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Quasi-polynomials

A function g : N ! Z is:

I quasi-polynomial (QP) if there exists a period m and
polynomials f

0

, . . . , fm�1

2 Q[t] such that

g(t) = fi (t), for t ⌘ i mod m.

I eventually quasi-polynomial (EQP) if it agrees with a
quasi-polynomial for all su�ciently large t.

Example

j
t2�2t+1

3

k
=

8
><

>:

1

3

t

2 � 2

3

t for t ⌘ 0 (mod 3)
1

3

t

2 � 2

3

t + 1

3

for t ⌘ 1 (mod 3)
1

3

t

2 � 2

3

t for t ⌘ 2 (mod 3)



Quasi-polynomials

A function g : N ! Z is:

I quasi-polynomial (QP) if there exists a period m and
polynomials f

0

, . . . , fm�1

2 Q[t] such that

g(t) = fi (t), for t ⌘ i mod m.

I eventually quasi-polynomial (EQP) if it agrees with a
quasi-polynomial for all su�ciently large t.

Example

j
t2�2t+1

3

k
=

8
><

>:

1

3

t

2 � 2

3

t for t ⌘ 0 (mod 3)
1

3

t

2 � 2

3

t + 1

3

for t ⌘ 1 (mod 3)
1

3

t

2 � 2

3

t for t ⌘ 2 (mod 3)



Ehrhart’s Theorem

Theorem (Ehrhart, 1962)

Let A 2 Zm⇥d
, b 2 Zm

, and suppose the rational polyhedron

P = {x 2 Rd : Ax  b} is a polytope (i.e., that P is bounded.)

For each t 2 N, let

St = tP \ Zd = {x 2 Zd : Ax  bt}.

Then the function LP(t) = |St | is quasi-polynomial.
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Parametric Polytopes

Theorem (Chen-Li-Sam, 2012)

Let A(t) 2 Z[t]m⇥d
, b(t) 2 Z[t]m. For each t 2 N, let

St = {x 2 Zd : A(t)x  b(t)}.

Then the function g(t) = |St | (if finite) is eventually
quasi-polynomial.

Ehrhart’s Theorem is the case where A is constant and b is linear
of the form b(t) = bt.



An Example of the Chen-Li-Sam Theorem

Example (Kevin Woods):

St =

(
(x , y) 2 Z2 :

(
|2x + (2t � 2)y |  t

2 � 2t + 2

|(2� 2t)x
1

+ 2x
2

|  t

2 � 2t + 2

)

|St | =
(
t

2 � 2t + 2 for t odd

t

2 � 2t + 5 for t even



The Frobenius problem

Suppose a

1

, . . . , as 2 N and gcd(a
1

, . . . , as) = 1. Find the
maximum element of

S = {x 2 N : ¬9y
1

, . . . , ys 2 N [x = y

1

a

1

+ · · ·+ ysas ]},

Example: a

1

= 3, a
2

= 8.
S

C = {0, 3, 6, 8, 9, 11, 12, 14, 15, 16, . . . }. g(3, 8) = 13.

Parametric version: for each t 2 N, find the maximum of

St = {x 2 N : ¬9y
1

, . . . , ys 2 N [x = y

1

a

1

(t) + · · ·+ ysas(t)]},

the complement of the projection of the integer points in a
parametric polyhedron.

Theorem (Bobby Shen, 2015)

Let a

1

(t), . . . , as(t) 2 Z[t] be such that for t � 0, ai (t) > 0 and

gcd(a
1

(t), . . . , as(t)) = 1. Then g(a
1

(t), . . . , as(t)) is eventually
quasi-polynomial.
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A Common Framework

A parametric Presburger set (as defined by Woods) is a family of
sets St ✓ Zd , one for each natural number t, defined using a
Boolean combination of linear inequalities of the form

a(t) · x  b(t)

where a(t) 2 Z[t]d , b(t) 2 Z[t],

plus quantifiers 8xi , 9xj over variables other than t.

All sets St covered by the Chen-Li-Theorem as well as parametric
Frobenius sets (i.e. subsemigroups of N, or even of Nk) are
parametric Presburger sets.



Properties of integer point set families

Let St , for t 2 N, be a family of subsets of Zd . Consider the
following properties that St might or might not have.

(1) The set of t such that St is nonempty is eventually periodic.

(2) There exists an EQP g : N ! N such that, if St has finite
cardinality, then g(t) = |St |.

(3) There exists a function x : N ! Zd , whose coordinate
functions are EQPs, such that, if St is nonempty, then
x(t) 2 St .

(4) (Assuming St ✓ Nd) There exists a period m such that, for
su�ciently large t ⌘ i mod m,
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where ↵ij 2 Q, and the coordinate functions of
q
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ij

: N ! Zd are polynomials with the b

ij

(t) eventually
lexicographically positive.
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Main Theorems

Theorem (Woods, 2014)

1. Let St be any family of subsets of Nd
. If St satisfies (4), then

it also satisfies (1), (2), and (3).

2. If St ✓ Nd
is defined by a quantifier-free parametric

Presburger formula, then St satisfies all four of the properties.

Theorem (B-Goodrick-Woods, 2017)

Let St ✓ Zd
be any parametric Presburger family. Then Properties

(1), (2), and (3) all hold. Furthermore, if St ✓ Nd
, then (4) holds.
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Quantifier elimination?

Theorem (Presburger, 1929)

The language (Z,+, 0,) of ordinary Presburger arithmetic,

extended by divisibility predicates Dc for each positive integer c ,

admits quantifier elimination.

