h^{*}-polynomials of dilated lattice polytopes

Katharina Jochemko
KTH Stockholm

Einstein Workshop Discrete Geometry and Topology, March 13, 2018

Lattice polytopes

A set $P \subset \mathbb{R}^{d}$ is a lattice polytope if there are $x_{1}, \ldots, x_{m} \in \mathbb{Z}^{d}$ with

$$
P=\operatorname{conv}\left\{x_{1}, \ldots, x_{m}\right\} .
$$

Ehrhart theory

The lattice point enumerator or discrete volume of P is

$$
\mathrm{E}(P):=\left|P \cap \mathbb{Z}^{d}\right| .
$$

$n=1$

$n=2$

$n=3$

$$
\mathrm{E}(n P)=(n+1)^{2} .
$$

Ehrhart theory

Theorem (Ehrhart'62)
For every lattice polytope P in \mathbb{R}^{d}

$$
\mathrm{E}_{P}(n):=\left|n P \cap \mathbb{Z}^{d}\right|
$$

agrees with a polynomial of degree $\operatorname{dim} P$ for $n \geq 1$.
$E_{P}(n)$ is called the Ehrhart polynomial of P.

Various combinatorial applications, i.e.

- posets (order preserving maps),
- graph colorings,...

Central Questions

- Which polynomials are Ehrhart polynomials?
- Interpretation of coefficients
- roots, ...

Ehrhart series and h^{*}-polynomial

Ehrhart series
The Ehrhart series of an d-dimensional lattice polytope $P \subset \mathbb{R}^{d}$ is defined by

$$
\sum_{n \geq 0} \mathrm{E}_{P}(n) t^{n}=\frac{h_{0}^{*}+h_{1}^{*} t+\cdots+h_{d}^{*} t^{d}}{(1-t)^{d+1}}
$$

The numerator polynomial $h_{P}^{*}(t)$ is the h^{*}-polynomial of P. The vector $h^{*}(P):=\left(h_{0}^{*}, \ldots, h_{d}^{*}\right)$ is the h^{*}-vector.

Ehrhart series and h^{*}-polynomial

Ehrhart series
The Ehrhart series of an d-dimensional lattice polytope $P \subset \mathbb{R}^{d}$ is defined by

$$
\sum_{n \geq 0} \mathrm{E}_{P}(n) t^{n}=\frac{h_{0}^{*}+h_{1}^{*} t+\cdots+h_{d}^{*} t^{d}}{(1-t)^{d+1}}
$$

The numerator polynomial $h_{P}^{*}(t)$ is the h^{*}-polynomial of P. The vector $h^{*}(P):=\left(h_{0}^{*}, \ldots, h_{d}^{*}\right)$ is the h^{*}-vector.
h^{*}-vector and coefficients of $\mathrm{E}_{P}(n)$
Expansion into a binomial basis:

$$
\mathrm{E}_{P}(n)=h_{0}^{*}\binom{n+r}{r}+h_{1}^{*}\binom{n+r-1}{r}+\cdots+h_{d}^{*}\binom{n}{r} .
$$

Inequalities for the h^{*}-vector

Theorem (Stanley '80)
For every lattice polytope P in \mathbb{R}^{d} with $h_{P}^{*}=h_{0}^{*}+h_{1}^{*} t+\cdots+h_{d}^{*} t^{d}$

$$
h_{i}^{*} \geq 0
$$

for all $0 \leq i \leq d$.
Question: Are there stronger inequalities for certain classes of polytopes?
Such as...

- ...Unimodality:

$$
h_{0}^{*} \leq h_{1}^{*} \leq \cdots \leq h_{k}^{*} \geq \cdots \geq h_{d}^{*} \text { for some } k
$$

- ...Log-concavity:

$$
\left(h_{k}^{*}\right)^{2} \geq h_{k-1}^{*} h_{k+1}^{*} \text { for all } k
$$

- ...Real-rootedness:

$$
h_{P}^{*}=h_{0}^{*}+h_{1}^{*} t+\cdots+h_{d}^{*} t^{d} \quad \text { has only real roots }
$$

IDP polytopes

Conjecture (Stanley '89)

Every IDP polytope has a unimodal h^{*}-vector.
A lattice polytope $P \subset \mathbb{R}^{d}$ has the integer decomposition property (IDP) if for all integers $n \geq 1$ and all $p \in n P \cap \mathbb{Z}^{d}$

$$
p=p_{1}+\cdots+p_{n}
$$

for some $p_{1}, \ldots, p_{n} \in P \cap \mathbb{Z}^{d}$.

