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Lattice polytopes

A set P ⊂ Rd is a lattice polytope if there are x1, . . . , xm ∈ Zd with

P = conv{x1, . . . , xm}.



Ehrhart theory

The lattice point enumerator or discrete volume of P is

E(P) :=
∣∣P ∩ Zd

∣∣ .

n = 1 n = 2 n = 3

E(nP) = (n + 1)2.



Ehrhart theory

Theorem (Ehrhart’62)
For every lattice polytope P in Rd

EP(n) := |nP ∩ Zd |

agrees with a polynomial of degree dimP for n ≥ 1.

EP(n) is called the Ehrhart polynomial of P.

Various combinatorial applications, i.e.

I posets (order preserving maps),

I graph colorings,...

Central Questions

I Which polynomials are Ehrhart polynomials?

I Interpretation of coefficients

I roots, ...



Ehrhart series and h∗-polynomial

Ehrhart series
The Ehrhart series of an d-dimensional lattice polytope P ⊂ Rd is
defined by ∑

n≥0

EP(n)tn =
h∗0 + h∗1t + · · ·+ h∗d t

d

(1− t)d+1
.

The numerator polynomial h∗P(t) is the h∗-polynomial of P. The vector
h∗(P) := (h∗0 , . . . , h

∗
d) is the h∗-vector.

h∗-vector and coefficients of EP(n)
Expansion into a binomial basis:

EP(n) = h∗0

(
n + r

r

)
+ h∗1

(
n + r − 1

r

)
+ · · ·+ h∗d

(
n

r

)
.
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Inequalities for the h∗-vector

Theorem (Stanley ’80)
For every lattice polytope P in Rd with h∗P = h∗0 + h∗1t + · · ·+ h∗d t

d

h∗i ≥ 0

for all 0 ≤ i ≤ d .

Question: Are there stronger inequalities for certain classes of polytopes?

Such as...

I ...Unimodality:

h∗0 ≤ h∗1 ≤ · · · ≤ h∗k ≥ · · · ≥ h∗d for some k

I ...Log-concavity:

(h∗k)2 ≥ h∗k−1h
∗
k+1 for all k

I ...Real-rootedness:

h∗P = h∗0 + h∗1t + · · ·+ h∗d t
d has only real roots



IDP polytopes

Conjecture (Stanley ’89)
Every IDP polytope has a unimodal h∗-vector.

A lattice polytope P ⊂ Rd has the integer decomposition property
(IDP) if for all integers n ≥ 1 and all p ∈ nP ∩ Zd

p = p1 + · · ·+ pn

for some p1, . . . , pn ∈ P ∩ Zd .

Examples
I unimodular simplex

I lattice parallelepiped

I lattice zonotope

I rP whenever r ≥ dimP − 1
(Bruns, Gubeladze, Trung ’97)



Dilated lattice polytopes

Theorem (Brenti, Welker ’09; Diaconis, Fulman ’09; Beck,
Stapledon ’10)
Let P be a d-dimensional lattice polytope. Then there is an N such that
the h∗-polynomial of rP has only real roots for r ≥ N.

Conjecture (Beck, Stapledon ’10)
Let P be a d-dimensional lattice polytope. Then the h∗-polynomial of rP
has only real-roots whenever r ≥ d .

Theorem (Higashitani ’14)
Let P be a d-dimensional lattice polytope. Then the h∗-polynomial of rP
has log-concave coefficients whenever r ≥ deg h∗P .

Theorem (J. ’16)
Let P be a d-dimensional lattice polytope. Then the h∗-polynomial of rP
has only real roots whenever r ≥ deg h∗P .



Interlacing polynomials

I Proof of Kadison-Singer-Problem from 1959 (Marcus, Spielman,
Srivastava ’15)

I Real-rootedness of independence polynomials of claw-free graphs
(Chudnowski, Seymour ’07)
compatible polynomials, common interlacers

I Real-rootedness of s-Eulerian polynomials (Savage, Visontai ’15)
h∗-polynomial of s-Lecture hall polytopes are real-rooted

Further literature: Bränden ’14, Fisk ’08, Braun ’15



Interlacing polynomials



Interlacing polynomials

Definition
Let a, b, t1, . . . , tn, s1, . . . , sm ∈ R. Then f = a

∏m
i=1(t − si ) interlaces

g = b
∏n

i=1(t − ti ) and we write f � g if

· · · ≤ s2 ≤ t2 ≤ s1 ≤ t1

Properties

I f � g if and only if cf � dg for all c , d 6= 0.

I deg f ≤ deg g ≤ deg f + 1

I αf + βg real-rooted for all α, β ∈ R



Interlacing polynomials



Polynomials with only nonpositive, real roots

Lemma (Wagner ’00)
Let f , g , h ∈ R[t] be real-rooted polynomials with only nonpositive, real
roots and positive leading coefficients. Then

(i) if f � h and g � h then f + g � h.

