
BLAST-like Local Alignments with RazerS

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree

Bachelor of Science in Bioinformatics

Hannes Hauswedell

30.07.2009 - 01.10.2009

First Supervisor: Prof. Dr. Knut Reinert
Second Supervisor: Prof. Dr. Daniel Huson
Advisor: David Weese

BLAST-like Local Alignments with RazerS Hannes Hauswedell

I hereby affirm in lieu of an oath that I have produced this work all by myself. Ideas taken directly
or indirectly from other sources are marked as such. This work has not been shown to any other
board of examiners so far and has not been published yet.

I am fully aware of the legal consequences of making a false affirmation.

Place/Date Signature

II

BLAST-like Local Alignments with RazerS Hannes Hauswedell

Contents

1 Introduction 1

2 Methods 2
2.1 Translation . 2
2.2 Filtration . 2
2.3 Verification . 5

3 Implementation 7
3.1 Interface . 7
3.2 Input . 8
3.3 Output . 8

4 Results 9
4.1 Experiment 1 . 9
4.2 Experiment 2 . 11
4.3 Experiment 3 . 12
4.4 Experiment 4 . 14

5 Conclusion 17

6 Acknowledgments 18

References 19

Appendices 21

A BLAST & RazerBlastS output samples 21
A.1 Experiment 1 . 22
A.2 Experiment 3 . 23

B MEGAN taxonomic trees 25
B.1 Gapped Alignments . 25
B.2 Ungapped Alignments . 27

Contents III

BLAST-like Local Alignments with RazerS Hannes Hauswedell

List of Figures

2.1 Standard genetic amino acid code . 3
2.2 Translation in frames . 3
2.3 Q-Gram counting in overlapping parallelograms (Q = 3) 4
2.4 Regular Scoring VS Banded Scoring . 6

4.1 D. Melanogaster (male) . 9
4.2 Eucalyptus Grandis . 11
4.3 Leaf nodes of taxonomic trees generated by MEGAN from gapped alignments 16

A.1 Best BLAST alignment (experiment1) . 22
A.2 Best RazerBlastS alignment (experiment 1) . 22
A.3 Best BLAST alignment (experiment 3) . 23
A.4 Best RazerBlastS alignment (experiment 3) . 23
A.5 BLAST alignment (experiment 3) . 23
A.6 RazerBlastS alignment that differs from BLAST A.5 (experiment 3) 23
A.7 BLAST alignment with gaps (experiment 3) . 24
A.8 RazerBlastS alignment with gaps (experiment 3) . 24

B.1 Taxonomic Tree from gapped BLAST . 25
B.2 Taxonomic Tree from gapped RazerBlastS (shape = 1101, threshold = 4) 25
B.3 Taxonomic Tree from gapped RazerBlastS (shape = 101101, threshold = 8) 26
B.4 Taxonomic Tree from gapped RazerBlastS (shape = 1011101, threshold = 3) 26
B.5 Taxonomic Tree from gapped RazerBlastS (shape = 101101101, threshold = 1) . . . 26
B.6 Leaf nodes of taxonomic trees generated by MEGAN from ungapped alignments . . 27
B.7 Taxonomic Tree from ungapped BLAST . 27
B.8 Taxonomic Tree from ungapped RazerBlastS (shape = 101101, threshold = 8) . . . 28
B.9 Taxonomic Tree from ungapped RazerBlastS (shape = 1011101, threshold = 3) . . . 28
B.10 Taxonomic Tree from ungapped RazerBlastS (shape = 101101101, threshold = 1) . . 28

List of Figures IV

BLAST-like Local Alignments with RazerS Hannes Hauswedell

List of Tables

2.1 Default filter parameters . 5

3.1 Supported BLAST parameters . 7
3.2 Supported RazerS parameters . 8
3.3 Input file formats . 8

4.1 Dataset (experiment 1) . 9
4.2 The best alignments of both runs (experiment 1) . 10
4.3 Performance (experiment 1) . 10
4.4 Dataset (experiment 2) . 11
4.5 Dataset (experiment 3) . 12
4.6 The best alignments of both runs (experiment 3) . 12
4.7 Performance (experiment 3) . 13
4.8 Results & Performance (experiment 3b) . 14
4.9 Performance BLAST (experiment 4) . 14
4.10 Performance RazerBlastS (experiment 4) . 14
4.11 Number of taxa and mapped reads for the taxonomic trees 16

List of Tables V

BLAST-like Local Alignments with RazerS Hannes Hauswedell

1 Introduction

Modern second-generation sequencing technologies are strongly influencing the field of sequence
analysis. Ultra-high throughput sequencing technologies produce vast amounts of DNA reads –
without the need for amplification through cloning or PCR. The increased availability of these
technologies has spawned a lot of research in the field of metagenomics.

Metagenomics is the comparative analysis of large uncharacterized genetic samples obtained
from a common habitat (e.g. soil or sea water). Goals include the research of microbial diversity
and evolution in a certain environment or the study of organisms that are not easily cultured on
artificial conditions.

The dramatic increase in data, however, presented a challenge to sequencing and assembly
software. This challenge was met with a new generation of read mappers that implement differ-
ent approaches to efficiently map complete short reads against a reference genome (“semi-global”
alignment). Among modern read mapping software RazerS (Weese et al., 2009) is one of the most
efficient and versatile available. It has a high performance and does not exhibit any of the disad-
vantages many other read mappers do, including limitations in read lengths (i.a. Zoom, Lin et al.
2008; Soap, Li et al. 2008b), restriction to Hamming-distance scoring (i.a. Eland, Cox 2006; Maq,
Li et al. 2008a), or the lack of full sensitivity control (i.a. Shrimp, Rumble et al. 2009; Seqmap,
Jiang and Wong 2008).

However, read mapping cannot be applied to all sequencing problems in metagenomics. For
one, the length of “short reads” produced by sequencing hardware increases ever and with it the
probability that reads reach into or even span an intron, effectively preventing semi-global alignment
between transcriptome and DNA. In other situations it is advantageous to search directly on a
protein database and not on DNA. Therefore traditional local alignment search tools, like BLAST
(Altschul et al., 1997) are still common in metagenomics.

BLAST stands for Basic Local Alignment Search Tool, and is the de-facto standard for heuristic
local alignments. It is often referred to as the most widely employed bioinformatics tool ever, the
paper of the first version (Altschul et al., 1990) is the most highly cited paper of the 1990s. With
version 2 (Altschul et al., 1997) there have been substantial improvements to performance and
amongst other features, support for aligning with gaps was added. Despite its lower speed compared
to read mappers, this makes BLAST an attractive choice, even in the field of metagenomics. For
instance MEGAN (Huson et al., 2007) – an advanced graphical desktop-application for visualizing
and analyzing metagenomic datasets – operates on BLAST output.

The obvious question is, can an alternative to BLAST be devised that performs better, espe-
cially or at least for a specific use case like metagenomics? This work is to show that it is principally
possible to create a local alignment search tool that is faster than BLAST and on the other hand
compatible to it in many ways.

To this end, we will create a modified version of RazerS, called RazerBlastS that – like RazerS
– builds upon the high-performance, generic C++-library SeqAn (Döring et al., 2008).

Introduction 1

BLAST-like Local Alignments with RazerS Hannes Hauswedell

2 Methods

Adapting RazerS to the task at hand, involves many different steps, of which the algorithmic
background will be discussed in this chapter.

Read mapping can usually be divided into two phases, filtration and verification. In filtration,
candidate regions on the genome are identified by a low complexity algorithm. These regions are
then examined in a more expensive verification step that decides about its status as a match. We
will apply this functional devision of the algorithm to BLAST as well and compare both phases in
BLAST, RazerS and RazerBlastS.