Examples

- unimodular simplex
- lattice parallelepiped
- lattice zonotope
- $r P$ whenever $r \geq \operatorname{dim} P-1$
(Bruns, Gubeladze, Trung '97)

Dilated lattice polytopes

Theorem (Brenti, Welker '09; Diaconis, Fulman '09; Beck, Stapledon '10)

Let P be a d-dimensional lattice polytope. Then there is an N such that the h^{*}-polynomial of $r P$ has only real roots for $r \geq N$.
Conjecture (Beck, Stapledon '10)
Let P be a d-dimensional lattice polytope. Then the h^{*}-polynomial of $r P$ has only real-roots whenever $r \geq d$.

Theorem (Higashitani '14)
Let P be a d-dimensional lattice polytope. Then the h^{*}-polynomial of $r P$ has log-concave coefficients whenever $r \geq \operatorname{deg} h_{P}^{*}$.

Theorem (J. '16)
Let P be a d-dimensional lattice polytope. Then the h^{*}-polynomial of $r P$ has only real roots whenever $r \geq \operatorname{deg} h_{P}^{*}$.

Interlacing polynomials

- Proof of Kadison-Singer-Problem from 1959 (Marcus, Spielman, Srivastava '15)
- Real-rootedness of independence polynomials of claw-free graphs (Chudnowski, Seymour '07) compatible polynomials, common interlacers
- Real-rootedness of s-Eulerian polynomials (Savage, Visontai '15) h^{*}-polynomial of s-Lecture hall polytopes are real-rooted

Further literature: Bränden '14, Fisk '08, Braun '15

Interlacing polynomials

Interlacing polynomials

Definition

Let $a, b, t_{1}, \ldots, t_{n}, s_{1}, \ldots, s_{m} \in \mathbb{R}$. Then $f=a \prod_{i=1}^{m}\left(t-s_{i}\right)$ interlaces $g=b \prod_{i=1}^{n}\left(t-t_{i}\right)$ and we write $f \preceq g$ if

$$
\cdots \leq s_{2} \leq t_{2} \leq s_{1} \leq t_{1}
$$

Properties

- $f \preceq g$ if and only if $c f \preceq d g$ for all $c, d \neq 0$.
- $\operatorname{deg} f \leq \operatorname{deg} g \leq \operatorname{deg} f+1$
- $\alpha f+\beta$ g real-rooted for all $\alpha, \beta \in \mathbb{R}$

Interlacing polynomials

Polynomials with only nonpositive, real roots

Lemma (Wagner '00)

Let $f, g, h \in \mathbb{R}[t]$ be real-rooted polynomials with only nonpositive, real roots and positive leading coefficients. Then
(i) if $f \preceq h$ and $g \preceq h$ then $f+g \preceq h$.
(ii) if $h \preceq f$ and $h \preceq g$ then $h \preceq f+g$.
(iii) $g \preceq f$ if and only if $f \preceq t g$.

Interlacing sequences of polynomials

Definition

A sequence f_{1}, \ldots, f_{m} is called interlacing if

$$
f_{i} \preceq f_{j} \quad \text { whenever } i \leq j .
$$

Lemma

Let f_{1}, \ldots, f_{m} be an interlacing polynomials with only nonnegative coefficients. Then

$$
c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{m} f_{m}
$$

is real-rooted for all $c_{1}, \ldots, c_{m} \geq 0$.

Interlacing sequences of polynomials

Constructing interlacing sequences

Proposition (Fisk '08; Savage, Visontai '15)

Let f_{1}, \cdots, f_{m} be a sequence of interlacing polynomials with only negative roots and positive leading coefficients. For all $1 \leq I \leq m$ let

$$
g_{l}=t f_{1}+\cdots+t f_{l-1}+f_{l}+\cdots+f_{m}
$$

Then also g_{1}, \cdots, g_{m} are interlacing, have only negative roots and positive leading coefficients.