(ii) if h � f and h � g then h � f + g .

(iii) g � f if and only if f � tg .



Interlacing sequences of polynomials

Definition
A sequence f1, . . . , fm is called interlacing if

fi � fj whenever i ≤ j .

Lemma
Let f1, . . . , fm be an interlacing polynomials with only nonnegative
coefficients. Then

c1f1 + c2f2 + · · · + cmfm

is real-rooted for all c1, . . . , cm ≥ 0.



Interlacing sequences of polynomials



Constructing interlacing sequences

Proposition (Fisk ’08; Savage, Visontai ’15)
Let f1, · · · , fm be a sequence of interlacing polynomials with only
negative roots and positive leading coefficients. For all 1 ≤ l ≤ m let

gl = tf1 + · · ·+ tfl−1 + fl + · · ·+ fm.

Then also g1, · · · , gm are interlacing, have only negative roots and
positive leading coefficients.



Linear operators preserving interlacing sequences

Let Fn
+ the collection of all interlacing sequences of polynomials with

only nonnegative coefficients of length n.
When does a matrix G = (Gi,j(t)) ∈ R[t]m×n map Fn

+ to Fm
+ by

G · (f1, . . . , fn)T ?

Theorem (Brändén ’15)
Let G = (Gi,j(t)) ∈ R[t]m×n. Then G : Fn

+ → Fm
+ if and only if

(i) (Gi,j(t)) has nonnegative entries for all i ∈ [n], j ∈ [m], and

(ii) For all λ, µ > 0, 1 ≤ i < j ≤ n, 1 ≤ k < l ≤ n

(λt + µ)Gk,j(t) + Gl,j(t) � (λt + µ)Gk,i (t) + Gl,i (t) .



Example


1 1 1 · · · 1
t 1 1 · · · 1
t t 1 · · · 1
...

...
...

t t · · · t t

 ∈ R[x ](n+1)×n

(i) All entries have nonnegative coefficients X

Submatrices:

M =

( i j

k Gk,i (t) Gk,j(t)
l Gl,i (t) Gl,j(t)

)
:

(
1 1
1 1

) (
1 1
t 1

) (
t 1
t t

) (
t t
t t

)

(ii) (λt + µ)Gk,j(t) + Gl,j(t) � (λt + µ)Gk,i (t) + Gl,i (t)

(λ+ 1)t + µ = (λt + µ) · 1 + t � (λt + µ)t + t = (λt + µ+ 1)t X



Dilated lattice polytopes



Dilation operator
For f ∈ R[[t]] and an integer r ≥ 1 there are uniquely determined
f0, . . . , fr−1 ∈ R[[t]] such that

f (t) = f0(tr ) + tf1(tr ) + · · ·+ tr−1fr−1(tr ).

For 0 ≤ i ≤ r − 1 we define

f 〈r ,i〉 = fi .

Example: r = 2
1 + 3t + 5t2 + 7t3 + t5

Then
f0 = 1 + 5t f1 = 3 + 7t + t2

In particular, for all lattice polytopes P and all integers r ≥ 1

∑
n≥0

ErP(n)tn =

∑
n≥0

EP(n)tn

〈r ,0〉



h∗-polynomials of dilated polytopes

Lemma (Beck, Stapledon ’10)
Let P be a d-dimensional lattice polytope and r ≥ 1. Then

h∗rP(t) =
(
h∗P(t)(1 + t + · · ·+ tr−1)d+1d

)〈r ,0〉
.

Equivalently, for h∗P =: h

h∗rP(t) = h〈r ,0〉a
〈r ,0〉
d+1 + h〈r ,1〉ta

〈r ,r−1〉
d+1 + · · ·+ h〈r ,r−1〉ta

〈r ,1〉
d+1 ,

where
a
〈r ,i〉
d (t) :=

(
(1 + t + · · ·+ tr−1)d

)〈r ,i〉
for all r ≥ 1 and all 0 ≤ i ≤ r − 1.



h∗rP(t) = (1− t)d+1
∑
n≥0

ErP(n)tn

= (1− t)d+1

∑
n≥0

EP(n)tn

〈r ,0〉

=

(1− tr )d+1
∑
n≥0

EP(n)tn

〈r ,0〉

=

(1 + t + · · ·+ tr−1)d+1(1− t)d+1
∑
n≥0

EP(n)tn

〈r ,0〉

=
(
(1 + t + · · ·+ tr−1)d+1h∗P(t)

)〈r ,0〉



Another operator preserving interlacing...

Proposition (Fisk ’08)
Let f be a polynomial such that f 〈r ,r−1〉, . . . , f 〈r ,1〉, f 〈r ,0〉 is an interlacing
sequence. Let

g(t) = (1 + t + · · ·+ tr−1)f (t) .