As both the blastn-mode and the blastx-mode are to be implemented, RazerS needs to be
adapted to support amino acids in addition to nucleotides. Fortunately, SeqAn is designed in a
generic way, based on template-subclassing, so most algorithms are agnostic of the alphabet in use
and little changes have to be made in that respect. However, initially the sequences will have be
to translated, which is briefly described here.

2.1 Translation

In blastx-operation, the database is a protein-database, while the query is DNA. Hence the query
sequences need to be translated from nucleotide to amino acid alphabet, which is done with the
help of a codon translation table (see fig.2.1). In RazerBlastS this was implemented as a 43-array
that allows constant-time conversion of a DNA/RNA-triplet. Other translation tables beside the
Universal Code exist – and should be rather easy to add to RazerBlastS – but have not been
included in this first implementation.

Since DNA/RNA to amino acid conversion is three-letter to one-letter, there are three different
possible translations, called frames (fig.2.2). As usually both genome strands are analyzed (-S 3),
we get six amino acid strings for every input sequence.

2.2 Filtration

2.2.1 BLAST

The well known BLAST algorithm identifies its alignment candidate regions in the following steps:

1. generate the list of all k-letter words in the query string (where k is set by the parameter -W
and defaults to 11 for nucleotides and 3 for amino acids, see tab.2.1)

2. for each k-letter word, also add the word neighborhood, i.e. all k-letter words with high
similarity to the list (only for amino acids)

3. build a tree-like structure from the word-list

4. scan the database for exact hits using the tree

Methods 2

BLAST-like Local Alignments with RazerS Hannes Hauswedell

start
start (rare)
stop

Figure 2.1: Standard genetic amino acid code
c©Wikimedia Commons / cc-by-sa

Figure 2.2: Translation in frames
(from Lodish, 5.Ed., c©W.H. Freeman & Co)

2.2.2 RazerS

RazerS uses the Swift Algorithm (Rasmussen et al., 2006) for filtration. The implementation is
based on the q-gram lemma (Owolabi and McGregor, 1988; Jokinen and Ukkonen, 1991) and works
with an index of gapped or ungapped shapes (Burkhardt and Kärkkäinen, 2003). Gapped shapes
result in a higher sensitivity while maintaining equal specificity.

The q-gram lemma states that two sequences with length n and Hamming or edit distance k
share at least

t = n + 1− (k + 1)q

q-grams, where a q-gram is a common substring of length q. The original RazerS paper (Weese
et al., 2009) explains further:

“For any read r ∈ R each dot plot parallelogram of dimension |r| × (k + 1) with at
least t q-hits contains a potential match. Instead of counting q-hits for each possible
parallelogram separately, it suffices to count them in overlapping |r|×w parallelograms
with w > k + 1 and an overlap of k, as every |r| × (k + 1) parallelogram is contained in
one |r| × w parallelogram, see [fig.2.3].

If for i, j ∈ N holds r[i..i+ q− 1] = G[j..j + q− 1], the corresponding q-hit is covered by
the diagonal j − i. For an overlap of k and w = d + k the |r| × w parallelograms begin
at diagonals 0, d, 2d, If d is a power of 2, the parallelograms containing a q-hit can
efficiently be determined by bit-shifting j − i.

q-hits are determined by searching overlapping q-grams G[j..j + q − 1], j = 1, ..., |G| −
q + 1 in a q- gram index of all overlapping q-grams of sequences in R. Only a small
number of counters is needed per read, when sliding the q-gram over G. As every |r|×w
parallelogram spans at most |r|+ w− 1 letters of G, a parallelogram counter can be re-
used after |r|−w−q sliding steps. Before re-using a counter, the associated parallelogram
is verified if the counter has reached threshold t.

The Swift approach can also be used with gapped shapes Q using a Q-gram index and
replacing each q in the formulas above by span(Q).”

Methods 3

BLAST-like Local Alignments with RazerS Hannes Hauswedell

… A A G A C A T T G A C C G A C A G T T T C T G A C T C A A

A + + + + + + + + + +

C + + + + + + +

A + + + + + + + + + +

G + + + + +

T + + + + + + +

C + + + + + + +

C + + + + + + +

G + + + + +

A + + + + + + + + + +

C + + + + + + +

A + + + + + + + + + +

A + + + + + + + + + +

G + + + + +

T + + + + + + +

T + + + + + + +

T + + + + + + +

7
3

9

5

Figure 2.3: Q-Gram counting in overlapping parallelograms (Q = 3)

Filter parameters RazerS comes with a parameter chooser that automatically computes the shape
Q and the threshold t to achieve a given minimum sensitivity with optimal running time. This
is done with a database of pre-computed shape/threshold combinations that were generated for
read lengths 24 to 100 (for read length > 100 values are extrapolated), error rates up to 10% and
based on the Illumina error profile (Dohm et al., 2008). The accuracy of the parameter chooser
was verified on simulated and real data. For more information see Weese et al. (2009).

Automatic parameter choosing can be deactivated by specifying --shape and/or --threshold
manually.

2.2.3 RazerBlastS

RazerBlastS uses the RazerS filter with only a little modification. Since we do not aim at semi-
global alignments, a parameter was added to reduce the size of the parallelogram. The factor
defaults to 0.4, but can be set manually with --read-length-adjust.

For blastn-mode the automatic shape and threshold calculation was retained, with the pos-
sibility of either overwriting it the through the mentioned RazerS-parameters(--shape and --
threshold) or through the BLAST-parameter -W (-W x sets an ungapped shape of length x and
a threshold of 2 for gapped alignments and 1 for ungapped alignments). This was done, because
automatic parameter calculation is major advantage of the RazerS filter compared to BLAST. A
more traditional blastn-like behavior can be achieved with -W 11.

For blastx-mode RazerBlastS cannot use automatic parameter calculation, since the mecha-
nisms where optimized for nucleotide reads. To be close to BLAST’s default behavior RazerBlastS
defaults to -W 3 in blastx-mode. However it is still possible to use gapped shapes or larger thresh-
olds by specifying them manually (with the aforementioned RazerS-parameters).

Methods 4

BLAST-like Local Alignments with RazerS Hannes Hauswedell

blastall RazerBlastS
blastn blastx blastn blastx

gaps w/o gaps gaps w/o gaps gaps w/o gaps gaps w/o gaps

pattern length 11 3 auto 3
pattern count 1 2 1 auto 2 1

Table 2.1: Default filter parameters
pattern length is word length for BLAST and shape length for RazerBlastS
pattern count is two-hit/one-hit extension for BLAST and threshold for RazerBlastS

2.3 Verification

2.3.1 BLAST

Extension Between version 1 of BLAST(Altschul et al., 1990) and version 2 (Altschul et al., 1997)
the verification step changed significantly. In BLAST2 it follows the following scheme:

1. for every hit check if there is another non-overlapping hit on the diagonal within distance A
(the word neighborhood threshold in filtration was lowered to increase the likelihood for this)

2. if yes, combine these into a segment and extend it in traditional BLAST-manner (without
gaps, as long the score does not fall more tha Xu below the best score yet found)

3. if the resulting HSP has a score > Sg choose its best-scoring substring of length |HSP | − 11
(or the central character-pair if |HSP | < 11) and use that as the seed for a gapped alignment

4. this gapped alignment is also realized via an X-Drop approach, where the score of the align-
ment must not fall more than Xg below the best score yet found

Significance evaluation If a match is found with this method, its score S is calculated and then
normalized:

S′ =
λS − lnK

ln 2
(Eq.1)

Where λ and K are constants specific to the scoring scheme (Altschul and Gish, 1996). The
normalized score S′ is to said to be expressed in bits. Based on S′ we can then calculate the
E-Value:

E = nm2−S′ (Eq.2)

The E-Value is the number of sequences with score S expected under random circumstances and
therefore a direct indicator for significance. The E-Value-Threshold (parameter -e) finally decides
whether an alignment is included in the output or not.

