Balanced shellings on combinatorial manifolds

Martina Juhnke-Kubitzke

(joint work with Lorenzo Venturello)

Einstein Workshop on Discrete Geometry and Topology 2018, Berlin

March 14, 2018

Martina Juhnke-Kubitzke

Balanced shellings on manifolds

March 14, 2018 1 / 21

Balanced combinatorial manifolds

Moves on simplicial complexes

A balanced analog of Pachner's theorem for manifolds with boundary

Martina Juhnke-Kubitzke

Balanced shellings on manifolds

March 14, 2018 2 / 21

 Δ connected simplicial complex of dimension *d*.

3

< □ > < 同 > < 回 > < 回 > < 回 >

 Δ connected simplicial complex of dimension *d*.

• Δ is a combinatorial *d*-sphere boundary of the (d + 1)-simplex.

if it is PL homeomorphic to the

 Δ connected simplicial complex of dimension *d*.

- Δ is a combinatorial *d*-sphere if it is PL homeomorphic to the boundary of the (d + 1)-simplex.
- Δ is a combinatorial *d*-manifold without boundary if all its vertex links are combinatorial (d 1)-spheres.

The link of $F \in \Delta$ is

$$\operatorname{lk}_{\Delta}(F) := \{ G \in \Delta : G \cup F \in \Delta, G \cap F = \emptyset \}.$$

 Δ connected simplicial complex of dimension *d*.

- Δ is a combinatorial *d*-sphere/*d*-ball if it is PL homeomorphic to the boundary of the (*d* + 1)-simplex/*d*-simplex.
- Δ is a combinatorial *d*-manifold without boundary if all its vertex links are combinatorial (d 1)-spheres.

The link of $F \in \Delta$ is

$$\operatorname{lk}_{\Delta}(F) := \{ G \in \Delta : G \cup F \in \Delta, G \cap F = \emptyset \}.$$

A (10) < A (10) < A (10) </p>

 Δ connected simplicial complex of dimension *d*.

- Δ is a combinatorial *d*-sphere/*d*-ball if it is PL homeomorphic to the boundary of the (*d* + 1)-simplex/*d*-simplex.
- Δ is a combinatorial *d*-manifold without boundary if all its vertex links are combinatorial (d-1)-spheres.
- Δ is a combinatorial *d*-manifold with boundary if all its vertex links are combinatorial (d 1)-spheres or (d 1)-balls and its boundary is

 $\partial\Delta:=\{F\in\Delta\ :\ \mathrm{lk}_\Delta(F)\text{ is a combinatorial }(d-|F|)\text{-ball}\}\cup\{\emptyset\}.$

The link of $F \in \Delta$ is

$$\operatorname{lk}_{\Delta}(F) := \{ G \in \Delta : G \cup F \in \Delta, G \cap F = \emptyset \}.$$

A simplicial complex Δ on vertex set $V(\Delta)$ is properly *m*-colorable, if

Martina Juhnke-Kubitzke

Balanced shellings on manifolds

March 14, 2018 4 / 21

3

• • • • • • • • • • • •

A simplicial complex Δ on vertex set $V(\Delta)$ is properly *m*-colorable, if

• the 1-skeleton of Δ is *m*-colorable.

< (17) > < (17) > <

A simplicial complex Δ on vertex set $V(\Delta)$ is properly *m*-colorable, if

- the 1-skeleton of Δ is *m*-colorable.
- \Leftrightarrow There exists a map (coloring)

 $\phi: V(\Delta) \to \{0, 1, \ldots, m-1\},$

such that $\phi(i) \neq \phi(j)$ for all $\{i, j\} \in \Delta$.

A simplicial complex Δ on vertex set $V(\Delta)$ is properly *m*-colorable, if

- the 1-skeleton of Δ is *m*-colorable.
- \Leftrightarrow There exists a map (coloring)

$$\phi: V(\Delta) \to \{0, 1, \ldots, m-1\},\$$

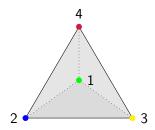
such that $\phi(i) \neq \phi(j)$ for all $\{i, j\} \in \Delta$.