Linear operators preserving interlacing sequences

Let \mathcal{F}_{+}^{n} the collection of all interlacing sequences of polynomials with only nonnegative coefficients of length n.
When does a matrix $G=\left(G_{i, j}(t)\right) \in \mathbb{R}[t]^{m \times n}$ map \mathcal{F}_{+}^{n} to \mathcal{F}_{+}^{m} by $G \cdot\left(f_{1}, \ldots, f_{n}\right)^{T}$?
Theorem (Brändén '15)
Let $G=\left(G_{i, j}(t)\right) \in \mathbb{R}[t]^{m \times n}$. Then $G: \mathcal{F}_{+}^{n} \rightarrow \mathcal{F}_{+}^{m}$ if and only if
(i) $\left(G_{i, j}(t)\right)$ has nonnegative entries for all $i \in[n], j \in[m]$, and
(ii) For all $\lambda, \mu>0,1 \leq i<j \leq n, 1 \leq k<I \leq n$

$$
(\lambda t+\mu) G_{k, j}(t)+G_{l, j}(t) \preceq(\lambda t+\mu) G_{k, i}(t)+G_{l, i}(t) .
$$

Example

$$
\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
t & 1 & 1 & \cdots & 1 \\
t & t & 1 & \cdots & 1 \\
\vdots & \vdots & & & \vdots \\
t & t & \cdots & t & t
\end{array}\right) \quad \in \mathbb{R}[x]^{(n+1) \times n}
$$

(i) All entries have nonnegative coefficients \checkmark

Submatrices:

$$
M={ }_{l}^{k}\left(\begin{array}{cc}
i & j \\
G_{k, i}(t) & G_{k, j}(t) \\
G_{l, i}(t) & G_{l, j}(t)
\end{array}\right) \quad: \quad\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 1 \\
t & 1
\end{array}\right) \quad\left(\begin{array}{ll}
t & 1 \\
t & t
\end{array}\right) \quad\left(\begin{array}{ll}
t & t \\
t & t
\end{array}\right)
$$

(ii) $(\lambda t+\mu) G_{k, j}(t)+G_{l, j}(t) \preceq(\lambda t+\mu) G_{k, i}(t)+G_{l, i}(t)$

$$
(\lambda+1) t+\mu=(\lambda t+\mu) \cdot 1+t \preceq(\lambda t+\mu) t+t=(\lambda t+\mu+1) t \quad \checkmark
$$

Dilated lattice polytopes

Dilation operator

For $f \in \mathbb{R}[[t]]$ and an integer $r \geq 1$ there are uniquely determined $f_{0}, \ldots, f_{r-1} \in \mathbb{R}[[t]]$ such that

$$
f(t)=f_{0}\left(t^{r}\right)+t f_{1}\left(t^{r}\right)+\cdots+t^{r-1} f_{r-1}\left(t^{r}\right)
$$

For $0 \leq i \leq r-1$ we define

$$
f^{\langle r, i\rangle}=f_{i} .
$$

Example: $r=2$

$$
1+3 t+5 t^{2}+7 t^{3}+t^{5}
$$

Then

$$
f_{0}=1+5 t \quad f_{1}=3+7 t+t^{2}
$$

In particular, for all lattice polytopes P and all integers $r \geq 1$

$$
\sum_{n \geq 0} \mathrm{E}_{r}(n) t^{n}=\left(\sum_{n \geq 0} \mathrm{E}_{P}(n) t^{n}\right)^{\langle r, 0\rangle}
$$

h^{*}-polynomials of dilated polytopes

Lemma (Beck, Stapledon '10)

Let P be a d-dimensional lattice polytope and $r \geq 1$. Then

$$
h_{r P}^{*}(t)=\left(h_{P}^{*}(t)\left(1+t+\cdots+t^{r-1}\right)^{d+1} d\right)^{\langle r, 0\rangle}
$$

Equivalently, for $h_{P}^{*}=: h$

$$
h_{r P}^{*}(t)=h^{\langle r, 0\rangle} a_{d+1}^{\langle r, 0\rangle}+h^{\langle r, 1\rangle} t a_{d+1}^{\langle r, r-1\rangle}+\cdots+h^{\langle r, r-1\rangle} t a_{d+1}^{\langle r, 1\rangle}
$$

where

$$
a_{d}^{\langle r, i\rangle}(t):=\left(\left(1+t+\cdots+t^{r-1}\right)^{d}\right)^{\langle r, i\rangle}
$$

for all $r \geq 1$ and all $0 \leq i \leq r-1$.