2.3.2 RazerS

RazerS verifies gapped alignments with Myers Bitvector algorithm (Myers, 1999). The Bitvector
algorithm takes advantage of fast binary operations to calculate (sub-)strings with minimal edit
distance, resulting in the best semi-global alignment between read and genome.

For ungapped alignments, each diagonal is scored character-by-character, as long as fewer than
k mismatches occur.

Methods 5

BLAST-like Local Alignments with RazerS Hannes Hauswedell

2.3.3 RazerBlastS

Since we need real local alignments and arbitrary scoring schemes, Myers Bitvector algorithm was
not usable. To not fall short of the desired sensitivity, we decided to use the exact Gotoh algorithm
(Gotoh, 1982), which is based on the Smith-Waterman algorithm (Smith and Waterman, 1981),
but performs affine gap costs calculation and stays in O(n2) running time.

Unfortunately a banded implementation of the algorithm was not available for local alignments,
so not only the parallelograms, but entire rectangles are verified (see fig.2.4). (In our case reducing
the DP-Matrix to the parallelogram as band would not have wasted information, since the filter
already processes the database in overlapping parallelograms).

For ungapped alignments we score all diagonals and choose the best overall substring. Diagonals
are scored similar to Smith-Waterman (scores < 0 are treated as = 0; the best substring of one
diagonal ends at the maximum score and starts at the last zero-score before the maximum).

Both approaches work with user selectable match-, mismatch-, gap-open- and gap-extension-
scores/penalties, as long as statistical parameters are available for the combination (see below).
For blastx Blosum62-based scoring is supported as well.

… A A G A C A T T G A C C G A C A G T T T C T G A C T C A A

A + + + + + + + + + +

C + + + + + + +

A + + + + + + + + + +

G + + + + +

T + + + + + + +

C + + + + + + +

C + + + + + + +

G + + + + +

A + + + + + + + + + +

C + + + + + + +

A + + + + + + + + + +

A + + + + + + + + + +

G + + + + +

T + + + + + + +

T + + + + + + +

T + + + + + + +

Figure 2.4: With a banded implementation only the yellow area would have to be computed. Right
now we are also computing the orange area, which significantly increases the number of operations

Significance evaluation For BLAST-like statistical evaluation, statistical information and tables
from algo/blast/core/blast_stat.c 1 were imported and adapted for RazerBlastS. Among these
are precalculated “Karlin-Altschul-Values” (Altschul and Gish, 1996) – λ, K and H – for different
nucleotide and protein scoring schemes.

Based on these values RazerBlastS implements normalization (Eq.1) and E-Value calculation
(Eq.2). Unfortunately it was not possible to implement edge-effect correction (Altschul, 1997), yet.
Therefore E-Values are expected to be slightly larger in RazerBlastS compared to BLAST.

1Source-Code of: ncbi-toolkit-2009.03.01 (containing BLAST v2.2.19)

Methods 6

BLAST-like Local Alignments with RazerS Hannes Hauswedell

3 Implementation

The main BLAST-tool, blastall has a different operation modes for different tasks (selectable
with the -p parameter). While the initial focus of RazerBlastS was on Nucleotide-BLAST (blastn),
it was decided later to also implement Nucleotide-vs-Protein-BLAST (blastx), as it is commonly
used in metagenomics.

The algorithms discussed previously were adapted mostly from existing RazerS and SeqAn-
code. In this chapter we will give an overview over the application interface, as well as input and
output formats developed for or available in RazerBlastS.

3.1 Interface

RazerBlastS supports two kind of parameters, BLAST-style parameters (tbl.3.1) and RazerS-style
parameters (tbl.3.2). To be as close as possible to BLAST’s parameter handling, most of the
frequently used options were implemented and RazerS options were replaced where possible. Those
that were not replaced and are still applicable to RazerBlastS were retained in their “long format”,
so as not to conflict with BLAST’s one-letter parameters. Altogether only a subset of all BLAST
options is available, however they should suffice for the task at hand.

-p blastn|blastx program (operation mode)
-r x score for a match1

-q x penalty for a mismatch1

-G x penalty for gap-existance
-E x penalty for gap-extension
-g T|F gapped alignments (true|false)
-S 1|2|3 query strands (top|bottom|both)
-e x e-Value Threshold
-W x word size / explicit shape (filter)
-i filename input file (queries)
-d filename input file (database)
-o filename output file

Table 3.1: Supported BLAST parameters
1blastn-only

Default values for all options were chosen to be BLAST-like, with some notable exceptions, as
noted above (tbl.2.1). Of all parameters only -p, -i, -d and -o are required, so when using the
mentioned subset of options it should be possible to use RazerBlastS as a drop-in-replacement for
blastall.

Implementation 7

BLAST-like Local Alignments with RazerS Hannes Hauswedell

--shape BITSTRING shape (deactivate param.chooser)
--threshold x minimum k-mer threshold
--recognition-rate x minimum sensitivity
--overabundance-cut x k-mer overabundance cut ratio
--repeat-length x simple-repeat length threshold
--taboo-length x taboo length
--read-length-adjust x adjust the read length given to filter
--percent-identity x error tolerance of the filter
--low-memory optimize for low memory (smaller shapes)
--(v)verbose increased verbosity

Table 3.2: Supported RazerS parameters

3.2 Input

Query Database

blastall FASTA, ASN.1 binary
RazerS FASTA, FASTQ, Genbank

Table 3.3: Input file formats

FASTA The FASTA file format was developed at the NCBI with the FASTA local alignment
software. While the FASTA program was superseded by BLAST for all use cases, the original
FASTA file format is still a de-facto standard for nucleotide and protein sequences. It is supported
natively by BLAST for query files and for both query and database by RazerS.

FASTQ A lot of short-read sequencing data for queries is available in FASTQ, a format that, in
addition to FASTA-like sequence information, also contains read quality estimates for all characters.
These quality estimates are based on the properties of the sequencing hardware that isn’t equally
accurate on every position. FASTQ is supported natively by RazerS and can be converted to
FASTA for use with BLAST by tools like SAK (“Swiss Army Knife”), a small program based
SeqAn for format conversion and sequence extraction.

BLAST’s binary databases For performance reasons BLAST uses preformatted and indexed bi-
nary databases. They are generated from FASTA or ASN.1 formats with the help of formatdb,
another tool from the NCBI-toolkit. RazerS has no support for these databases, so the reverse pro-
cess (conversion from binary format to FASTA) is necessary for databases like nr. This is possible
with fastacmd, which is also included in the NCBI-toolkit.

As blastall takes the FASTA-file as formal filename-argument (although it then reads the
binary files) command-line syntax is identical to RazerBlastS (see tab.3.1).

3.3 Output

BLAST supports a variety of output formats. Although there are certain advantages to more
machine readable formats like XML, we chose to implement the traditional BLAST report. It is
still the default format and very common. MEGAN also processes traditional BLAST reports, so
we will be able to verify a certain degree of formal correctness by feeding our output to MEGAN.

