h^* -polynomials of dilated lattice polytopes

Katharina Jochemko

KTH Stockholm

Einstein Workshop Discrete Geometry and Topology, March 13, 2018

Lattice polytopes

A set $P \subset \mathbb{R}^d$ is a **lattice polytope** if there are $x_1, \ldots, x_m \in \mathbb{Z}^d$ with

 $P = \operatorname{conv}\{x_1, \ldots, x_m\}.$

Ehrhart theory

The lattice point enumerator or discrete volume of P is

$$\mathsf{E}(P) := \left| P \cap \mathbb{Z}^d \right|.$$

$$\mathsf{E}(nP) = (n+1)^2.$$

Ehrhart theory

Theorem (Ehrhart'62)

For every lattice polytope P in \mathbb{R}^d

 $\mathsf{E}_P(n) := |nP \cap \mathbb{Z}^d|$

agrees with a polynomial of degree dim P for $n \ge 1$. E_P(n) is called the **Ehrhart polynomial** of P.

Various combinatorial applications, i.e.

- posets (order preserving maps),
- graph colorings,...

Central Questions

- Which polynomials are Ehrhart polynomials?
- Interpretation of coefficients
- roots, ...

Ehrhart series and h^* -polynomial

Ehrhart series

The **Ehrhart series** of an *d*-dimensional lattice polytope $P \subset \mathbb{R}^d$ is defined by

$$\sum_{n\geq 0} \mathsf{E}_P(n) t^n = \frac{h_0^* + h_1^* t + \cdots + h_d^* t^d}{(1-t)^{d+1}}.$$

The numerator polynomial $h_P^*(t)$ is the h^* -**polynomial** of P. The vector $h^*(P) := (h_0^*, \ldots, h_d^*)$ is the h^* -**vector**.

Ehrhart series and h^* -polynomial

Ehrhart series

The **Ehrhart series** of an *d*-dimensional lattice polytope $P \subset \mathbb{R}^d$ is defined by

$$\sum_{n\geq 0} \mathsf{E}_P(n)t^n = \frac{h_0^* + h_1^*t + \cdots + h_d^*t^d}{(1-t)^{d+1}}.$$

The numerator polynomial $h_P^*(t)$ is the h^* -**polynomial** of P. The vector $h^*(P) := (h_0^*, \ldots, h_d^*)$ is the h^* -**vector**.

h^* -vector and coefficients of $E_P(n)$

Expansion into a binomial basis:

$$\mathsf{E}_{\mathsf{P}}(n) = h_0^*\binom{n+r}{r} + h_1^*\binom{n+r-1}{r} + \dots + h_d^*\binom{n}{r}.$$

Inequalities for the h^* -vector

Theorem (Stanley '80)

For every lattice polytope P in \mathbb{R}^d with $h_P^* = h_0^* + h_1^*t + \dots + h_d^*t^d$

 $h_i^* \ge 0$

for all $0 \leq i \leq d$.

Question: Are there stronger inequalities for certain classes of polytopes? Such as...

...Unimodality:

$$h_0^* \leq h_1^* \leq \cdots \leq h_k^* \geq \cdots \geq h_d^*$$
 for some k

…Log-concavity:

$$(h_k^*)^2 \geq h_{k-1}^* h_{k+1}^*$$
 for all k

...Real-rootedness:

 $h_P^* = h_0^* + h_1^* t + \dots + h_d^* t^d$ has only real roots

IDP polytopes

Conjecture (Stanley '89)

Every IDP polytope has a unimodal h*-vector.

A lattice polytope $P \subset \mathbb{R}^d$ has the **integer decomposition property (IDP)** if for all integers $n \ge 1$ and all $p \in nP \cap \mathbb{Z}^d$

$$p = p_1 + \cdots + p_n$$

for some $p_1, \ldots, p_n \in P \cap \mathbb{Z}^d$.

Examples

- unimodular simplex
- lattice parallelepiped
- lattice zonotope
- *rP* whenever *r* ≥ dim *P* − 1 (Bruns, Gubeladze, Trung '97)

Dilated lattice polytopes

Theorem (Brenti, Welker '09; Diaconis, Fulman '09; Beck, Stapledon '10)

Let P be a d-dimensional lattice polytope. Then there is an N such that the h^* -polynomial of rP has only real roots for $r \ge N$.

Conjecture (Beck, Stapledon '10)

Let P be a d-dimensional lattice polytope. Then the h^* -polynomial of rP has only real-roots whenever $r \ge d$.

Theorem (Higashitani '14)

Let P be a d-dimensional lattice polytope. Then the h^* -polynomial of rP has log-concave coefficients whenever $r \ge \deg h_P^*$.

Theorem (J. '16)

Let P be a d-dimensional lattice polytope. Then the h^* -polynomial of rP has only real roots whenever $r \ge \deg h_P^*$.