$$
\begin{aligned}
h_{r p}^{*}(t) & =(1-t)^{d+1} \sum_{n \geq 0} E_{r p}(n) t^{n} \\
& =(1-t)^{d+1}\left(\sum_{n \geq 0} E_{\rho}(n)^{(r n}\right)^{\langle r, 0\rangle} \\
& =\left(\left(1-t^{r}\right)^{d+1} \sum_{n \geq 0} E_{\mathcal{P}}(n) t^{n}\right)^{\langle r, 0\rangle} \\
& =\left(\left(1+t+\cdots+t^{r-1}\right)^{d+1}(1-t)^{d+1} \sum_{n \geq 0} E_{\rho}(n) t^{n}\right)^{\langle r, 0\rangle} \\
& =\left(\left(1+t+\cdots+t^{r-1}\right)^{d+1} h_{p}^{\hbar *}(t)\right)^{\langle r, 0\rangle}
\end{aligned}
$$

Another operator preserving interlacing...

Proposition (Fisk '08)
Let f be a polynomial such that $f^{\langle r, r-1\rangle}, \ldots, f^{\langle r, 1\rangle}, f^{\langle r, 0\rangle}$ is an interlacing sequence. Let

$$
g(t)=\left(1+t+\cdots+t^{r-1}\right) f(t)
$$

Then also $g^{\langle r, r-1\rangle}, \ldots, g^{\langle r, 1\rangle}, g^{\langle r, 0\rangle}$ is an interlacing sequence.
Observation:

$$
\left(\begin{array}{c}
g^{\langle r, r-1\rangle} \\
\vdots \\
g^{\langle r, 1\rangle} \\
g^{\langle r, 0\rangle}
\end{array}\right)=\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
t & 1 & 1 & \cdots & 1 \\
t & t & 1 & \cdots & 1 \\
\vdots & \vdots & & \ddots & \vdots \\
t & t & \cdots & t & 1
\end{array}\right)\left(\begin{array}{c}
f^{\langle r, r-1\rangle} \\
\vdots \\
f^{\langle r, 1\rangle} \\
f^{\langle r, 0\rangle}
\end{array}\right)
$$

Corollary
The polynomials $a_{d}^{\langle r, r-1\rangle}(t), \ldots, a_{d}^{\langle r, 1\rangle}(t), a_{d}^{\langle r, 0\rangle}(t)$ form an interlacing sequence of polynomials.

Putting the pieces together...

1) $h_{r P}^{*}(t)=h^{\langle r, 0\rangle} a_{d+1}^{\langle r, 0\rangle}+h^{\langle r, 1\rangle} t a_{d+1}^{\langle r, r-1\rangle}+\cdots+h^{\langle r, r-1\rangle} t a_{d+1}^{\langle r, 1\rangle}$
2) $a_{d+1}^{\langle r, r-1\rangle}(t), \ldots, a_{d+1}^{\langle r, 1\rangle}(t), a_{d+1}^{\langle r, 0\rangle}(t)$ interlacing
$\Rightarrow a_{d+1}^{\langle\langle r, 0\rangle}(t), t a_{d+1}^{\langle r, r-1\rangle}(t), \ldots, t a_{d+1}^{\langle r, 1\rangle}(t)$ interlacing
Key observation: For $r>\operatorname{deg} h_{P}^{*}(t)$

$$
h^{\langle r, i\rangle}=h_{i}^{*} \geq 0
$$

Theorem (J. '16)
Let P be a d-dimensional lattice polytope. Then $h_{r P}^{*}(t)$ has only real roots whenever $r \geq \operatorname{deg} h_{P}^{*}(t)$.

Stapledon Decomposition

IDP polytopes with interior lattice points

Question (Schepers, Van Langenhoven '13)

For any IDP polytope P with interior lattice point, is the h^{*}-polynomial $h_{P}^{*}=\sum_{i=0}^{d} h_{i}^{*} t^{i}$ alternatingly increasing, i.e.

$$
h_{0}^{*} \leq h_{d}^{*} \leq h_{1}^{*} \leq h_{d-1}^{*} \leq \cdots
$$

Observation

alternatingly increasing \Rightarrow unimodal with peak in the middle

- reflexive polytopes with regular unimodular triangulation \checkmark
- lattice parallelepipeds (Schepers, Van Langenhoven '13)
- coloop-free lattice zonotopes (Beck, J., McCullough '16)

IDP polytopes with interior lattice points

Question

Is there a uniform bound N such that the h^{*}-polynomial of $r P$ is alternatingly increasing for all $r \geq N$?