Then also g 〈r ,r−1〉, . . . , g 〈r ,1〉, g 〈r ,0〉 is an interlacing sequence.

Observation:
g 〈r ,r−1〉

...
g 〈r ,1〉

g 〈r ,0〉

 =


1 1 1 · · · 1
t 1 1 · · · 1
t t 1 · · · 1
...

...
. . .

...
t t · · · t 1



f 〈r ,r−1〉

...
f 〈r ,1〉

f 〈r ,0〉



Corollary
The polynomials a

〈r ,r−1〉
d (t), . . . , a

〈r ,1〉
d (t), a

〈r ,0〉
d (t) form an interlacing

sequence of polynomials.



Putting the pieces together...

1) h∗rP(t) = h〈r ,0〉a
〈r ,0〉
d+1 + h〈r ,1〉ta

〈r ,r−1〉
d+1 + · · ·+ h〈r ,r−1〉ta

〈r ,1〉
d+1

2) a
〈r ,r−1〉
d+1 (t), . . . , a

〈r ,1〉
d+1 (t), a

〈r ,0〉
d+1 (t) interlacing

⇒ a
〈r ,0〉
d+1 (t), ta

〈r ,r−1〉
d+1 (t), . . . , ta

〈r ,1〉
d+1 (t) interlacing

Key observation: For r > deg h∗P(t)

h〈r ,i〉 = h∗i ≥ 0

Theorem (J. ’16)
Let P be a d-dimensional lattice polytope. Then h∗rP(t) has only real
roots whenever r ≥ deg h∗P(t).



Stapledon Decomposition



IDP polytopes with interior lattice points

Question (Schepers, Van Langenhoven ’13)
For any IDP polytope P with interior lattice point, is the h∗-polynomial
h∗P =

∑d
i=0 h

∗
i t

i alternatingly increasing, i.e.

h∗0 ≤ h∗d ≤ h∗1 ≤ h∗d−1 ≤ · · · ?

Observation
alternatingly increasing ⇒ unimodal with peak in the middle

I reflexive polytopes with regular unimodular triangulationX
I lattice parallelepipeds (Schepers, Van Langenhoven ’13)

I coloop-free lattice zonotopes (Beck, J., McCullough ’16)



IDP polytopes with interior lattice points

Question
Is there a uniform bound N such that the h∗-polynomial of rP is
alternatingly increasing for all r ≥ N?

Codegree
For any d-dimensional lattice polytope P with deg h∗P = s

l := min{r ≥ 1: rP◦ ∩ Z 6= ∅} = d + 1− s

Theorem (Higashitani ’14)
The h∗-polynomial of rP is alternatingly increasing whenever
r ≥ max{s, d + 1− s}.



Stapledon Decomposition

Theorem (Stapledon ’09)
Let P be a lattice polytope with deg h∗P = s and codegree l = d + 1− s.
Then (1 + t + · · ·+ t l−1)h∗P(t) can be uniquely decomposed as

(1 + t + · · ·+ t l−1)h∗P(t) = a(t) + t lb(t) ,

where a(t) = tda( 1
t ) and b(t) = td−lb( 1

t ) are palindromic polynomials
with nonnegative coefficients.

Consequences:

ai ≥ 0⇔ h0 + h1 + · · ·+ hi ≥ hd + hd−1 + · · ·+ hd−i+1 (Hibi ’90)

bi ≥ 0⇔ hs + hs−1 + · · ·+ hi ≥ h0 + h1 + · · ·+ hi (Stanley ’91)



Stapledon Decomposition

Observation
Every polynomial h(t) of degree d can be uniquely decomposed into
palindromic polynomials a(t) = tda( 1

t ) and b(t) = td−1b( 1
t ) such that

h(t) = a(t) + tb(t) .

“Proof”:

a0 a1 a2 a2 a1 a0
+ b0 b1 b2 b1 b0

h0 h1 h2 h3 h4 h5

Observation
h(t) is alternatingly increasing ⇔ a(t) and b(t) are unimodal



Stapledon Decomposition for dilated polytopes

Theorem (J. ’18+)
Let P be a lattice polytope and for all r ≥ 1 let

h∗rP(t) = ar (t) + tbr (t)

be the unique decomposition into palindromic polynomials
ar (t) = tdar (

1
t ) and br (t) = td−1br (

1
t ). Then

br (t) � ar (t)

for all r ≥ d + 1.



Concluding remarks

I Bound for real-rootedness of h∗rP(t) is optimal for
deg h∗(P)(t) ≤ d+1

2 (using result by Batyrev and Hofscheier ’10)

I Crucial: Coefficients of h∗-polynomial are nonnegative. Other
applications, e.g.,

I Combinatorial positive valuations
I Hilbert series of Cohen-Macaulay domains

Katharina Jochemko: On the real-rootedness of the Veronese
construction for rational formal power series, International
Mathematics Research Notices (online first 2017).

Thank you
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