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ABSTRACTPrinipal omponent analysis (PCA) is ommonly used toompute a bounding box of a point set in R
d. The popu-larity of this heuristi lies in its speed, easy implementationand in the fat that usually, PCA bounding boxes quite wellapproximate the minimum-volume bounding boxes. Sinethere are examples of disrete points sets in the plane, show-ing that the worst ase ratio of the volume of the PCAbounding box and the volume of the minimum-volumebound-ing box tends to in�nity, we onsider PCA bounding boxesfor ontinuous sets, espeially for the onvex hull of a pointset. Here, we ontribute new upper bounds on the approxi-mation fator of PCA bounding boxes of onvex sets in R

2and R
3.

Categories and Subject DescriptorsF.2.2 [Nonnumerial Algorithms and Problems℄: Geo-metrial problems and omputations
General TermsAlgorithms, Theory
KeywordsPrinipal omponent analysis, Bounding boxes
1. INTRODUCTIONSubstituting sets of points or omplex geometri shapeswith their bounding boxes is motivated by many applia-tions. For example, in omputer graphis, it is used tomaintain hierarhial data strutures for fast rendering ofa sene or for ollision detetion. Additional appliationsinlude those in shape analysis and shape simpli�ation, or
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in statistis, for storing and performing range-searh querieson a large database of samples.Computing a minimum-area bounding box of a set of npoints in R
2 an be done in O(n log n) time, for examplewith the rotating aliper algorithm [13℄. O'Rourke [10℄ pre-sented a deterministi algorithm, a rotating aliper variantin R

3, for omputing the minimum-volume bounding boxof a set of n points in R
3. His algorithm requires O(n3)time and O(n) spae. Barequet and Har-Peled [2℄ have on-tributed two (1+ǫ)-approximation algorithms for omput-ing the minimum-volume bounding box for point sets in R

3,both with nearly linear omplexity. The running times oftheir algorithms are O(n + 1/ǫ4.5) and O(n log n + n/ǫ3),respetively.Numerous heuristis have been proposed for omputinga box whih enloses a given set of points. The simplestheuristi is naturally to ompute the axis-aligned bound-ing box of the point set. Two-dimensional variants of thisheuristi inlude the well-known R-tree, the paked R-tree[11℄, the R∗-tree [3℄, the R+-tree [12℄, et.A frequently used heuristi for omputing a bounding boxof a set of points is based on prinipal omponent analysis.The prinipal omponents of the point set de�ne the axes ofthe bounding box. One the axis diretions are given, the di-mension of the bounding box is easily found by the extremevalues of the projetion of the points on the orrespond-ing axis. Two distinguished appliations of this heuristiare the OBB-tree [5℄ and the BOXTREE [1℄, hierarhialbounding box strutures, whih support e�ient ollisiondetetion and ray traing. Computing a bounding box of aset of points in R
2 and R

3 by PCA is simple and requireslinear time. To avoid the in�uene of the distribution of thepoint set on the diretions of the PCs, a possible approahis to onsider the onvex hull, or the boundary of the on-vex hull CH(P ) of the point set P . Thus, the omplexityof the algorithm inreases to O(n log n). The popularity ofthis heuristi, besides its speed, lies in its easy implementa-tion and in the fat that usually PCA bounding boxes aretight-�tting, .f. see [8℄ for some experimental results.Given a point set P ⊆ R
d we denote by BBpca(P ) thePCA bounding box of P and by BBopt(P ) the boundingbox of P with smallest possible volume. The ratio of thetwo volumes λd(P ) = Vol(BBpca(P ))/Vol(BBopt(P )) de-



�nes the approximation fator for P , and
λd = sup

n

λd(P ) | P ⊆ R
d,Vol(CH(P )) > 0

ode�nes the general PCA approximation fator. To the bestof our knowledge, the only known results about the qualityof the PCA bounding boxes were given in [4℄, where lowerbounds on λd for arbitrary dimension d, and an upper boundon λ2 were presented. Here, we give a new upper bound on
λ2, and the �rst upper bound on λ3.The paper is organized as follows: In Setion 2 we reviewthe basis of prinipal omponent analysis and the knownresults about the quality of PCA bounding boxes. In parti-ular, we introdue the ontinuous version of PCA, whih re-sults in a series of approximation fators λd,i, where i rangesfrom 0 to d and denotes the dimension of the faes of theonvex hull that ontribute to the ontinuous point set forwhih the prinipal omponents are omputed. In Setion3 we give an upper bound on λ2,2 and an upper bound on
λ3,3. We onlude with future work and open problems inSetion 4.
2. PRINCIPAL COMPONENT ANALYSIS