That is, every Presburger set S can be defined by a quantifier-free
formula, possibly involving divisibility predicates.

If the same were to hold for parametric Presburger arithmetic, then
our theorem would immediately follow from Woods’ result.

However, we do not know of any reasonable language for PPA that
admits quantifier elimination.
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A�ne reduction

Let St ✓ Zd and S

0
t ✓ Zd 0

be parametric Presburger families. An
a�ne reduction from S

0
t to St is an EQP-a�ne-linear function

F : Zd 0 ⇥ N ! Zd such that for every t 2 Z, F restricts to a
bijection from S

0
t to St .

Proposition

A�ne reductions preserve Properties (1), (2), (3), and (4).
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Proof of the Main Theorem: Step 1

Using logical equivalence, St can be defined by a parametric
Presburger formula with only polynomially-bounded quantifiers and
possibly predicates for divisibility by EQP functions.

Example

St = {(x , z) : 9y [x + 1  ty  z ^ ty  3z � x ]}

The candidate for y depends on x mod t: for 0  i  t � 1,
y = (x + t � i)/t is our candidate.

So we can write

St = {(x , z) : 9i
⇥
0  i  t � 1 ^ t

��(x � i) ^ (x + t � i  z)

^ (x + t � i  3z � x)]}
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Step 2

Using an a�ne reduction, eliminate the divisibility predicates.

Continuation of Example

Given

St = {(x , z) : 9i
⇥
0  i  t � 1 ^ t

��(x � i) ^ (x + t � i  z) ^ · · ·
⇤

take

S

0
t = {(u, v , z) : 9i [0  i  t � 1 ^ v � i = 0

^ (u + tv + t � i  z) ^ · · · ]
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Step 3

Using an a�ne reduction based on expressing the variables in base
t (a la Chen-Li-Sam), separate the quantifiers from all
multiplications by t.

Example

0  x
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, x
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^9y
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, y
2

⇥�
0  yi < t

2

�
^ (x

1

� tx

2

 (t + 1)y
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+ (t + 2)y
2

)
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Replace yi by bi1t + bi0 and xi by zi t
3 + ai2t

2 + · · ·+ ai0, with
0  bij < t and with 0  aij < t. That is, z

1

and z

2

are the only
unbounded variables. The last inequality becomes

t

4(�z

2

) + t

3(z
1

� a

22

) + t

2(a
12
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21

� b

11

� b

21

)

+t(a
11
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20

� b
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10

� 2b
21
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20

) + (a
10

� b

10

� 2b
20

)  0.

Equivalently, divide by t to obtain:
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Step 3, continued
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Iterating this process, we obtain a Boolean combination of:

I Case-defining inequalities such as �3t + 3  f

0

 �2t that do
not involve multiplication by t, and

I Inequalities such as t(�z
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) + (z
1

� a

22

� 1)  0 that do not
involve any of the quantified variables bij .
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Sketch of the Remaining Steps

I The quantifiers now appear only in clauses free of
multiplication by t. So we can eliminate them, using Cooper’s
standard algorithm. We now have a set St defined by a
Boolean combination of atomic formulas of the form

I
f(t) · x  g(t) and

I
Dc(f(t) · x� g(t)).

I Again eliminate the divisibility predicates by an a�ne
reduction.

I If St ✓ Nd , apply Woods’ result that Property (4) holds in the
quantifier-free case and that (1), (2), and (3) are
consequences of (4).

If we only have St ✓ Zd , we can prove (1), (2), and (3) directly
with more work.
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Multiple Parameters

A k-parametric Presburger set is a family of sets S
t

✓ Zd , one for
each t = (t

1

, . . . , tk) 2 Nk , defined using a Boolean combination
of inequalities of the form

a(t) · x  b(t)

where a(t) 2 Z[t]d , b(t) 2 Z[t],
plus quantifiers 8xi , 9xj over variables other than t

1

, . . . , tk .



Farewell to Polynomials

Example

St
1

,t
2

= {(x
1

, x
2

) 2 N2 : t
1

x

1

+ t

2

x

2

= t

1

t

2

}

consists of the lattice points on the line segment from (t
2

, 0) to
(0, t

1

) and so |St
1

,t
2

| = gcd(t
1

, t
2

) + 1.

The gcd function is not piecewise quasi-polynomial, which would
be the most obvious analogue of EQP for multiple parameters.
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Negative Results for Multiple Parameters

A ⌃
2

formula is one that is of the form
9y

1

. . . 9ym8z1 . . . 8zn�(x, y, z) where � is quantifier-free.

Theorem (Nguyen–Pak, consequence of 2017 preprint)

Assume P 6= NP. There exists a 3-parametric ⌃
2

PA family Sp,q,M

such that |Sp,q,M | is always finite but cannot be expressed as a

polynomial-time evaluable function in p, q, and M.

Theorem (B-Goodrick-Nguyen-Woods, 2018 preprint)

Assume P = NP . There exists a 2-parametric ⌃
2

PA family St
1

,t
2

for which |St
1

,t
2

| is always finite but cannot be expressed as a

polynomial time evaluable function in t

1

and t

2

.

This result is optimal: polynomial evaluability follows from:

I our previous theorem, for just one parameter,
I Barvinok’s algorithm (1994) for quantifier-free formulas with

any number of parameters, or
I Barvinok and Woods (2003) for ⌃

1

sentences (no quantifier
alternation) with any number of parameters.
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