 Δ is balanced if it is properly (dim Δ + 1)-colorable.

・ 同 ト ・ ヨ ト ・ ヨ ト

The (boundary) of the *d*-simplex

Let σ^d be the *d*-simplex.



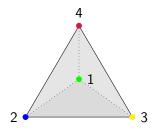
March 14, 2018 5 / 21

э

The (boundary) of the *d*-simplex

Let σ^d be the *d*-simplex.

As the 1-skeleton of σ^d is a complete graph on d + 1 vertices, a proper coloring uses at least d + 1 colors.

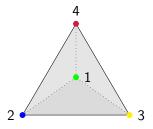


The (boundary) of the *d*-simplex

Let σ^d be the *d*-simplex.

As the 1-skeleton of σ^d is a complete graph on d + 1 vertices, a proper coloring uses at least d + 1 colors.

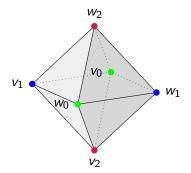
 $\Rightarrow \sigma^d$ is balanced, whereas its boundary $\partial \sigma^d$ is not balanced.



The boundary of the (d + 1)-dimensional cross-polytope

Let C_d be the boundary of the (d + 1)-dimensional cross-polytope:

$$\mathcal{C}_d = \{v_0, w_0\} \ast \cdots \ast \{v_d, w_d\}.$$



Martina Juhnke-Kubitzke

Balanced shellings on manifolds

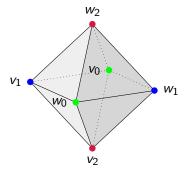
March 14, 2018 6 / 21

The boundary of the (d + 1)-dimensional cross-polytope

Let C_d be the boundary of the (d + 1)-dimensional cross-polytope:

$$\mathcal{C}_d = \{v_0, w_0\} \ast \cdots \ast \{v_d, w_d\}.$$

A (d + 1)-coloring ϕ is given by setting $\phi(v_i) = \phi(w_i) = i$ for $0 \le i \le d$.

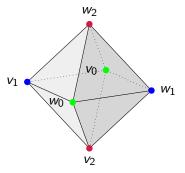


The boundary of the (d + 1)-dimensional cross-polytope

Let C_d be the boundary of the (d + 1)-dimensional cross-polytope:

$$\mathcal{C}_d = \{v_0, w_0\} \ast \cdots \ast \{v_d, w_d\}.$$

A (d + 1)-coloring ϕ is given by setting $\phi(v_i) = \phi(w_i) = i$ for $0 \le i \le d$.



 $\Rightarrow C_d$ is balanced.

Balanced combinatorial manifolds

Moves on simplicial complexes

A balanced analog of Pachner's theorem for manifolds with boundary

Martina Juhnke-Kubitzke

Balanced shellings on manifolds

March 14, 2018 7 / 21

Stellar moves and bistellar moves

 Δ *d*-dimensional simplicial complex.

• The stellar subdivision of Δ at $F \in \Delta$ is

 $\operatorname{sd}_F(\Delta) = (\Delta \setminus F) \cup (v * \partial F * \operatorname{lk}_{\Delta}(F)).$

< □ > < □ > < □ > < □ > < □ > < □ >

Stellar moves and bistellar moves

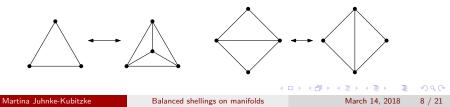
 Δ *d*-dimensional simplicial complex.

• The stellar subdivision of Δ at $F \in \Delta$ is

$$\operatorname{sd}_F(\Delta) = (\Delta \setminus F) \cup (v * \partial F * \operatorname{lk}_{\Delta}(F)).$$

 A bistellar move replaces an induced subcomplex A ⊆ Δ that is isomorphic to a *d*-dimensional subcomplex of ∂σ^{d+1} with its complement:

$$\Delta \rightarrow (\Delta \setminus A) \cup (\partial \sigma^{d+1} \setminus A).$$



What about combinatorial manifolds with boundary?