AND PCA BOUNDING BOXESThe entral idea and motivation of PCA [7℄ (also known asthe Karhunen-Loeve transform, or the Hotelling transform)is to redue the dimensionality of a point set by identifyingthe most signi�ant diretions (prinipal omponents). Let
X = {x1, x2, . . . , xm}, where xi is a d-dimensional vetor,and c = (c1, c2, . . . , cd) ∈ R

d be the enter of gravity of X.For 1 ≤ k ≤ d, we use xik to denote the k-th oordinate ofthe vetor xi. Given two vetors u and v, we use 〈u, v〉 todenote their inner produt. For any unit vetor v ∈ R
d, thevariane of X in diretion v isvar(X, v) =

1

m

m
X

i=1

〈xi − c , v〉2. (1)The most signi�ant diretion orresponds to the unit ve-tor v1 suh that var(X, v1) is maximum. In general, afteridentifying the j most signi�ant diretions Bj = {v1, v2, . . . , vj},the (j + 1)-th most signi�ant diretion orresponds to theunit vetor vj+1 suh that var(X, vj+1) is maximum amongall unit vetors perpendiular to v1, v2, . . . , vj .It an be veri�ed that for any unit vetor v ∈ R
d,var(X, v) = 〈Cv, v〉, (2)where C is the ovariane matrix of X. C is a symmetri

d× d matrix where the (i, j)-th omponent, cij , 1 ≤ i, j ≤ d,is de�ned as
cij =

1

m

m
X

k=1

(xik − ci)(xjk − cj). (3)The proedure of �nding the most signi�ant diretions,in the sense mentioned above, an be formulated as an eigen-value problem. If λ1 > λ2 > · · · > λd are the eigenvalues of
C, then the unit eigenvetor vj for λj is the j-th most signi�-ant diretion. All λjs are non-negative and λj = var(X, vj).Sine the matrix C is symmetri positive de�nite, its eigen-vetors are orthogonal. If the eigenvalues are not distint,the eigenvetors are not unique. In this ase, an orthogonalbasis of eigenvetors is hosen arbitrary. However, we an
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2ndPCFigure 2: Four points and its PCA bounding-box(left). Dense olletion of additional points signi�-antly a�et the orientation of the PCA bounding-box (right).ahieve distint eigenvalues by a slight perturbation of thepoint set.The following result summarizes the above bakgroundknowledge on PCA. For any set S of orthogonal unit vetorsin R
d, we use var(X, S) to denote Pv∈S var(X, v).Lemma 1. For 1 ≤ j ≤ d, let λj be the j-th largest eigen-value of C and let vj denote the unit eigenvetor for λj. Let

Bj = {v1, v2, . . . , vj}, sp(Bj) be the linear subspae spannedby Bj , and sp(Bj)
⊥ be the orthogonal omplement of sp(Bj).Then λ1 = max{var(X, v) : v ∈ R

d, ‖v‖ = 1 }, and for any
2 ≤ j ≤ d,i) λj = max{var(X, v) : v ∈ sp(Bj−1)

⊥, ‖v‖ = 1}.ii) λj = min{var(X, v) : v ∈ sp(Bj), ‖v‖ = 1}.iii) var(X, Bj) ≥ var(X, S) for any set S of j orthogonalunit vetors.Sine bounding boxes of a point set P (with respet to anyorthogonal oordinate system) depend only on the onvexhull of CH(P ), the onstrution of the ovariane matrixshould be based only on CH(P ) and not on the distrib-ution of the points inside. Using the verties, i.e., the 0-dimensional faes of CH(P ) to de�ne the ovariane matrix
C we obtain a bounding box BBpca(d,0)(P ). We denote by
λd,0(P ) the approximation fator for the given point set Pand by

λd,0 = sup
n

λd,0(P ) | P ⊆ R
d,Vol(CH(P )) > 0

othe approximation fator in general. The example in Fig-ure 2 shows that λ2,0(P ) an be arbitrarily large if the on-vex hull is nearly a thin retangle, with a lot of additionalverties in the middle of the two long sides. Sine this on-strution an be lifted into higher dimensions we obtain a�rst general lower bound.Proposition 1. λd,0 = ∞ for any d ≥ 2.To overome this problem, one an apply a ontinuous ver-sion of PCA taking into aount (the dense set of) all pointson the boundary of CH(P ), or even all points in CH(P ).In this approah X is a ontinuous set of d-dimensional ve-tors and the oe�ients of the ovariane matrix are de�nedby integrals instead of �nite sums. The omputation of theoe�ients of the ovariane matrix in the ontinuous asean be done also in linear time, thus, the overall omplex-ity remains the same as in the disrete ase. Note that for
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Figure 1: A onvex hull of the point set P , its PCA bounding box and its optimal bounding box.for d = 1 the above problem is trivial, beause the PCAbounding box is always optimal, i.e., λ1,0 and λ1,1 are 1.Variants of the ontinuous PCA, applied on triangulatedsurfaes of 3D objets, were presented by Gottshalk et al.[5℄, Lahanas et al. [8℄ and Vrani¢ et al. [14℄. For point sets
P in R