- Proof of Kadison-Singer-Problem from 1959 (Marcus, Spielman, Srivastava '15)
- Real-rootedness of independence polynomials of claw-free graphs (Chudnowski, Seymour '07) compatible polynomials, common interlacers
- Real-rootedness of s-Eulerian polynomials (Savage, Visontai '15) h*-polynomial of s-Lecture hall polytopes are real-rooted

Further literature: Bränden '14, Fisk '08, Braun '15

Definition Let $a, b, t_1, ..., t_n, s_1, ..., s_m \in \mathbb{R}$. Then $f = a \prod_{i=1}^m (t - s_i)$ interlaces $g = b \prod_{i=1}^n (t - t_i)$ and we write $f \leq g$ if

$$\cdots \leq s_2 \leq t_2 \leq s_1 \leq t_1$$

Properties

- $f \leq g$ if and only if $cf \leq dg$ for all $c, d \neq 0$.
- ▶ deg $f \le \deg g \le \deg f + 1$
- ▶ $\alpha f + \beta g$ real-rooted for all $\alpha, \beta \in \mathbb{R}$

Polynomials with only nonpositive, real roots

Lemma (Wagner '00)

Let $f, g, h \in \mathbb{R}[t]$ be real-rooted polynomials with only nonpositive, real roots and positive leading coefficients. Then

(i) if f ≤ h and g ≤ h then f + g ≤ h.
(ii) if h ≤ f and h ≤ g then h ≤ f + g.
(iii) g ≤ f if and only if f ≤ tg.

Interlacing sequences of polynomials

Definition A sequence f_1, \ldots, f_m is called interlacing if

 $f_i \leq f_j$ whenever $i \leq j$.

Lemma

Let f_1, \ldots, f_m be an interlacing polynomials with only nonnegative coefficients. Then

$$c_1f_1 + c_2f_2 + \cdots + c_mf_m$$

is real-rooted for all $c_1, \ldots, c_m \geq 0$.

Interlacing sequences of polynomials

Constructing interlacing sequences

Proposition (Fisk '08; Savage, Visontai '15)

Let f_1, \dots, f_m be a sequence of interlacing polynomials with only negative roots and positive leading coefficients. For all $1 \le l \le m$ let

$$g_l = tf_1 + \cdots + tf_{l-1} + f_l + \cdots + f_m.$$

Then also g_1, \dots, g_m are interlacing, have only negative roots and positive leading coefficients.

Linear operators preserving interlacing sequences

Let \mathcal{F}_{+}^{n} the collection of all interlacing sequences of polynomials with only nonnegative coefficients of length *n*. When does a matrix $G = (G_{i,j}(t)) \in \mathbb{R}[t]^{m \times n} \text{ map } \mathcal{F}_{+}^{n}$ to \mathcal{F}_{+}^{m} by $G \cdot (f_{1}, \ldots, f_{n})^{T}$?

Theorem (Brändén '15) Let $G = (G_{i,j}(t)) \in \mathbb{R}[t]^{m \times n}$. Then $G \colon \mathcal{F}_+^n \to \mathcal{F}_+^m$ if and only if (i) $(G_{i,j}(t))$ has nonnegative entries for all $i \in [n], j \in [m]$, and (ii) For all $\lambda, \mu > 0, 1 \le i < j \le n, 1 \le k < l \le n$

$$(\lambda t + \mu)G_{k,j}(t) + G_{l,j}(t) \preceq (\lambda t + \mu)G_{k,i}(t) + G_{l,i}(t).$$

Example

$$\begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ t & 1 & 1 & \cdots & 1 \\ t & t & 1 & \cdots & 1 \\ \vdots & \vdots & & & \vdots \\ t & t & \cdots & t & t \end{pmatrix} \in \mathbb{R}[x]^{(n+1) \times n}$$

(i) All entries have nonnegative coefficients \checkmark Submatrices:

$$M = {k \atop l} \begin{pmatrix} i & j \\ G_{k,i}(t) & G_{k,j}(t) \\ G_{l,i}(t) & G_{l,j}(t) \end{pmatrix} : \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ t & 1 \end{pmatrix} \begin{pmatrix} t & 1 \\ t & t \end{pmatrix} \begin{pmatrix} t & t \\ t & t \end{pmatrix}$$
(ii) $(\lambda t + \mu)G_{k,j}(t) + G_{l,j}(t) \leq (\lambda t + \mu)G_{k,i}(t) + G_{l,i}(t)$
 $(\lambda + 1)t + \mu = (\lambda t + \mu) \cdot 1 + t \leq (\lambda t + \mu)t + t = (\lambda t + \mu + 1)t \checkmark$

