The reeb Graph edit Distance is Universal
vlrich bauer indian

EINSTEIN WORKSHOP ON discrete Geometry \& Topology

$$
M_{A R C H} 15,2018
$$

Joint work with Claudia land (u modena)
AND FACUNDO MÉMOLI (OHIO STATE U)

20
Here are two things that are reasonably close to each other, and 1 wont to compare them.
S. WEINBERGER

REEB Graphs

identify components of level sets $f^{-1}(t)$

$$
R_{f}=M / \sim_{f}
$$

where $x \sim_{f y} \Leftrightarrow x, y$ in same component of some $f^{-1}(t), t \in \mathbb{R}$.

$$
g: M \rightarrow \mathbb{R}
$$

$$
\tilde{g}: \mathbb{R}_{g} \rightarrow \mathbb{R}
$$

Formal setting
We consider

- locally compact Hausdorff spaces (Reel domains)
- proper quotient maps with comected fibers (hes quotient maps)

These maps are closed under composition, and stable undo pullbacks.
Define a Reeb graph as

- a Reed domain R_{f} with
- a function $\tilde{f}: R_{f} \rightarrow \mathbb{R}$ with discrete fibers (Rub function)

A Reel graph R_{f} is the ReS graph of a function $f: x \rightarrow \mathbb{R}$ if

- $f=\tilde{f} \circ p$ for some Reeb quotient map $p: x \rightarrow R_{f}$.
- In this case, $R_{f} \cong \times / \sim p$.

Moreover: let $q: y \rightarrow x$ be a Reel quotient map. Then R_{f} is also the Reed graph of $g=f \cdot q$.

- Reeb quotient maps preserve Reed graphs.

Goals

How to compare two Reed graphs $\mathbb{R}_{f}, \mathbb{R}_{g} ?(f, g: M \rightarrow \mathbb{R}$ are unknown)

Assign distance (extended psendo-metric) $d\left(R_{f}, R_{g}\right)$.
Desirable properties:
Stability: For any space X and $f_{1} g: X \rightarrow \mathbb{R}$ yielding Reed graphs R_{f}, R_{g},

$$
d\left(R_{f}, R_{g}\right) \leqslant\|f-g\|_{\infty} .
$$

Universality: For any other stable distance d_{s},

$$
d_{s}\left(R_{f}, R_{g}\right) \leq d\left(R_{f}, R_{g}\right)
$$

a canonical universal distance
Given Reeb graphs R_{f}, R_{j} with functions \tilde{f}, \tilde{J}, define

$$
\begin{aligned}
& d_{u}\left(R_{f}, R_{g}\right)=\inf _{\operatorname{in}} \quad\|f-g\|_{\infty}
\end{aligned}
$$

taken over all Reeb domains x and Reeb quotient maps This is a distance (triangle inequality): consider pullbads

- stability and miversality immediate from definition
- working with arbitran, spaces X is unfeasible

Previous work: Functional distortion distance [b, Gre, wang 2014]

- On a Reed graph \mathbb{R}_{f} with $\tilde{f}: R_{f} \rightarrow \mathbb{R}$, consider the metric $d_{f:}:(x, y) \mapsto \inf \left\{b-a \mid x, y\right.$ in same component of $\left.\tilde{f}^{-1}[a, b]\right\}$.

- Given maps $\phi: R_{f} \rightarrow R_{g}, \psi: R_{g} \rightarrow R_{f}$, consider

$$
G(\phi, \psi)=\left\{(x, \phi(x)) \mid x \in R_{f}\right\} \quad \cup \quad\left\{(\psi(y), y) \mid y \in R_{g}\right\} .
$$

- Define the distortion of (ϕ, ψ) as

$$
D(\phi, \psi)=\sup _{(x, y),(\tilde{x}, \tilde{y}) \in G(\phi, \psi)} \frac{1}{2}\left|d_{f}(x, \tilde{x})-d_{g}(y, \tilde{y})\right|
$$

- Define the functional distortion distance as

$$
d F D\left(R_{f}, R_{g}\right)=\inf _{\phi_{1} \psi}\left(\max \left\{D(\phi, \psi),\|f-g \circ \phi\|_{\infty},\|g-f \cdot \psi\|_{\infty}\right) .\right.
$$

example: Functional distortion distance

Previous work: Interleaving Distance [Bubemik \&ol. 2015; de silva \&al. 2016]