2 we are espeially interested in the ases when Xrepresents the boundary of CH(P ), or all points in CH(P ).Sine the �rst ase orresponds to the 1-dimensional faesof CH(P ) and the seond ase to the 2-dimensional faeof CH(P ), the generalization to dimension d > 2 leads toa series of d − 1 ontinuous PCA versions. For a pointset P ∈ R
d, C(P, i) denotes the ovariane matrix de�nedby the points on the i-dimensional faes of CH(P ), and

BBpca(d,i)(P ), denotes the orresponding bounding box. Theapproximation fators λd,i(P ) and λd,i are de�ned as
λd,i(P ) =

Vol(BBpca(d,i)(P ))Vol(BBopt(P ))
, and

λd,i = sup
˘

λd,i(P ) | P ⊆ R
d,Vol(CH(P )) > 0

¯

.In what follows, we give a brief overview of the results from[4℄, whih to the best of our knowledge are the only knownbounds on the quality of the PCA bounding boxes. First, wepresent an extension of Proposition 1, whih indiates thatfor a given d, there remain only two interesting ases: thefator λd,d−1 orresponding to the boundary of the onvexhull, and the fator λd,d orresponding to the full onvexhull.Proposition 2. λd,i = ∞ for any d ≥ 2 and any 0 ≤
i < d − 1.The following nontrivial lower bounds are based on the re-lation between the symmetry of a point set and its prinipalomponents [4, Lemma 4℄.Theorem 1. λ3,2 ≥ 4 and λ3,3 ≥ 4.Theorem 2. If d is a power of two, then λd,d−1 ≥

√
d

dand λd,d ≥
√

d
d.In [4℄ also the �rst nontrivial upper bound on λ2,1 is given.Theorem 3. The PCA bounding box of a point set P in

R
2 omputed over the boundary of CH(P ) has a guaranteedapproximation fator λ2,1 ≤ 2.737.Although this result onerns a ontinuous PCA version, theproof is mainly based on arguments from disrete geometry.In ontrast to that, the upper bound proofs presented inthis paper essentially make use of integral alulus. In whatfollows we present the �rst upper bounds on λ2,2 and λ3,3.

3. NEW UPPER BOUNDS

3.1 An upper bound for λ2,2Given a point set P ⊆ R
2 and an arbitrary bounding box

BB(P ), we will denote the two side lengths of BB(P ) by aand b, where a ≥ b. We are interested in the side lengths
aopt(P ) ≥ bopt(P ) and apca(P ) ≥ bpca(P ) of BBopt(P ) and
BBpca(2,2)(P ), see Figure 1. The parameters α = α(P ) =
apca(P )/aopt(P ) and β = β(P ) = bpca(P )/bopt(P ) denotethe ratios between the orresponding side lengths, so that
λ2,2(P ) = α(P ) · β(P ). If the relation to P is lear, we willomit the referene to P in the notations introdued above.Sine the side lengths of any bounding box are bounded bythe diameter of P , we an observe that in general bpca(P ) ≤
apca(P ) ≤ diam(P ) ≤

√
2aopt(P ), and in the speial asewhen the optimal bounding box is a square λ2,2(P ) ≤ 2.This observation an be generalized, introduing an addi-tional parameter η(P ) = aopt(P )/bopt(P ).Lemma 2. λ2,2(P ) ≤ η+ 1

η
for any point set P with aspetratio η(P ) = η.Proof. For both apca and bpca, we have the upper bound

diam(P ) ≤
q

a2
opt + b2

opt = aopt

q

1 + 1
η2 . Thus, αβ =

apcabpca

aoptbopt
≤

„

aopt

r

1+ 1
η2

«2

aoptbopt
=

aopt

bopt
(1 + 1

η2 ). Replaing aoptby η · bopt = η
“

1 + 1
η2

”