Codegree

For any d-dimensional lattice polytope P with $\operatorname{deg} h_{P}^{*}=s$

$$
I:=\min \left\{r \geq 1: r P^{\circ} \cap \mathbb{Z} \neq \emptyset\right\}=d+1-s
$$

Theorem (Higashitani '14)
The h^{*}-polynomial of $r P$ is alternatingly increasing whenever $r \geq \max \{s, d+1-s\}$.

Stapledon Decomposition

Theorem (Stapledon '09)

Let P be a lattice polytope with $\operatorname{deg} h_{P}^{*}=s$ and codegree $I=d+1-s$. Then $\left(1+t+\cdots+t^{\prime-1}\right) h_{P}^{*}(t)$ can be uniquely decomposed as

$$
\left(1+t+\cdots+t^{\prime-1}\right) h_{P}^{*}(t)=a(t)+t^{\prime} b(t)
$$

where $a(t)=t^{d} a\left(\frac{1}{t}\right)$ and $b(t)=t^{d-l} b\left(\frac{1}{t}\right)$ are palindromic polynomials with nonnegative coefficients.

Consequences:

$$
\begin{gathered}
a_{i} \geq 0 \Leftrightarrow h_{0}+h_{1}+\cdots+h_{i} \geq h_{d}+h_{d-1}+\cdots+h_{d-i+1} \quad(\text { Hibi '90) } \\
b_{i} \geq 0 \Leftrightarrow h_{s}+h_{s-1}+\cdots+h_{i} \geq h_{0}+h_{1}+\cdots+h_{i} \quad(\text { Stanley '91) }
\end{gathered}
$$

Stapledon Decomposition

Observation

Every polynomial $h(t)$ of degree d can be uniquely decomposed into palindromic polynomials $a(t)=t^{d} a\left(\frac{1}{t}\right)$ and $b(t)=t^{d-1} b\left(\frac{1}{t}\right)$ such that

$$
h(t)=a(t)+t b(t) .
$$

"Proof":

$$
\begin{array}{llllll}
& a_{0} & a_{1} & a_{2} & a_{2} & a_{1} \\
+ & & a_{0} \\
+ & b_{0} & b_{1} & b_{2} & b_{1} & b_{0} \\
\hline & h_{0} & h_{1} & h_{2} & h_{3} & h_{4}
\end{array} h_{5}
$$

Observation
$h(t)$ is alternatingly increasing $\Leftrightarrow a(t)$ and $b(t)$ are unimodal

Stapledon Decomposition for dilated polytopes

Theorem (J. '18+)
Let P be a lattice polytope and for all $r \geq 1$ let

$$
h_{r P}^{*}(t)=a_{r}(t)+t b_{r}(t)
$$

be the unique decomposition into palindromic polynomials $a_{r}(t)=t^{d} a_{r}\left(\frac{1}{t}\right)$ and $b_{r}(t)=t^{d-1} b_{r}\left(\frac{1}{t}\right)$. Then

$$
b_{r}(t) \preceq a_{r}(t)
$$

for all $r \geq d+1$.

Concluding remarks

- Bound for real-rootedness of $h_{r P}^{*}(t)$ is optimal for $\operatorname{deg} h^{*}(P)(t) \leq \frac{d+1}{2}$ (using result by Batyrev and Hofscheier '10)
- Crucial: Coefficients of h^{*}-polynomial are nonnegative. Other applications, e.g.,
- Combinatorial positive valuations
- Hilbert series of Cohen-Macaulay domains

Concluding remarks

- Bound for real-rootedness of $h_{r P}^{*}(t)$ is optimal for $\operatorname{deg} h^{*}(P)(t) \leq \frac{d+1}{2}$ (using result by Batyrev and Hofscheier '10)
- Crucial: Coefficients of h^{*}-polynomial are nonnegative. Other applications, e.g.,
- Combinatorial positive valuations
- Hilbert series of Cohen-Macaulay domains

Katharina Jochemko: On the real-rootedness of the Veronese construction for rational formal power series, International Mathematics Research Notices (online first 2017).

Thank you

