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Basics

A polytope is a bounded set of the form {x ∈ Rn : Ax ≤ b} with
A ∈ Rm×n, b ∈ Rm.

A polyhedral complex is a finite collection of n-dimensional
polytopes, called cells such that the intersection of any two
polytopes is a face of both.

A subdivision of a polytope P is a polyhedral complex whose union
of cells equals P.

A triangulation is a subdivision where all cells are simplices.



Rational polytopes

A rational polytope is a polytope of the form {x ∈ Rn : Ax ≤ b}
with A ∈ Qm×n, b ∈ Qm.

Alternatively, it is a polytope whose vertices have rational
coordinates.



Rational polytopes have rational triangulations

Proposition

Every rational polytope P has a triangulation into rational
simplices.

Proof.
Suffices to show that there is a triangulation into simplices whose
vertices are vertices of P.

Let f be a function from the set of vertices of P to R, and
consider the convex hull of {(v , f (v)) : v is a vertex of P}.

The lower hull of this polytope is a subdivision of P, and if f is
generic it is a triangulation.



V -polytopes

Let V ⊂ R be a vector space over Q.

A V -polytope is a polytope of the form {x ∈ Rn : Ax ≤ b} with
A ∈ Qm×n, b ∈ Vm.

Alternatively, it is a polytope whose edge slopes (or facet normal
slopes) are rational and whose vertices have coordinates in V .

Example: V = Q[
√

2]
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V -polytopes cannot be triangulated into V -simplices

Proposition

A V -polytope P can be triangulated into simplices which are
V -polytopes if and only if P is a multiple of a rational polytope.

Proof sketch.
A simplex is a V -polytope if and only if it is a multiple of a
rational polytope.



Products of simplices

Given polytopes P1, . . . , Pr , the Minkowski sum is defined to be

P1 + · · ·+ Pr := {x1 + · · ·+ xr : xi ∈ Pi}.

A product of simplices is a polytope P of the form
P = ∆1 + · · ·+ ∆r , where ∆1, . . . , ∆r are simplices and

dim(P) = dim(∆1) + · · ·+ dim(∆r ).

= +



Main theorem

Theorem (Adiprasito, L., Pak, Temkin)

Every V -polytope can be subdivided into products of simplices, all
of which are V -polytopes.
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Motivation from log geometry

In toric geometry, toric varieties can be represented by fans of toric
monoids, or rational cones.

Subdividing these rational fans, or equivalently, subdividing
rational polyhedral complexes, corresponds to certain operations in
toric geometry (resolution of singularities, semistable reduction...)



Motivation from log geometry (cont.)

In log geometry, one wants to consider fans of “R-toric monoids”,
where R is a valuation monoid. These monoids correspond to
cones which are dual to the V -polytopes discussed above.

Because V -polytopes cannot be subdivided into V -simplices, we
do not have the same strength of results as in the toric case. But
using products of simplices gives us the best possible analogous
result (polystable reduction).



Mixed subdivisions

Sturmfels (’94), Huber-Rambau-Santos (’00)

Let P1, . . . , Pr be polytopes and P := P1 + · · ·+ Pr .

A mixed subdivision of P with respect to P1, . . . , Pr is a
subdivision of P where each cell C is given a label (C1, . . . ,Cr )
such that the following hold:

1. For each i , Ci is a polytope whose vertices are vertices of Pi .

2. C = C1 + · · ·+ Cr .

3. If C , C ′ are two cells labeled (C1, . . . ,Cr ) and (C ′1, . . . ,C
′
r ),

then for each i , Ci ∩ C ′i is a face of both Ci and C ′i .



Fine mixed subdivisions

A mixed subdivision is fine if for every cell C with label
(C1, . . . ,Cr ), each Ci is a simplex and

dim(C ) = dim(C1) + · · ·+ dim(Cr ).

In particular, every cell of a fine mixed subdivision is a product of
simplices.

