Covering compact metric spaces greedily

Jan Rolfes
(University of Cologne)

Frank Vallentin
(University of Cologne)

Definitions and basic properties

Let (X, d) be compact metric space and $r \in \mathbb{R}_{>0}$. We define its covering number $\mathcal{N}(X, r)$ by

Definition 1

$$
\begin{aligned}
& B(x, r)=\{y \in X: d(y, x) \leq r\} \\
& \mathcal{N}(X, r)=\min \left\{|Y|: Y \subseteq X, \cup_{y \in Y} B(y, r)=X\right\} .
\end{aligned}
$$

The covering number has e.g. applications in compressive sensing, approximation and probability theory, and machine learning.
We equip X with probability measure ω satisfying the following two conditions:

Properties of ω

(a) $\omega(B(x, s))=\omega(B(y, s))$ for all $x, y \in X$, and for all $s \geq 0$,
(b) $\omega(B(x, \varepsilon))>0$ for all $x \in X$, and for all $\varepsilon>0$.

We denote $\omega(B(x, s))$ by ω_{s}.

Examples

$$
X=S^{2}
$$

$$
X=\mathbb{R}^{2} /\left(\mathbb{Z}\binom{6.4}{0}+\mathbb{Z}\binom{0}{3.2}\right)
$$

Green caps cover parts of a blue sphere.

Covering with 8 balls per torus:
-5 inner green balls

- 1 yellow ball (corners are identified)
- 1 orange resp., red ball (edges are identified)

Greedy algorithm

```
Algorithm 1
    1. }i\leftarrow
    2. Sx}i=B(x,r-\varepsilon) for all x\inX
    3. while }\mp@subsup{\bigcup}{j=1}{i}B(\mp@subsup{y}{}{j},r)\not=X d
4. }i\leftarrowi+
5. Choose }y\inX\mathrm{ with }\omega(\mp@subsup{S}{y}{i-1})\geq\omega(\mp@subsup{S}{x}{i-1}
    for all }x\in
6. }\mp@subsup{y}{}{i}=
7. }\mp@subsup{S}{x}{i}=\mp@subsup{S}{x}{i-1}\\mp@subsup{S}{y}{i-1}\mathrm{ for all }x\in
8. end while
Analysis similar to Chvátal (1979) for weighted SET COVER:
- Consider infinite-dimensional LP-relaxation of \(\mathcal{N}(X, r-\varepsilon)\) - Relaxation LP has optimal value \(\frac{1}{\omega_{r-\varepsilon}}\)
- Algorithm 1 defines: \(g(x)=\left\{\begin{array}{l}\omega\left(S_{y^{i}}^{i-1}\right)^{-1} \text { if } x \in S_{y^{i}}^{i-1} \\ 0 \text { otherwise. }\end{array}\right.\)
\(f=\left(\ln \left(\frac{\omega_{r-\varepsilon}}{\omega_{\varepsilon}}\right)+1\right)^{-1} g\) is feasible solution for the dual of LP - \(f\) has objective value \(\frac{|Y|}{\left(\ln \left(\frac{\omega_{r-\varepsilon}}{\omega_{\varepsilon}}\right)+1\right)} \leq \frac{1}{\omega_{r-\varepsilon}}\)
```


Main Result

Theorem 1 (R., Vallentin, 2017)
For every $\varepsilon>0$ with $\frac{r}{2}>\varepsilon>0$ the covering number satisfies

$$
\frac{1}{\omega_{r}} \leq \mathcal{N}(X, r) \leq \frac{1}{\omega_{r-\varepsilon}}\left(\ln \left(\frac{\omega_{r-\varepsilon}}{\omega_{\varepsilon}}\right)+1\right)
$$

Scalar ε has an optimum >0 depending on ω and r.

Corollaries

Theorem 1 gives (after adjusting ε) as corollaries uniform proofs for:

Corollary 1 (Böröczky and Wintsche, 2003)

For $n \geq 3$ the covering density of the n-dimensional sphere by spherical balls is at most

$$
n \ln n+n \ln \ln n+n+o(n) .
$$

Corollary 2 (Fejes Tóth, 2009)

For $n \geq 3$ the covering density of the n-dimensional Euclidean space by congruent balls is at most

Corollary 3 (Naszódi, 2014)
Let $K \subseteq \mathbb{R}^{n}$ be a bounded measurable set. Then there is a covering of \mathbb{R}^{n} by translated copies of K of density at most

$$
\inf _{\delta>0}\left\{\frac{\omega(K)}{\omega\left(K_{-\delta}\right)}\left(\ln \left(\frac{\omega\left(K_{-\delta / 2}\right)}{\omega(B(0, \delta / 2))}\right)+1\right)\right\},
$$

where $K_{-\delta}=\{x \in K: B(x, \delta) \subseteq K\}$ is the δ-inner parallel body of K, assumed to be nonempty.

The bounds of Corollaries $1 \& 3$ could even slightly be improved.

Future Work

Lower bounds improving $\frac{1}{\omega_{r}}$ - using Lasserre hierarchy

Further Applications in:

- Probability Theory ("metric entropy")
- Definition given by Kolmogorov
- Estimate bounds of Gaussian processes $n \ln n+n \ln \ln n+n+o(n)$.