Implementation 8

BLAST-like Local Alignments with RazerS Hannes Hauswedell

4 Results

In this chapter we will perform tests of RazerBlastS on real data and compare it with BLAST.
It should be noted that these are test-datasets and in some aspects not typical for metagenomics.
The same is true for the choice of parameters that was sometimes made to prove certain default
behavior and was limited by hardware constraints in other situations.

All test were conducted on Intel Xeon machines with 3.2Ghz, 2-4 CPU-Cores and 6GiB Ram.
The operating system used was Debian GNU/Linux, version 5.0.3 (“Lenny”), a free UNIX-like
operating system 1. As support for threading is not stable in RazerS, yet, the single-threaded
versions of BLAST and RazerBlastS were used in all experiments.

For each experiment, quality (and quantity) of results are compared, as well as run-time and
memory usage. The run-time was measured with the UNIX time command; memory usage is the
peak heap usage measured by pre-loading the memusage-library (stack memory usage is negligible
on both programs).

No work was yet done on synchronizing the behavior of the repeat screeners, so they were
deactivated (-F F) on all test-runs so as not to impede comparability analysis.

4.1 Experiment 1

Figure 4.1: D. Melanogaster (male)
c©Genome Informatics Lab of Indiana University

Query Genome

Species Drosophila Melanogaster
Description Transcriptome Study 2R-Chromosome
Size(in bases) 11.5M 21.6M
Source NCBI short read archive2 FlyBase3

Table 4.1: Dataset (experiment 1)

In the first experiment we will compare the blastn-modes of RazerBlastS and BLAST. Query
and genome sequences were selected from the Drosophila Melanogaster organism (see tbl.4.1).

Parameters BLAST was invoked with the following parameters:

1 b l a s t a l l −p BLASTN −r 2 −e 0 .1 − i SRR005468 . f a s t a \
2 −d dmel−2R−chromosome−r5 . 2 1 . f a s t a −o out −F F

1http://debian.org
2http://www.ncbi.nlm.nih.gov/sites/entrez?db=sra&term=SRX001435&report=full
3ftp://ftp.flybase.net/genomes/Drosophila_melanogaster/current/fasta/dmel-2R-chromosome-r5.21.

fasta.gz

Results 9

http://debian.org
http://www.ncbi.nlm.nih.gov/sites/entrez?db=sra&term=SRX001435&report=full
ftp://ftp.flybase.net/genomes/Drosophila_melanogaster/current/fasta/dmel-2R-chromosome-r5.21.fasta.gz
ftp://ftp.flybase.net/genomes/Drosophila_melanogaster/current/fasta/dmel-2R-chromosome-r5.21.fasta.gz

BLAST-like Local Alignments with RazerS Hannes Hauswedell

RazerBlastS was invoked with similar arguments:

1 r a z e r b l a s t s −p BLASTN −r 2 −e 0 .3 − i SRR005468 . f a s t a \
2 −d dmel−2R−chromosome−r5 . 2 1 . f a s t a −o out −−vverbose

The difference in E-Value threshold is due to the aforementioned missing edge-effect correction
in RazerBlastS that results in slightly higher E-Values. Tests have shown that these two thresholds
produce similar results in blastn-Mode.

Results The output of both program runs was parsed with a combination of UNIX tools, including
GNU AWK4 and sort, to produce a formatted list of the best alignments (sorted by E-Value). The
best 50 alignments produced by both tools are identical, with minor differences in sorting (see
tbl.4.2 for the first few). Appendix A.1 (p.22) contains each program’s full output for the best
alignment.

RazerBlastS Blast
E-Value bits ReadId E-Value bits ReadId

3e-148 522.5 SRR005468.22871 1e-148 522 SRR005468.22871
5e-146 515.2 SRR005468.16600 1e-146 515 SRR005468.16600
5e-146 515.2 SRR005468.27361 1e-146 515 SRR005468.27361
3e-142 502.6 SRR005468.53331 1e-142 502 SRR005468.53331
5e-140 495.4 SRR005468.28974 1e-140 495 SRR005468.28974
2e-137 486.4 SRR005468.15811 1e-138 488 SRR005468.25265
2e-137 486.4 SRR005468.25265 1e-137 484 SRR005468.26229
8e-137 484.6 SRR005468.26229 1e-137 486 SRR005468.15811
1e-134 477.4 SRR005468.26112 1e-134 477 SRR005468.26112
1e-133 473.8 SRR005468.56215 1e-133 471 SRR005468.39513
5e-133 472.0 SRR005468.39513 1e-133 473 SRR005468.56215
7e-131 464.8 SRR005468.53536 1e-131 464 SRR005468.53536
8e-131 464.8 SRR005468.56043 1e-131 464 SRR005468.56043
8e-130 461.1 SRR005468.45656 1e-130 461 SRR005468.22808
9e-130 461.1 SRR005468.22808 1e-130 461 SRR005468.45656
3e-129 459.3 SRR005468.23891 1e-129 457 SRR005468.40897
3e-129 459.3 SRR005468.25855 1e-129 459 SRR005468.23891
1e-128 457.5 SRR005468.40897 1e-129 459 SRR005468.25855
4e-127 452.1 SRR005468.23669 1e-127 452 SRR005468.23669
5e-127 452.1 SRR005468.44427 1e-127 452 SRR005468.44427

Table 4.2: The best alignments of both runs (experiment 1)

Performance Given values are the best out of three identical runs (variance in run-time was < 30s
for both programs). RazerBlastS finishes in 63% of BLAST’s run-time, but requires significantly
more memory.

RazerBlastS Blast

run-time 7m18s 11m34s
memory 625MiB 32MiB

Table 4.3: Performance (experiment 1)

4http://www.gnu.org/software/gawk/

Results 10

http://www.gnu.org/software/gawk/

BLAST-like Local Alignments with RazerS Hannes Hauswedell

4.2 Experiment 2

Figure 4.2: Eucalyptus Grandis
public domain work available from Wikimedia

Commons

Query Genome

Species Eucalyptus Grandis miscellaneous
Description Transcriptome Subset of nr
Size(in bases) 1.9M ∼ 250M
Source NCBI short read archive5 NCBI BLAST

Table 4.4: Dataset (experiment 2)

In the second experiment the blastx capabilities are to be compared. For performance reasons,
a small-sized random subset of the BLAST nr database was extracted and used. The query consists
of short reads (SRR001658) from Eucalyptus Grandis, whose genome is not yet characterized.

Parameters The programs were invoked with the following parameters:

1 b l a s t a l l −p BLASTX −e 0 .1 − i SRR001658 . f a s t a −d sma l l n r . f a s t a −o out \
2 −F F

and:

1 r a z e r b l a s t s −p BLASTX −e 0 .1 − i SRR001658 . f a s t q −d sma l l n r . f a s t a −o out \
2 −−vverbose

On BLASTX test-runs against nr the missing edge effect correction seemed less significant and
RazerBlastS produced more results, so the E-Value thresholds in this experiment are the same.

Performance The BLAST run finished after 3h34m, while the RazerBlastS run had to be inter-
rupted after 4h, because up to that point it had reached only approximately 3% progress. Evidently
the default filter settings for RazerBlastS are too slow.

5http://www.ncbi.nlm.nih.gov/sites/entrez?db=sra&term=SRX000427

Results 11

http://www.ncbi.nlm.nih.gov/sites/entrez?db=sra&term=SRX000427

BLAST-like Local Alignments with RazerS Hannes Hauswedell

4.3 Experiment 3

4.3.a

Query Genome

Species Eucalyptus Grandis miscellaneous
Description Transcriptome nr (complete)
Size(in bases) 313 ∼ 5G
Source NCBI short read archive NCBI BLAST

Table 4.5: Dataset (experiment 3)

To produce alignments in the given amount of time we decided to reduce the number of reads
to a total of three reads from the above sample (reads 6, 23 and 38 from SRR001658). The intent
of a query that small, was to be able to search the complete nr-database.