Dilated lattice polytopes

Dilation operator

For $f \in \mathbb{R}[[t]]$ and an integer $r \ge 1$ there are uniquely determined $f_0, \ldots, f_{r-1} \in \mathbb{R}[[t]]$ such that

$$f(t) = f_0(t^r) + tf_1(t^r) + \cdots + t^{r-1}f_{r-1}(t^r).$$

For $0 \le i \le r - 1$ we define

$$f^{\langle r,i\rangle} = f_i$$

Example: r = 2

$$1 + 3t + 5t^2 + 7t^3 + t^5$$

Then

$$f_0 = 1 + 5t \qquad f_1 = 3 + 7t + t^2$$

In particular, for all lattice polytopes P and all integers $r \ge 1$

$$\sum_{n\geq 0} \mathbf{E}_{rP}(n)t^n = \left(\sum_{n\geq 0} \mathbf{E}_{P}(n)t^n\right)^{\langle r,0\rangle}$$

 h^* -polynomials of dilated polytopes

Lemma (Beck, Stapledon '10) Let P be a d-dimensional lattice polytope and $r \ge 1$. Then

$$h_{rP}^{*}(t) = \left(h_{P}^{*}(t)(1+t+\cdots+t^{r-1})^{d+1}d\right)^{\langle r,0
angle}$$

Equivalently, for $h_P^* =: h$

$$h_{rP}^*(t) = h^{\langle r,0
angle} a_{d+1}^{\langle r,0
angle} + h^{\langle r,1
angle} t a_{d+1}^{\langle r,r-1
angle} + \cdots + h^{\langle r,r-1
angle} t a_{d+1}^{\langle r,1
angle} ,$$

where

$$a_d^{\langle r,i
angle}(t):=\left((1+t+\dots+t^{r-1})^d
ight)^{\langle r,i
angle}$$

for all $r \ge 1$ and all $0 \le i \le r - 1$.

$$\begin{split} h_{rP}^{*}(t) &= (1-t)^{d+1} \sum_{n \ge 0} \mathrm{E}_{rP}(n) t^{n} \\ &= (1-t)^{d+1} \left(\sum_{n \ge 0} \mathrm{E}_{P}(n) t^{n} \right)^{\langle r, 0 \rangle} \\ &= \left((1-t^{r})^{d+1} \sum_{n \ge 0} \mathrm{E}_{P}(n) t^{n} \right)^{\langle r, 0 \rangle} \\ &= \left((1+t+\dots+t^{r-1})^{d+1} (1-t)^{d+1} \sum_{n \ge 0} \mathrm{E}_{P}(n) t^{n} \right)^{\langle r, 0 \rangle} \\ &= \left((1+t+\dots+t^{r-1})^{d+1} h_{P}^{*}(t) \right)^{\langle r, 0 \rangle} \end{split}$$

Another operator preserving interlacing...

Proposition (Fisk '08)

Let f be a polynomial such that $f^{\langle r,r-1\rangle},\ldots,f^{\langle r,1\rangle},f^{\langle r,0\rangle}$ is an interlacing sequence. Let

$$g(t) = (1 + t + \cdots + t^{r-1})f(t).$$

Then also $g^{\langle r,r-1 \rangle}, \ldots, g^{\langle r,1 \rangle}, g^{\langle r,0 \rangle}$ is an interlacing sequence. Observation:

$$\begin{pmatrix} g^{\langle r,r-1\rangle} \\ \vdots \\ g^{\langle r,1\rangle} \\ g^{\langle r,0\rangle} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ t & 1 & 1 & \cdots & 1 \\ t & t & 1 & \cdots & 1 \\ \vdots & \vdots & & \ddots & \vdots \\ t & t & \cdots & t & 1 \end{pmatrix} \begin{pmatrix} f^{\langle r,r-1\rangle} \\ \vdots \\ f^{\langle r,1\rangle} \\ f^{\langle r,0\rangle} \end{pmatrix}$$

Corollary

The polynomials $a_d^{\langle r,r-1\rangle}(t), \ldots, a_d^{\langle r,1\rangle}(t), a_d^{\langle r,0\rangle}(t)$ form an interlacing sequence of polynomials.

Putting the pieces together...

1)
$$h_{rP}^{*}(t) = h^{\langle r,0\rangle} a_{d+1}^{\langle r,0\rangle} + h^{\langle r,1\rangle} t a_{d+1}^{\langle r,r-1\rangle} + \dots + h^{\langle r,r-1\rangle} t a_{d+1}^{\langle r,1\rangle}$$

2) $a_{d+1}^{\langle r,r-1\rangle}(t), \dots, a_{d+1}^{\langle r,1\rangle}(t), a_{d+1}^{\langle r,0\rangle}(t)$ interlacing
 $\Rightarrow a_{d+1}^{\langle r,0\rangle}(t), t a_{d+1}^{\langle r,r-1\rangle}(t), \dots, t a_{d+1}^{\langle r,1\rangle}(t)$ interlacing

Key observation: For $r > \deg h_P^*(t)$

$$h^{\langle r,i\rangle}=h_i^*\geq 0$$

Theorem (J. '16)

Let P be a d-dimensional lattice polytope. Then $h_{rP}^*(t)$ has only real roots whenever $r \ge \deg h_P^*(t)$.

