Covering compact metric spaces greedily

Jan Rolfes (University of Cologne) Frank Vallentin (University of Cologne)

Definitions and basic properties

Let (X, d) be compact metric space and $r \in \mathbb{R}_{>0}$. We define its covering number $\mathcal{N}(X, r)$ by

Definition 1

 $B(x,r) = \{y \in X : d(y,x) \le r\}$ $\mathcal{N}(X,r) = \min\{|Y| : Y \subseteq X, \ \cup_{y \in Y} B(y,r) = X\}.$

The covering number has e.g. applications in compressive sensing, approximation and probability theory, and machine learning.

We equip X with probability measure ω satisfying the following two conditions:

Properties of ω

(a) $\omega(B(x,s)) = \omega(B(y,s))$ for all $x, y \in X$, and for all $s \ge 0$, (b) $\omega(B(x,\varepsilon)) > 0$ for all $x \in X$, and for all $\varepsilon > 0$.

We denote $\omega(B(x,s))$ by ω_s .

Examples

 $X = S^2$

Green caps cover parts of a blue sphere.

Covering with 8 balls per torus:

- 5 inner green balls
- 1 yellow ball (corners are identified)
- 1 orange resp., red ball (edges are identified)

Greedy algorithm

Algorithm 1

$1.i \leftarrow 0$

2. $S_x^i = B(x, r - \varepsilon)$ for all $x \in X$ 3. while $\bigcup_{j=1}^i B(y^j, r) \neq X$ do 4. $i \leftarrow i+1$

- 5. Choose $y \in X$ with $\omega(S_y^{i-1}) \ge \omega(S_x^{i-1})$ for all $x \in X$
- $6. y^i = y$

7. $S_x^i = S_x^{i-1} \setminus S_y^{i-1}$ for all $x \in X$ 8. end while

Analysis similar to Chvátal (1979) for weighted SET COVER:

- Consider infinite-dimensional LP-relaxation of $\mathcal{N}(X,r-\varepsilon)$
- Relaxation LP has optimal value $\frac{1}{\omega_{r-\varepsilon}}$

- Algorithm 1 defines:
$$g(x) = \begin{cases} \omega(S_{y^i}^{i-1})^{-1} & \text{if } x \in S_{y^i}^{i-1} \\ 0 & \text{otherwise.} \end{cases}$$

- $f = \left(\ln\left(\frac{\omega_{r-\varepsilon}}{\omega_{\varepsilon}}\right) + 1\right)^{-1} g$ is feasible solution for the dual of LP
- f has objective value $\frac{|Y|}{(\ln\left(\frac{\omega_{r-\varepsilon}}{\omega_{\varepsilon}}\right) + 1)} \leq \frac{1}{\omega_{r-\varepsilon}}$

Main Result

Theorem 1 (R., Vallentin, 2017)

For every $\varepsilon > 0$ with $\frac{r}{2} > \varepsilon > 0$ the covering number satisfies

 $\frac{1}{\omega_r} \le \mathcal{N}(X, r) \le \frac{1}{\omega_{r-\varepsilon}} \left(\ln \left(\frac{\omega_{r-\varepsilon}}{\omega_{\varepsilon}} \right) + 1 \right).$

Scalar ε has an optimum > 0 depending on ω and r.

Corollaries

Theorem 1 gives (after adjusting ε) as corollaries uniform proofs for:

Future Work

Corollary 1 (Böröczky and Wintsche, 2003)

For $n \geq 3$ the covering density of the *n*-dimensional sphere by spherical balls is at most

 $n\ln n + n\ln\ln n + n + o(n).$

Corollary 2 (Fejes Tóth, 2009)

For $n \geq 3$ the covering density of the *n*-dimensional Euclidean space by congruent balls is at most

 $n\ln n + n\ln\ln n + n + o(n).$

Corollary 3 (Naszódi, 2014)

Let $K \subseteq \mathbb{R}^n$ be a bounded measurable set. Then there is a covering of \mathbb{R}^n by translated copies of K of density at most

 $\inf_{\delta > 0} \left\{ \frac{\omega(K)}{\omega(K_{-\delta})} \left(\ln \left(\frac{\omega(K_{-\delta/2})}{\omega(B(0,\delta/2))} \right) + 1 \right) \right\},$

where $K_{-\delta} = \{x \in K : B(x, \delta) \subseteq K\}$ is the δ -inner parallel body of K, assumed to be nonempty.

The bounds of Corollaries 1 & 3 could even slightly be improved.

Lower bounds improving $\frac{1}{\omega_r}$

- using Lasserre hierarchy

Further Applications in:Probability Theory ("metric entropy")

- Definition given by Kolmogorov
- Estimate bounds of Gaussian processes