- Interpret Reeb graph R_{f} as a functor $F: \ln t_{R} \rightarrow$ Set, $I \mapsto \pi_{0}\left(\tilde{f}^{-1}(I)\right)$ (let \mathbb{R} are the open intervals, as a pose writ. \subseteq)
- A δ-interleaving between F and G is a pair of natural transformations φ, ψ (with components $\varphi_{I}: F(I) \rightarrow G\left(B_{0}(I)\right), \cdots$) such that $F(I) \longrightarrow F\left(B_{\delta}(I)\right) \longrightarrow F_{\gamma_{\delta}(I)}\left(B_{2 \delta}(I)\right)$
$G(I) \longrightarrow G\left(B_{\delta}(I)\right) \longrightarrow G\left(B_{2 \delta}(I)\right)$
commutes for all $I \in \ln t_{R}$ (unlabeled maps induced by inclusion).
- The interleaving distance is

$$
d_{I}\left(R_{f}, R_{g}\right):=\inf \{\delta \mid \exists \delta \text {-intolearing between } F \text { and } G\}
$$

Thun [B., Munch, Wang 2015] $\frac{1}{3} d_{F D} \leq d_{I} \leq d_{F D}$. open problem: is the lower bound tight?

Abstract and Topological Interleavings

level set persistent homology
Thun [Carlson, de Silva, Morozou 2009]
Given $f: X \rightarrow \mathbb{R}$ (PL, with x compact):
Homology of level sets $H_{x}\left(f^{-1}(t) ; \mathbb{F}\right)$ (and more generally, of inclusions $f^{-1}(I) \hookrightarrow f^{-1}(J)$ for intervals $I \subseteq J$) is encoded (up to isomorphism) by a unique collection of intovals (level set persistence barcode).

Example for heb graphs:

The bottleneck distance between persistence barcodes

A δ-matching between two barcodes $\operatorname{Barc}(f), \operatorname{Barc}(g)$ satisfies:

- matched intervals (I, J) have distance $d_{H}(I, J) \leq \delta$
- nnmached intervals have length $\leq 2 \delta$

The bottleneck distance $d_{B}(f, g)$ is inf $\delta: \exists \delta$-maching between $\operatorname{Barc}(f), \operatorname{Barc}(g)$

A Zoo of distances And inequalities
[calesson, de silua, Morozou 2009]

$$
d_{B}\left(R_{f}, R_{g}\right) \leq\|f-g\|_{\infty}
$$

[$B, 1$ Ye, Wang 2004]

$$
\frac{1}{3} d_{B}\left(R_{f}, R_{g}\right) \leq d_{F D}\left(R_{f}, R_{g}\right) \leq\|f-g\|_{\infty}
$$

[B., Manch, Wang 1015]

$$
\frac{1}{3} d_{F D}\left(R_{f}, R_{0}\right) \leq d_{I}\left(R_{f}, R_{0}\right) \leq d_{F D}\left(R_{f}, R_{0}\right)
$$

[Botman, Lesmick 2016]

$$
\frac{1}{5} d_{B}\left(R_{f}, R_{g}\right) \leq d_{I}\left(R_{f}, R_{g}\right)
$$

[Bierken'k 2016]

$$
\frac{1}{2} d_{B}\left(R_{f}, R_{g}\right) \leq d_{I}\left(R_{f}, R_{g}\right)
$$

functional Distortion \& Interleaving Distances are not Universal

Consider a cylinder with two functions f, g :

$$
\begin{aligned}
& \cdot d_{n}\left(R_{f}, R_{g}\right) \leq\|f-g\|_{\infty}=1 \\
& \cdot d_{I}\left(R_{f}, R_{g}\right) \leq d_{F D}\left(R_{f}, R_{g}\right) \leqslant \frac{1}{2}<d_{n}\left(R_{f}, R_{g}\right):
\end{aligned}
$$

$R_{g} \mid \xrightarrow{\psi} \xrightarrow{i m \psi} R_{f}$

From close reed graphs to close functions
Open problem
Given two Reel graphs R_{f}, R_{g} with $d_{I}\left(R_{f}, R_{g}\right)=\delta$. Is there a space X with $f, g: X \rightarrow \mathbb{R},\|f-g\| \leq C \cdot \delta$, yielding Reed graphs R_{f}, R_{g}, for some fixed constant C ?