Because RazerS loads the complete database into main memory, the nr-database was split into
four and searched in sequential runs. The results were concatenated. For comparability the same
was done with BLAST in addition to a regular BLAST run.

Parameters The programs were invoked with the following parameters (where * stands for 0-3):

1 b l a s t a l l −p BLASTX −e 0 .1 − i r eads . f a s t a −d nr . f a s t a −o out −F F

1 b l a s t a l l −p BLASTX −e 0 .1 − i r eads . f a s t a −d nr0 ∗ . f a s t a −o out 0 ∗ −F F −I

1 r a z e r b l a s t s −p BLASTX −e 0 .1 − i r eads . f a s t a −d nr0 ∗ . f a s t a −o out 0 ∗

Results Most of the best alignments of each program are identical, with minor differences in
sorting (see tbl.4.6). The best alignment of each program is printed completely in Appendix A.2
(p.23).

RazerBlastS Blast
E-Value bits ReadNr gi E-Value bits ReadNr gi

3e-18 68.9 6 118482830 2e-10 68.9 6 118482830
5e-18 68.9 6 224065405 2e-10 68.9 6 224065405
8e-18 67.4 6 1172597 5e-10 67.4 6 1172597
5e-17 64.7 6 225470816 2e-09 65.5 23 255562096
2e-16 62.8 6 115488282 2e-09 64.7 23 147789708
2e-16 64.7 23 147789708 3e-09 64.7 23 157355950
2e-16 65.5 23 255562096 3e-09 64.7 23 225429102
3e-16 64.3 23 157329195 3e-09 64.7 6 225470816
3e-16 64.3 23 225438223 4e-09 64.3 23 147801370
3e-16 64.3 23 225467504 4e-09 64.3 23 224067152
3e-16 64.7 23 157355950 4e-09 64.3 23 225438223
4e-16 62.0 6 224132228 4e-09 64.3 23 225467504
4e-16 64.3 23 147801370 4e-09 64.3 23 157329195
4e-16 64.3 23 224067152 9e-09 63.2 23 18424995

Table 4.6: The best alignments of both runs (experiment 3)

Results 12

BLAST-like Local Alignments with RazerS Hannes Hauswedell

The amount of alignments produced differ by magnitudes; BLAST produces 46 alignments
between the three reads and the complete nr database, while RazerBlastS produces 1236026 align-
ments. This is due to the curious fact that in this experiment E-Values calculated by RazerBlastS
are significantly smaller than BLAST’s (while bits-score are still identical or very close).

Filtering the results through GNU awk with a manual bits-score threshold of the lowest bits-
score produced by BLAST (= 53.5bits), yields 45 alignments. The “missing” match is also found
by RazerBlastS, but scores 52 bits and is aligned a little different (see Appendix A.2). Further
investigation would have to clarify the reason for this. The next best RazerBlastS alignment
however, scores significantly worse (36.2 bits) which strongly suggests that with correct E-Value
calculation it (and all following alignments) would not have been included.

Performance Table 4.7 contains run-time and memory usage of the program runs, measured as
in experiment 1. Note that the different segments of nr are those that can be found on the NCBI
ftp server 6, which are not equal in size. The last line contains the sum of the individual runs. The
sums are just given as an overview over the required resources for the tests, they are not significant
on their own, i.e. a single RazerBlastS run on more potent hardware would have used less memory
and probably also less time.

RazerBlastS Blast Blast (one-run)
run-time memory run-time memory run-time memory

17m28s 2.16GiB 39s 2.7MiB
19m06s 1.87GiB 44s 2.7MiB
19m48s 2.00GiB 53s 2.7MiB
10m22s 1.11GiB 25s 2.7MiB

65m42s 7.14GiB 2m41s 10.8MiB 2m46s 2.7MiB

Table 4.7: Performance (experiment 3)

4.3.b

Using the same dataset, as in part a of this experiment, we will now measure the influence of
different filter parameters on amount and quality of results, as well as run-time and memory usage.
We will use only the fourth (“03”) segment of nr and also check if the eight alignments found by
BLAST are contained in the output. Note, however, that containing these eight alignments in itself
does not warrant for sensitivity in general, since these alignments are very high scoring.

RazerBlastS is run with the same parameters as above, additionally --shape, --threshold
and --verbose are specified (the latter to receive filter statistics).

The results (tbl.4.8) show significant speed increases when modifying shape and/or threshold,
while all runs, but one, include the results BLAST gives. Even the runs producing comparably few
alignments, produce many alignments that score the exact E-Value threshold of 0.1, showing that
these filter settings are principally not too“strict”for the desired statistical significance. However, as
noted above, it is not possible to make general assumptions about sensitivity compared to BLAST,
based on just this set of data.

6ftp://ftp.ncbi.nlm.nih.gov/blast/db

Results 13

ftp://ftp.ncbi.nlm.nih.gov/blast/db

BLAST-like Local Alignments with RazerS Hannes Hauswedell

shape threshold # alignments # of ali. > 50 bits run-time memory

111 2 193174 8 9m24s 1.1GiB
111 3 23918 8 1m39s 1.1GiB
111 4 8411 8 40ss 1.1GiB
111 5 3069 8 38s 1.1GiB
1101 2 52951 8 6m04s 1.1GiB
1101 3 14647 8 59s 1.1GiB
1101 4 4227 8 32s 1.1GiB
1111 2 10166 8 56s 1.1GiB
1111 3 2338 8 33s 1.1GiB
1111 4 449 7 35s 1.1GiB
11011 2 4854 8 43s 1.1GiB
11011 3 654 8 39s 1.1GiB

Table 4.8: Results & Performance (experiment 3b)

4.4 Experiment 4

In the fourth experiment MEGAN shall be used to compare local alignment runs. In part a BLAST
and RazerBlastS will generate data that we will visualize and analyze with the help of MEGAN in
part b of the experiment.

4.4.a

The dataset used, is that of experiment 2 (tbl.4.5, p.12). Both BLAST and RazerBlastS will be run
also in their ungapped mode (-g F for both). The default filter settings for RazerBlastS (tbl.2.1)
will not be used, as they have shown to be too slow. Among those options selected, are also rather
large shapes and thresholds as we expect MEGAN use cases where it is desirable to sacrifice a
certain degree of sensitivity for speed.

Blast
alignments run-time memory

gapped 367076 3h34m 12.4MiB
ungapped 161613 3h19m 5.2MiB

Table 4.9: Performance BLAST (experiment 4)

RazerBlastS
shape threshold # alignments # ali. > 34bits run-time memory

g
a
p
p
ed

1101 4 19881971 346467 9h32m 2.27GiB
101101 8 648624 119276 2h50m 0.55GiB
1011101 3 2584809 191027 1h20m 0.78GiB

101101101 1 6667956 257043 1h47m 2.79GiB

u
n
g
a
p
p
ed 101101 8 563870 156541 3h03m 0.51GiB

1011101 3 2105092 860594 1h38m 0.76GiB
101101101 1 5706524 1269423 2h13m 2.51GiB

Table 4.10: Performance RazerBlastS (experiment 4)

Results 14

BLAST-like Local Alignments with RazerS Hannes Hauswedell

Results As in the previous experiment the RazerBlastS results were filtered for the minimum
bits-score found in the BLAST-runs. For the gapped alignments, this shows a varying degree of
sensitivity compared to BLAST and depending on the choice of filter parameters. Provided that
all bits-score are calculated correctly, none of the runs achieve equal sensitivity to BLAST. A more
in depth analysis, unfortunately not in the scope of this work, will have to show whether this can
be reached in an affordable way.

