fewer than 3[d/2] vertices

Problem (Wotzlaw '09)

Is there some function h(d), such that every d-polytope on at least h(d) vertices is $\lfloor d/2 \rfloor$ -linked?

Mar 18

29/30

- J. Doolittle, E. Nevo, G. Pineda-Villavicencio, J. Ugon and D. Yost, On the reconstruction of polytopes, Discrete & Computational Geometry, to appear, arXiv:1702.08739.
- H. T. Bui, G. Pineda-Villavicencio and J. Ugon, **Connectivity of cubical polytopes**, 13 pages, arXiv:1801.06747.
- H. T. Bui, G. Pineda-Villavicencio and J. Ugon, **The linkedness of cubical polytopes**, 29 pages, arXiv:1802.09230.