Proposition

Let P1, . . . , Pr be polytopes and P := P1 + · · ·+ Pr . Then there
exists a fine mixed subdivision of P with respect to P1, . . . , Pr .



Fine mixed subdivisions

Proposition

Let P1, . . . , Pr be polytopes and P := P1 + · · ·+ Pr . Then there
exists a fine mixed subdivision of P with respect to P1, . . . , Pr .

Proof.
For 1 ≤ i ≤ r , let fi be a function from the set of vertices of Pi to
R. Let P fi

i be the convex hull of {(v , f (v)) : v is a vertex of Pi}.

Consider the polytope P f1
1 + · · ·+ P fr

r . The lower hull of this
polytope is a mixed subdivision of P. If the fi are generic, it is a
fine mixed subdivision.



Sketch of main proof

Theorem
Every V -polytope can be subdivided into products of simplices, all
of which are V -polytopes.

Proposition (Main Proposition)

Every V -polytope can be written as P1 + · · ·+ Pr , where each Pi

is a V -multiple of a rational polytope.

Proof of theorem.
Write the V -polytope as P = P1 + · · ·+ Pr as in the Proposition.
Take a fine mixed subdivision of P with respect to P1, . . . , Pr .

Every cell C of the subdivision is a product of simplices with
C = C1 + · · ·+ Cr , where each Ci is a V -simplex. Thus C is a
V -polytope.
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Proof of main proposition

Proposition (Main Proposition)

Every V -polytope P can be written as P1 + · · ·+ Pr , where each
Pi is a multiple of a rational polytope.

Proof idea.
Choose elements β1, . . . , βr ∈ V . For each edge e of P, write
e = e1 + · · ·+ er , where each ei is a βi -multiple of a rational
segment, and such that...

For each 1 ≤ i ≤ r , construct a polytope Pi with the same
1-skeleton as P but with each edge e replaced with ei .



Example

1
1

=

√
2− 1

2−
√

2

+

2−
√

2

√
2− 1

β1 =
√

2− 1 β2 = 2−
√

2



Proof of main proposition

Proposition (Main Proposition)

Every V -polytope P can be written as P1 + · · ·+ Pr , where each
Pi is a multiple of a rational polytope.

Proof idea.
Choose elements β1, . . . , βr ∈ V . For each edge e of P, write
e = e1 + · · ·+ er , where each ei is a βi -multiple of a rational
segment, and such that for every 2-face of P with edges e, . . . , f ,
the edges ei , . . . , fi form a polygon.

For each 1 ≤ i ≤ r , construct a polytope Pi with the same
1-skeleton as P but with each edge e replaced by ei .



Proof of main proposition

Proposition

Let P be a polytope, and for each edge e of P, let e ′ be a segment
parallel to e. Suppose that for every 2-face of P with edges e, . . . ,
f , the edges e ′, . . . , f ′ form a polygon. Then there is a polytope
with the same 1-skeleton as P but with each edge e replaced by e ′.

Proof.
Reconstruct P ′ vertex-by-vertex from its graph.



Proof of main proposition (cont.)

Proof idea.
Choose elements β1, . . . , βr ∈ V . For each edge e of P, write
e = e1 + · · ·+ er , where each ei is a βi -multiple of a rational
segment, and such that for every 2-face of P with edges e, . . . , f ,
the edges ei , . . . , fi form a polygon.

For each 1 ≤ i ≤ r , construct a polytope Pi with the same
1-skeleton as P but with each edge e replaced by ei .

To complete the proof, we need to show that we can always choose
β1, . . . , βr ∈ V and decompositions e = e1 + · · ·+ er as above.

In fact, this can be done so that β1, . . . , βr are all positive and
form a basis for V over Q!



Concluding remarks

Conclusion: Every V -polytope has a fine mixed subdivision with
respect to dimQ(V ) summands.

Result extends to polyhedral complexes of V -polytopes (which is
what is needed on the algebraic geometry side).



Thank you!