While the best alignments in ungapped mode are also identical to BLAST’s ungapped mode,
the bits-scores differ greatly (the raw scores are identical, though). Since the ungapped mode of
BLAST2 is not discussed in the paper (Altschul et al., 1997), likely certain statistical specifics were
not correctly implemented in RazerBlastS. This explains the unexpectedly high number of scores
>= 34 bits. Based on these results it is currently not possible to estimate sensitivity in ungapped
mode.

Performance The run-time varies strongly between the different runs, but six out of the seven
runs are faster than BLAST, even in ungapped mode. Three runs finish in less than half the time,
while one of them still produces ∼ 70% of the amount of matches BLAST does. Curiously the run-
time of runs in ungapped mode is higher than in gapped mode (for equal parameters). Apparently
there is still room for improvement in the implementation.

Memory usage is significantly higher than BLAST, as described earlier. Since it depends both
on the length of the shape and the matches found, it varies between the different runs.

4.4.b

File import Importing the output files generated by RazerBlastS into MEGAN revealed two faults
in the format implementation that caused misbehavior or loss of information:

1. RazerBlastS does not introduce line-breaks in genome-headers, causing errors when especially
long headers are read by MEGAN

2. RazerBlastS creates a read-header for each reading frame, instead of creating one for each
read, which leads MEGAN to interpret the reading frames as different reads (apparently
MEGAN does not compare the query names)

While these issues could be fixed in the program it was also desirable to fix the files already
produced. For the first problem this was achieved with the GNU sed 7, for the second with GNU
awk.

With the issues solved, output files were imported into MEGAN without visible errors and
converted to MEGAN’s own file format, RMA. The default values for settings like minimal bits-score
and top-percentage were retained. For some runs the read number was manually set as described
in the MEGAN manual, because reads with no hits are currently not printed by RazerBlastS.

7a small UNIX tool mostly for replacement operations based on regular expressions,
http://www.gnu.org/software/sed/

Results 15

http://www.gnu.org/software/sed/

BLAST-like Local Alignments with RazerS Hannes Hauswedell

Taxonomic trees Figure 4.3 presents the leaf nodes of all trees in the “heat map” display mode.
As the scoring of ungapped alignments has shown to be flawed the results are not discussed here.
However an overview can be found, together with the full trees for all runs, in Appendix B (p.25).

Note that only a small subset of the nr-database was searched, so the results are not expected
to be biologically relevant and the main focus is on comparability with BLAST.

BLAST RazerBlastS, (shape|threshold)

1101|4 101101|8 1011101|3 101101101|1

Figure 4.3: Leaf nodes of taxonomic trees generated by MEGAN from gapped alignments

The results for the gapped alignments are promising. As expected, with fewer well scoring
matches (tbl.4.10), not all taxa are created in all trees (see also tbl.4.11) and some leaves are
missing. However the species found as being most closely related to the query (“Vitis vinefera”
and “Arabidopsis thaliana”) are found and high scored in all RazerBlastS-runs as well. If it can be
assumed that “Oryza” is close to “Oryza sativa Japonica Group” there are also no false positives,
in the sense that RazerBlastS assumes relatedness where there is none. As visible in Appendix B
(p.25) the general composition of the trees is very similar as well.

Further research, beyond the scope of this work, will have to be conducted to compare larger
scales of data and runs with comparable sensitivity.

shape threshold # of taxa # of reads mapped∗

BLAST 114 5968

R
a
z
e
r
B

l
a
st

S 1101 4 98 4854
101101 8 86 4356
1011101 3 88 4551

101101101 1 83 2567

Table 4.11: Number of taxa and mapped reads for the taxonomic trees
∗ total number of reads is 15236

Results 16

BLAST-like Local Alignments with RazerS Hannes Hauswedell

5 Conclusion

The BLAST default output format was implemented successfully with only minor outstanding
issues that did not hinder a flawless import by MEGAN.

A BLAST-like interface was developed that enables identical or very similar operation for many
regular use cases. This not only eases transition for users acquainted with BLAST, but could permit
directly replacing BLAST in automated scripts or more complex setups.

Adapting RazerS to perform local alignment verification was successful. It produces the ex-
pected results in all operation modes (nucleotide and protein, with different scoring schemes),
however there is still room for improvement in terms of performance. A banded version of the
Gotoh algoritm or X-Drop-Extension similar to BLAST could probably yield comparable results
in less time. The latter might be a better choice with respect to sensitivity. The implementation
of gap-free local alignments needs to be reworked, as it currently presents no run-time advantage
over the (more sensitive) gapped alignment.

Statistical evaluation of the alignments works for the most part. The bits-scores calculated from
the regular alignment scores are identical (or close) to BLAST’s in the default gapped mode. This
proves that λ- and K-constants were properly imported from BLAST and are correctly selected
for the scoring scheme in use. For ungapped alignments the statistical background needs to be
reassessed. E-Values are calculated from Eq.2 (p.5), which is only approximately correct, since it
does not include modifiers to the search space, like edge effect correction. Therefore E-Values differ
slightly from BLAST’s, depending on sequence lengths, although the rank of most alignments is
identical or similar.

The tests conducted in blastn-mode show very promising results. RazerBlastS finished in less
than two thirds of BLAST’s run-time and since the parameters were chosen by the parameter-
chooser the expected sensitivity is very high. However memory usage in all RazerBlastS-runs
exceeds BLAST’s by orders of magnitude. This is partly due to the filter index, which cannot
be overcome and partly due to RazerBlastS loading the entire genomes into memory, instead of
processing a database like BLAST. This restricts use-cases like searching the nt-database (> 20GiB
uncompressed) to very high-end hardware.

In test-runs of the blastx mode the parameter chooser was not available (it is based on nu-
cleotide statistics) and the default settings chosen for shape and threshold proved to be very slow
compared to BLAST. Different manually selected shape and parameter combinations exemplified
that RazerBlastS can easily outperform BLAST in blastx-mode as well, however it is difficult to
assess the expected sensitivity without a parameter chooser.

If the main issues of high memory usage and lack of a parameter chooser for protein sequences
are addressed, Razer(Blast)S and SeqAn present a solid foundation for the development of a high
performance local alignment search tool that would outperform BLAST, possibly even on compa-
rable sensitivity. By offering direct control over sensitivity (vs speed) it could be particularly useful
for applications in comparative genomics, like MEGAN. With more and more sequence data gener-
ated in FASTQ, the recently added support for quality based scoring in RazerS (not yet available
in this software), could also provide a considerable advantage over BLAST in regards to specificity.

Conclusion 17

BLAST-like Local Alignments with RazerS Hannes Hauswedell

6 Acknowledgments

During the process of writing this thesis several people have been especially helpful and supportive.

First of all, I would like to thank Prof. Dr. Knut Reinert and Prof. Dr. Daniel Huson
for suggesting an interesting and challenging topic in current bioinformatics research. I am most
grateful for their willingness to inspire and supervise my work.

Special thanks go to David Weese who was my advisor and helped me with valuable hints and
detailed discussions throughout the entire working period.

I want to also pay gratitude to my previous teachers who sparked and nourished my interest
in science and mathematics. Their commitment over the years has been highly appreciated.

Furthermore, I want to thank my partner Funda Zillinger and my friends for bearing with me
in the last two months. Finally, let me extend my deep gratitude to my parents, for their ongoing
empathy and support in general and for making my studies in the current form possible.