R_{f}

By the previous example: if yes, then $c \geq 2$.

The Topological Edit distance

- Consider zig-zag diagrams Z of Reeb quotient maps

and take the limit L_{z} (note: all maps are Reel quotient maps). Each $\tilde{f}_{i}: \mathbb{R}_{i} \rightarrow \mathbb{R}$ composes to $f_{i}: L_{z} \rightarrow \mathbb{R}_{i} \rightarrow \mathbb{R}$.
- Define the spread of the functions $f_{1}, \ldots, f_{n}: L_{z} \rightarrow \mathbb{R}$ as

$$
S_{z}: L_{z} \rightarrow \mathbb{R}, \quad x \mapsto \max _{i} f_{i}(x)-\min _{j} f_{j}(x)
$$

- Define the (topological) edit distance as

$$
d_{\text {eTop }}\left(R_{f}, R_{g}\right)=\inf _{z}\left\|s_{t}\right\|_{\infty}
$$

Prop. detop is stable and universal.

The Reeb graph edit distance

- Consider zig-zag diagrams Z of Reel quotient maps

as before, but restrict \mathbb{R}_{i}, G_{j} in z to be finite graphs.
modify G_{i} to G_{i+1}, maintaining the reel graph R_{i+1}

modify f_{i} to $f_{i+1}: G_{i} \rightarrow \mathbb{R}$, maintaining the domain a_{i}
- Define the Reed graph edit distance analogously as

$$
d_{\text {ecraph }}\left(R_{f}, R_{g}\right)=\inf _{z}\left\|s_{t}\right\|_{\infty}
$$

main result
Thu [B, Landi, Mémoli] The Reel graph edit distance is stable \& universal.

- We restrict to the PL category here.
- The hard part is stability:
given $f_{1} g: X \rightarrow \mathbb{R}(P L$, for triangulation $X=|k|)$, how to construct an edit zigzag between R_{f} and R_{g} with spread $\leq \| f$-g $\|_{\infty}$?
- Idea:
- Consider straight - line homotopy $f_{t}=\lambda f+(1-\lambda) g$
- The structure of $R_{\lambda}=R_{f_{\lambda}}$ changes only finitely often (say, at paramatus $0=\lambda_{0}<\ldots<\lambda_{n}=1$). Choose $p_{i} \in\left(\lambda_{i}, \lambda_{i+1}\right)$.
- Construct zigzag $R_{f}=R_{\lambda_{0}} \quad \Rightarrow R_{\lambda_{i}} \mathbb{R}_{R_{p i}}, R_{\lambda_{i+1}} \Omega_{\ldots} \quad R_{\lambda_{n}}=R_{8}$
- How to get the Reeb quotient maps in this zigzag?

CRITICAL INSTANTS OF A PL STRAIGHT-LINE HOMOTOPY

$x: \operatorname{im} f \rightarrow \operatorname{img}(P L)$

- We have $x \circ f(v)=g(v) \quad \forall v \in \operatorname{Vert}(k)$
- But $x \circ f \neq g$!
- However: X of and g have the same Reeb graph...

LIFTING REPARAMETRIZATIONS

Lemma Let $h=X \circ f$. Then X lifts to a Reed quotient map $\zeta: R_{f} \rightarrow R_{h}$.

The workhorse: Reed quotient maps from interpolation
$\chi: i m f \rightarrow i m g$ (orde-preserving PL surjection),

$$
g(v)=\underbrace{x \sim f}_{h}(v) \quad \forall v \in \text { Vert } k .
$$

Lemma The relation

$$
k=q_{h} \cdot\left(\left(h^{-1} \circ g\right) \cap s t_{k}\right)
$$

is a Reel quotient map.

Corollary $R_{n} \cong R_{g}$, and χ lifts to a Reel quotient map $R_{f} \rightarrow R_{g}$.

This provides the maps
for our intupolation zigzag.

CONCLUSION

- A universal distance is the most discriminative stable distance between Reed graphs
- There is a simple construction of a universal distance
- Interleaving and functional distortion distances are not miversal
- A universal distance in PL can be constructed using graph edit zigzags

Questions:

- What is the complexity of computing the distance? ls $d_{u} \leq C \cdot d_{I}$ for some constant C?

Announcement...