Stapledon Decomposition

IDP polytopes with interior lattice points

Question (Schepers, Van Langenhoven '13)

For any IDP polytope P with interior lattice point, is the h^* -polynomial $h_P^* = \sum_{i=0}^d h_i^* t^i$ alternatingly increasing, *i.e.*

$$h_0^* \le h_d^* \le h_1^* \le h_{d-1}^* \le \cdots$$
 ?

Observation

alternatingly increasing \Rightarrow unimodal with peak in the middle

- \blacktriangleright reflexive polytopes with regular unimodular triangulation \checkmark
- lattice parallelepipeds (Schepers, Van Langenhoven '13)
- coloop-free lattice zonotopes (Beck, J., McCullough '16)

IDP polytopes with interior lattice points

Question

Is there a uniform bound N such that the h^* -polynomial of rP is alternatingly increasing for all $r \ge N$?

Codegree

For any *d*-dimensional lattice polytope *P* with deg $h_P^* = s$

$$I := \min\{r \ge 1 : rP^{\circ} \cap \mathbb{Z} \neq \emptyset\} = d + 1 - s$$

Theorem (Higashitani '14)

The h^* -polynomial of rP is alternatingly increasing whenever $r \ge \max\{s, d+1-s\}$.

Stapledon Decomposition

Theorem (Stapledon '09)

Let P be a lattice polytope with deg $h_P^* = s$ and codegree l = d + 1 - s. Then $(1 + t + \dots + t^{l-1})h_P^*(t)$ can be uniquely decomposed as

$$(1 + t + \cdots + t^{l-1})h_P^*(t) = a(t) + t^l b(t),$$

where $a(t) = t^d a(\frac{1}{t})$ and $b(t) = t^{d-l}b(\frac{1}{t})$ are palindromic polynomials with nonnegative coefficients.

Consequences:

$$\begin{aligned} a_i &\ge 0 \Leftrightarrow h_0 + h_1 + \dots + h_i \ge h_d + h_{d-1} + \dots + h_{d-i+1} & (\text{Hibi '90}) \\ b_i &\ge 0 \Leftrightarrow h_s + h_{s-1} + \dots + h_i \ge h_0 + h_1 + \dots + h_i & (\text{Stanley '91}) \end{aligned}$$

Stapledon Decomposition

Observation

Every polynomial h(t) of degree d can be uniquely decomposed into palindromic polynomials $a(t) = t^d a(\frac{1}{t})$ and $b(t) = t^{d-1}b(\frac{1}{t})$ such that

$$h(t) = a(t) + tb(t).$$

"Proof":

	a_0	a_1	a_2	a_2	a_1	a_0
+		b_0	b_1	b_2	b_1	b_0
	h_0	h_1	h_2	h ₃	h_4	h_5

Observation

h(t) is alternatingly increasing $\Leftrightarrow a(t)$ and b(t) are unimodal

Stapledon Decomposition for dilated polytopes

Theorem (J. '18+)

Let P be a lattice polytope and for all $r \ge 1$ let

$$h_{rP}^*(t) = a_r(t) + tb_r(t)$$

be the unique decomposition into palindromic polynomials $a_r(t) = t^d a_r(\frac{1}{t})$ and $b_r(t) = t^{d-1} b_r(\frac{1}{t})$. Then

 $b_r(t) \preceq a_r(t)$

for all $r \ge d + 1$.

Concluding remarks

- ▶ Bound for real-rootedness of $h_{rP}^*(t)$ is optimal for deg $h^*(P)(t) \le \frac{d+1}{2}$ (using result by Batyrev and Hofscheier '10)
- Crucial: Coefficients of h*-polynomial are nonnegative. Other applications, e.g.,
 - Combinatorial positive valuations
 - Hilbert series of Cohen-Macaulay domains

Concluding remarks

- Bound for real-rootedness of h^{*}_{rP}(t) is optimal for deg h^{*}(P)(t) ≤ d+1/2 (using result by Batyrev and Hofscheier '10)
- Crucial: Coefficients of h*-polynomial are nonnegative. Other applications, e.g.,
 - Combinatorial positive valuations
 - Hilbert series of Cohen-Macaulay domains

Katharina Jochemko: On the real-rootedness of the Veronese construction for rational formal power series, International Mathematics Research Notices (online first 2017).

Thank you