Acknowledgments 18

BLAST-like Local Alignments with RazerS Hannes Hauswedell

References

Altschul, S. F. (1997). Theoretical and computational methods in genome research. Plenum Press,
page 1–14.

Altschul, S. F. and Gish, W. (1996). Local alignment statistics. Methods Enzymol, 266:460–80.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment
search tool. J Mol Biol, 215(3):403–10.

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman,
D. J. (1997). Gapped blast and psi-blast: a new generation of protein database search programs.
Nucleic Acids Res, 25(17):3389–402.

Burkhardt, S. and Kärkkäinen, J. (2003). Better filtering with gapped q-grams. Fundam. Inform.,
56(1-2):51–70.

Cox, A. J. (2006). Eland: efficient local alignment of nucleotide data. unpublished.

Dohm, J. C., Lottaz, C., Borodina, T., and Himmelbauer, H. (2008). Substantial biases in ultra-
short read data sets from high-throughput dna sequencing. Nucleic Acids Res, 36(16):e105.

Döring, A., Weese, D., Rausch, T., and Reinert, K. (2008). Seqan an efficient, generic c++ library
for sequence analysis. BMC Bioinformatics, 9:11.

Gotoh, O. (1982). An improved algorithm for matching biological sequences. J Mol Biol,
162(3):705–8.

Huson, D. H., Auch, A. F., Qi, J., and Schuster, S. C. (2007). Megan analysis of metagenomic
data. Genome Res, 17(3):377–86.

Jiang, H. and Wong, W. H. (2008). Seqmap: mapping massive amount of oligonucleotides to the
genome. Bioinformatics, 24(20):2395–6.

Jokinen, P. and Ukkonen, E. (1991). Two algorithms for approximate string matching in static
texts. In MFCS, page 240–248.

Li, H., Ruan, J., and Durbin, R. (2008a). Mapping short dna sequencing reads and calling variants
using mapping quality scores. Genome Res, 18(11):1851–8.

Li, R., Li, Y., Kristiansen, K., and Wang, J. (2008b). Soap: short oligonucleotide alignment
program. Bioinformatics, 24(5):713–4.

Lin, H., Zhang, Z., Zhang, M. Q., Ma, B., and Li, M. (2008). Zoom! zillions of oligos mapped.
Bioinformatics, 24(21):2431–7.

Myers, G. (1999). A fast bit-vector algorithm for approximate string matching based on dynamic
programming. J. ACM, 46(3):395–415.

References 19

BLAST-like Local Alignments with RazerS Hannes Hauswedell

Owolabi, O. and McGregor, D. R. (1988). Fast approximate string matching. Softw., Pract. Exper.,
18(4):387–393.

Rasmussen, K. R., Stoye, J., and Myers, E. W. (2006). Efficient q-gram filters for finding all
epsilon-matches over a given length. J Comput Biol, 13(2):296–308.

Rumble, S. M., Lacroute, P., Dalca, A. V., Fiume, M., Sidow, A., and Brudno, M. (2009). Shrimp:
accurate mapping of short color-space reads. PLoS Comput Biol, 5(5):e1000386.

Smith, T. F. and Waterman, M. S. (1981). Identification of common molecular subsequences. J
Mol Biol, 147(1):195–7.

Weese, D., Emde, A.-K., Rausch, T., Döring, A., and Reinert, K. (2009). Razers–fast read mapping
with sensitivity control. Genome Res, 19(9):1646–54.

References 20

BLAST-like Local Alignments with RazerS Hannes Hauswedell

BLAST & RazerBlastS output samples 21

BLAST-like Local Alignments with RazerS Hannes Hauswedell

A BLAST & RazerBlastS output samples

A.1 Experiment 1

1 >2R type=chromosome_arm; loc=2R:1..21146708; ID=2R; dbxref=GB:AE013599;

2 MD5 =1589 a9447d4dc94c048aa48ea5b8099d; length =21146708;

3 release=r5.21; species=Dmel;

4 Length = 21146708

5

6 Score = 522 bits (578), Expect = e-148

7 Identities = 291/292 (99%)

8 Strand = Plus / Plus

9

10

11 Query: 1 cgccttgtcgtccgctagtatccattccgcctgtcgcttgcgagcctcccagttcttggg 60

12 ||

13 Sbjct: 6710574 cgccttgtcgtccgctagtatccattccgcctgtcgcttgcgagcctcccagttcttggg 6710633

14

15 Query: 61 gagcttcttgcgagcgtcctctgccaccacttcctggtggttgtccgtacgcgcctcctg 120

16 ||

17 Sbjct: 6710634 gagcttcttgcgagcgtcctctgccaccacttcctggtggttgtccgtacgcgcctcctg 6710693

18

19 Query: 121 gcgcttcttgtgtaggtccagcaaacgcgccttgcgctccgccaatttttcggcagccgt 180

20 ||

21 Sbjct: 6710694 gcgcttcttgtgtaggtccagcaaacgcgccttgcgctccgccaatttttcggcagccgt 6710753

22

23 Query: 181 tttcgtcttttccataggtaatttttattaaaaacttgttttgtttttagaaattgtgaa 240

24 ||

25 Sbjct: 6710754 tttcgtcttttccataggtaatttttattaaaaacttgttttgtttttagaaattgtgaa 6710813

26

27 Query: 241 aatgcgttgttttcctttctttgatatcttggtcggttttgggccgcgttgg 292

28 ||||||||||||||||||||||||||| ||||||||||||||||||||||||

29 Sbjct: 6710814 aatgcgttgttttcctttctttgatattttggtcggttttgggccgcgttgg 6710865

Figure A.1: Best BLAST alignment (experiment1)
1 >2R type=chromosome_arm; loc=2R:1..21146708; ID=2R; dbxref=GB:AE013599;

MD5 =1589 a9447d4dc94c048aa48ea5b8099d; length =21146708; release=r5.21; species=Dmel;

2 Length = 21146708

3

4 Score = 522.5 bits (579), Expect = 3e-148

5 Identities = 291/292 (99%)

6 Strand = Plus / Plus

7

8 Query: 1 CGCCTTGTCGTCCGCTAGTATCCATTCCGCCTGTCGCTTGCGAGCCTCCCAGTTCTTGGG 60

9 ||

10 Sbjct: 6710574 CGCCTTGTCGTCCGCTAGTATCCATTCCGCCTGTCGCTTGCGAGCCTCCCAGTTCTTGGG 6710633

11

12 Query: 61 GAGCTTCTTGCGAGCGTCCTCTGCCACCACTTCCTGGTGGTTGTCCGTACGCGCCTCCTG 120

13 ||

14 Sbjct: 6710634 GAGCTTCTTGCGAGCGTCCTCTGCCACCACTTCCTGGTGGTTGTCCGTACGCGCCTCCTG 6710693

15

16 Query: 121 GCGCTTCTTGTGTAGGTCCAGCAAACGCGCCTTGCGCTCCGCCAATTTTTCGGCAGCCGT 180

17 ||

18 Sbjct: 6710694 GCGCTTCTTGTGTAGGTCCAGCAAACGCGCCTTGCGCTCCGCCAATTTTTCGGCAGCCGT 6710753

19

20 Query: 181 TTTCGTCTTTTCCATAGGTAATTTTTATTAAAAACTTGTTTTGTTTTTAGAAATTGTGAA 240

21 ||

22 Sbjct: 6710754 TTTCGTCTTTTCCATAGGTAATTTTTATTAAAAACTTGTTTTGTTTTTAGAAATTGTGAA 6710813

23

24 Query: 241 AATGCGTTGTTTTCCTTTCTTTGATATCTTGGTCGGTTTTGGGCCGCGTTGG 292

25 ||||||||||||||||||||||||||| ||||||||||||||||||||||||

26 Sbjct: 6710814 AATGCGTTGTTTTCCTTTCTTTGATATTTTGGTCGGTTTTGGGCCGCGTTGG 6710865

Figure A.2: Best RazerBlastS alignment (experiment 1)