э

Shellings and their inverses

 Δ pure *d*-dimensional simplicial complex.

• An elementary shelling removes a facet $F \in \Delta$ with the property that

$$\{G\subseteq F : G\notin \Delta\setminus F\}$$

has a unique minimal element.

$$\Delta \rightarrow \Delta \setminus F.$$

Shellings and their inverses

 Δ pure *d*-dimensional simplicial complex.

• An elementary shelling removes a facet $F \in \Delta$ with the property that

$$\{G\subseteq F : G\notin \Delta\setminus F\}$$

has a unique minimal element.

$$\Delta \to \Delta \setminus F.$$

• The inverse operation is called an inverse shelling.

Shellings and their inverses

 Δ pure *d*-dimensional simplicial complex.

• An elementary shelling removes a facet $F \in \Delta$ with the property that

$$\{G\subseteq F : G\notin \Delta\setminus F\}$$

has a unique minimal element.

$$\Delta \to \Delta \setminus F.$$

- The inverse operation is called an inverse shelling.
- A shelling on Δ corresponds to a bistellar flip on $\partial \Delta$.

- 4 回 ト - 4 三 ト

What about balanced combinatorial manifolds?

э

Cross-flips

 Δ balanced *d*-dimensional simplicial complex.

 A cross-flip replaces an induced subcomplex D ⊆ Δ that is isomorphic to a shellable and coshellable subcomplex of C_d with its complement:

$$\Delta \rightarrow (\Delta \setminus D) \cup (\mathcal{C}_d \setminus D).$$

< □ > < □ > < □ > < □ > < □ > < □ >

Cross-flips

 Δ balanced *d*-dimensional simplicial complex.

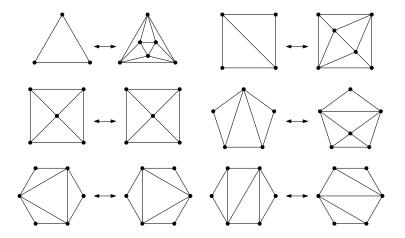
 A cross-flip replaces an induced subcomplex D ⊆ Δ that is isomorphic to a shellable and coshellable subcomplex of C_d with its complement:

$$\Delta \rightarrow (\Delta \setminus D) \cup (\mathcal{C}_d \setminus D).$$

- Cross-flips preserve balancedness.
- Cross-flips preserve the PL homeomorphism type.

A 回 > A 回 > A 回 >

Cross-flips in dimension 2



March 14, 2018 13 / 21

æ

イロト イヨト イヨト イヨト

What about balanced combinatorial manifolds with boundary?

э

Balanced combinatorial manifolds

Moves on simplicial complexes

A balanced analog of Pachner's theorem for manifolds with boundary

Martina Juhnke-Kubitzke

Balanced shellings on manifolds

March 14, 2018 15 / 21

Theorem (J.-K., Venturello; 2018+)

Balanced combinatorial manifolds with boundary are PL homeomorphic if and only if they are connected by a sequence of shellings and inverse shellings preserving balancedness in each step.

< □ > < □ > < □ > < □ > < □ > < □ >

Let Δ and Γ balanced PL homeomorphic manifolds with boundary.

э

- ∢ ⊒ →

A B A B
A B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Let Δ and Γ balanced PL homeomorphic manifolds with boundary.

Step 1: Convert Δ via shellings and inverses into a balanced manifold Δ' such that Δ' and Γ have isomorphic boundaries.

(B)

Let Δ and Γ balanced PL homeomorphic manifolds with boundary.

Step 1: Convert Δ via shellings and inverses into a balanced manifold Δ' such that Δ' and Γ have isomorphic boundaries.