BLAST & RazerBlastS output samples 22

BLAST-like Local Alignments with RazerS Hannes Hauswedell

A.2 Experiment 3

1 >gi |118482830| gb|ABK93331 .1| unknown [Populus trichocarpa]

2 Length = 47

3

4 Score = 68.9 bits (167), Expect = 2e-10

5 Identities = 32/34 (94%), Positives = 33/34 (97%)

6 Frame = -2

7

8 Query: 104 RSFLSQKGGSSDKRKMEEQRPKEHRPKANENKPV 3

9 RSFLSQKGGSSDKRKMEEQ+PKE RPKANENKPV

10 Sbjct: 11 RSFLSQKGGSSDKRKMEEQKPKEQRPKANENKPV 44

Figure A.3: Best BLAST alignment (experiment 3)

1 >gi |118482830| gb|ABK93331 .1| unknown [Populus trichocarpa]

2 Length = 47

3

4 Score = 68.9 bits (167), Expect = 3e-18

5 Identities = 32/34 (94%), Positives = 33/34(97.1%)

6 Frame = -2

7

8 Query: 104 RSFLSQKGGSSDKRKMEEQRPKEHRPKANENKPV 3

9 RSFLSQKGGSSDKRKMEEQ+PKE RPKANENKPV

10 Sbjct: 11 RSFLSQKGGSSDKRKMEEQKPKEQRPKANENKPV 44

Figure A.4: Best RazerBlastS alignment (experiment 3)

1 >gi |222616956| gb|EEE53088 .1| hypothetical protein OsJ_35848 [Oryza

2 sativa Japonica Group]

3 Length = 96

4

5 Score = 62.4 bits (150), Expect = 2e-08

6 Identities = 31/35 (88%), Positives = 33/35 (94%), Gaps = 1/35 (2%)

7 Frame = -2

8

9 Query: 104 RSFLSQKGG -SSDKRKMEEQRPKEHRPKANENKPV 3

10 RSFLSQKGG SSDKRKMEEQ+PKE RPKA+ENKPV

11 Sbjct: 59 RSFLSQKGGASSDKRKMEEQKPKEQRPKASENKPV 93

Figure A.5: BLAST alignment (experiment 3)

1 >gi |222616956| gb|EEE53088 .1| hypothetical protein OsJ_35848 [Oryza sativa Japonica Group]

2 Length = 96

3

4 Score = 52.0 bits (123), Expect = 7e-13

5 Identities = 23/27 (85%), Positives = 25/27(92.6%)

6 Frame = -2

7

8 Query: 80 GGSSDKRKMEEQRPKEHRPKANENKPV 3

9 G SSDKRKMEEQ+PKE RPKA+ENKPV

10 Sbjct: 67 GASSDKRKMEEQKPKEQRPKASENKPV 93

Figure A.6: RazerBlastS alignment that differs from BLAST A.5 (experiment 3)

Although it might appear that way, the gap in itself is not responsible for the alignments
difference. Other RazerBlastS alignments contain gaps:

BLAST & RazerBlastS output samples 23

BLAST-like Local Alignments with RazerS Hannes Hauswedell

1 >gi |116778854| gb|ABK21027 .1| unknown [Picea sitchensis]

2 >gi |116788685| gb|ABK24963 .1| unknown [Picea sitchensis]

3 >gi |224284026| gb|ACN39751 .1| unknown [Picea sitchensis]

4 Length = 48

5

6 Score = 59.3 bits (142), Expect = 1e-07

7 Identities = 28/35 (80%), Positives = 32/35 (91%), Gaps = 1/35 (2%)

8 Frame = -2

9

10 Query: 104 RSFLSQKGGSS -DKRKMEEQRPKEHRPKANENKPV 3

11 RSFLSQKGG ++ DKRK EEQ+PKE RPKANENKP+

12 Sbjct: 11 RSFLSQKGGAAADKRKSEEQKPKEQRPKANENKPI 45

Figure A.7: BLAST alignment with gaps (experiment 3)

1 >gi |116778854| gb|ABK21027 .1| unknown [Picea sitchensis] >gi |116788685| gb|ABK24963 .1| unknown

[Picea sitchensis] >gi |224284026| gb|ACN39751 .1| unknown [Picea sitchensis]

2 Length = 48

3

4 Score = 59.7 bits (143), Expect = 2e-15

5 Identities = 28/35 (80%), Positives = 32/35(91.4%) , Gaps = 1/35 (2%)

6 Frame = -2

7

8 Query: 104 RSFLSQKGG -SSDKRKMEEQRPKEHRPKANENKPV 3

9 RSFLSQKGG ++DKRK EEQ+PKE RPKANENKP+

10 Sbjct: 11 RSFLSQKGGAAADKRKSEEQKPKEQRPKANENKPI 45

Figure A.8: RazerBlastS alignment with gaps (experiment 3)

BLAST & RazerBlastS output samples 24

BLAST-like Local Alignments with RazerS Hannes Hauswedell

B MEGAN taxonomic trees

B.1 Gapped Alignments

Figure B.1: Taxonomic Tree from gapped BLAST

Figure B.2: Taxonomic Tree from gapped RazerBlastS (shape = 1101, threshold = 4)

MEGAN taxonomic trees 25

BLAST-like Local Alignments with RazerS Hannes Hauswedell

Figure B.3: Taxonomic Tree from gapped RazerBlastS (shape = 101101, threshold = 8)

Figure B.4: Taxonomic Tree from gapped RazerBlastS (shape = 1011101, threshold = 3)

Figure B.5: Taxonomic Tree from gapped RazerBlastS (shape = 101101101, threshold = 1)

MEGAN taxonomic trees 26

BLAST-like Local Alignments with RazerS Hannes Hauswedell

B.2 Ungapped Alignments

BLAST RazerBlastS, (shape|threshold)

101101|8 1011101|3 101101101|1

Figure B.6: Leaf nodes of taxonomic trees generated by MEGAN from ungapped alignments

Figure B.7: Taxonomic Tree from ungapped BLAST

MEGAN taxonomic trees 27

BLAST-like Local Alignments with RazerS Hannes Hauswedell

Figure B.8: Taxonomic Tree from ungapped RazerBlastS (shape = 101101, threshold = 8)

Figure B.9: Taxonomic Tree from ungapped RazerBlastS (shape = 1011101, threshold = 3)

Figure B.10: Taxonomic Tree from ungapped RazerBlastS (shape = 101101101, threshold = 1)

MEGAN taxonomic trees 28

	1 Introduction
	2 Methods
	2.1 Translation
	2.2 Filtration
	2.3 Verification

	3 Implementation
	3.1 Interface
	3.2 Input
	3.3 Output

	4 Results
	4.1 Experiment 1
	4.2 Experiment 2
	4.3 Experiment 3
	4.3.a
	4.3.b

	4.4 Experiment 4
	4.4.a
	4.4.b

	5 Conclusion
	6 Acknowledgments
	References
	Appendices
	A BLAST & RazerBlastS output samples
	A.1 Experiment 1
	A.2 Experiment 3

	B MEGAN taxonomic trees
	B.1 Gapped Alignments
	B.2 Ungapped Alignments