 \Rightarrow Δ' and Γ are connected by a sequence of bistellar flips.

Let Δ and Γ balanced PL homeomorphic manifolds with boundary.

Step 1: Convert Δ via shellings and inverses into a balanced manifold Δ' such that Δ' and Γ have isomorphic boundaries.

 $\Rightarrow \Delta'$ and Γ are connected by a sequence of bistellar flips.

Step 2: Convert the sequence of bistellar flips into a shellable pseudocobordism between Δ' and Γ .

不得 とう ほう とう とう

Let Δ and Γ balanced PL homeomorphic manifolds with boundary.

Step 1: Convert Δ via shellings and inverses into a balanced manifold Δ' such that Δ' and Γ have isomorphic boundaries.

 $\Rightarrow \Delta'$ and Γ are connected by a sequence of bistellar flips.

Step 2: Convert the sequence of bistellar flips into a shellable pseudocobordism between Δ' and Γ .

Step 3: The shellable pseudo-cobordism encodes a sequence of cross-flips Δ' and Γ .

Let Δ and Γ balanced PL homeomorphic manifolds with boundary.

Step 1: Convert Δ via shellings and inverses into a balanced manifold Δ' such that Δ' and Γ have isomorphic boundaries.

 $\Rightarrow \Delta'$ and Γ are connected by a sequence of bistellar flips.

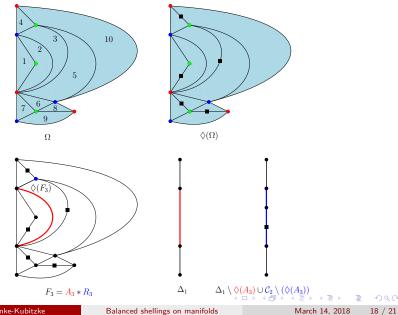
Step 2: Convert the sequence of bistellar flips into a shellable pseudocobordism between Δ' and Γ .

Step 3: The shellable pseudo-cobordism encodes a sequence of cross-flips Δ' and Γ .

Step 4: Convert each cross-flip into a sequence of shellings and balanced inverse shellings.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ● ○○○

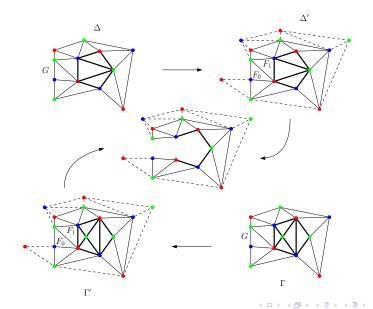
Step 3: From pseudo-cobordisms to cross-flips



Martina Juhnke-Kubitzke

Balanced shellings on manifolds

Step 4: From cross-flips to shellings



Martina Juhnke-Kubitzke

Balanced shellings on manifolds

March 14, 2018 19 / 21

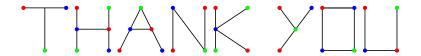
æ

• We can show that 2^d cross-flips suffice to relate any two balanced triangulations of the same manifold. But in dimension 2, Murai and Suzuki showed that $3 \neq 4$ flips suffice and 2 of those are missing from our 4.

(4) (日本)

- We can show that 2^d cross-flips suffice to relate any two balanced triangulations of the same manifold. But in dimension 2, Murai and Suzuki showed that $3 \neq 4$ flips suffice and 2 of those are missing from our 4.
- Lorenzo wrote a program in Sage to apply cross-flips.

- We can show that 2^d cross-flips suffice to relate any two balanced triangulations of the same manifold. But in dimension 2, Murai and Suzuki showed that $3 \neq 4$ flips suffice and 2 of those are missing from our 4.
- Lorenzo wrote a program in Sage to apply cross-flips.
- He found balanced vertex-minimal triangulations of several surfaces and 3-manifolds.



Martina Juhnke-Kubitzke

Balanced shellings on manifolds

March 14, 2018 21 / 21

イロト 不得下 イヨト イヨト 二日

Reductions