= η + 1
η
.Unfortunately, this parametrized upper bound tends to in-�nity for η → ∞. Therefore, we are going to derive an-other upper bound that is better for large values of η. Wederive suh a bound by �nding a onstant that bounds βfrom above. In this proess we will make essential use of theproperties of BBpca(2,2)(P ). We denote by d2(CH(P ), l) theintegral of the squared distanes of the points on CH(P ) toa line l, i.e., d2(CH(P ), l) =
R

s∈CH(P )
d2(s, l)ds. Let lpcabe the line going through the enter of gravity, parallel tothe longer side of BBpca(2,2)(P ), and lopt be the line goingthrough the enter of gravity, parallel to the longer side of

BBopt(P ) (see Figure 1). By Lemma 1, part ii) lpca is thebest �tting line of P and therefore
d2(CH(P ), lpca) ≤ d2(CH(P ), lopt). (4)We obtain an estimate for β by determining a lower boundon d2(CH(P ), lpca) that depends on bpca, and an upperbound on d2(CH(P ), lopt) that depends on bopt. Havingan arbitrary bounding box of CH(P ) (with side lengths aand b, a ≥ b) the area of CH(P ) an be expressed as
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Figure 3: Constrution of the lower bound for d2(CH(P ), lb1).
A = A(CH(P )) =

Z b

0

Z a

0

χCH(P )(x, y)dxdy =

Z b

0

g(y)dy,where χCH(P )(x, y) is the harateristi funtion of CH(P )de�ned as
χCH(P )(x, y) =

(

1 (x, y) ∈ CH(P )

0 (x, y) /∈ CH(P ),and g(y) =
R a

0
χCH(P )(x, y)dx is the length of the interse-tion of CH(P ) with a horizontal line at height y. In thefollowing we all g(y) the density funtion of CH(P ) foromputing the area with the integral R b

0
g(y)dy. Note that

g(y) is ontinuous and onvex in the interval [0, b] (see Fig-ure 3 (a) for an illustration). Let b1 denote the y-oordinateof the enter of gravity of CH(P ). The line lb1 (y = b1)divides the area of the CH(P ) into A1 and A2.Theorem 5, whih is derived from the generalized �rstmean value theorem of integral alulus (Theorem 4), is ourentral tehnial tool in derivation of the lower and the up-per bound on d2(CH(P ), lb1).Theorem 4. (Generalized �rst mean value theorem ofintegral alulus) If h(x) and g(x) are ontinuous funtionsin the interval [a, b], and if g(x) does not hange its sign inthe interval, then there is a ξ ∈ (a, b) suh that
Z b

a

h(x)g(x)dx = h(ξ)

Z b

a

g(x)dx.Theorem 5. Let f(x) and g(x) be positive ontinuousfuntions on the interval [a, b] with R b

a
f(x)dx =

R b

a
g(x)dx,and assume that there is some c ∈ [a, b] suh that f(x) ≤

g(x), for all x ≤ c and f(x) ≥ g(x), for all x ≥ c. Then
Z b

a

(x − b)2f(x)dx ≤
Z b

a

(x − b)2g(x)dx and
Z b

a

(x − a)2f(x)dx ≥
Z b

a

(x − a)2g(x)dx.Proof. We start from the assumptions R b

a
f(x)dx =

R b

a
g(x)dxand f(x) ≤ g(x) for all x ≤ c and f(x) ≥ g(x) for all x ≥ c.

Thus,
Z c

a

(g(x) − f(x))dx =

Z b

c

(f(x) − g(x))dx = ∆ (5)and the integrands on both sides are nonnegative. ApplyingTheorem 4 to the following integrals we obtain
Z c

a

(x − b)2(g(x)− f(x))dx = (ξ1 − b)2
Z c

a

(g(x)− f(x))dx

= (ξ1 − b)2∆,and
Z b

c

(x − b)2(f(x) − g(x))dx = (ξ2 − b)2
Z b

c

(f(x) − g(x))dx

= (ξ2 − b)2∆,for some ξ1 ∈ [a, c] and ξ2 ∈ [c, b]. Therefore
R c

a
(x − b)2(g(x) − f(x))dx = (ξ1 − b)2∆ ≥ (ξ2 − b)2∆

=
R b

c
(x − b)2(f(x) − g(x))dx.It follows that

R b

a
(x − b)2(g(x)− f(x))dx =

R c

a
(x − b)2(g(x) − f(x))dx−

R b

c
(x − b)2(f(x) − g(x))dx ≥ 0what proves the �rst laim

Z b

a

(x − b)2f(x)dx ≤
Z b

a

(x − b)2g(x)dx.The proof of the seond laim follows from symmetry.The following theorem was disovered independently byGrünbaum [6℄ and Hammer (unpublished manusript), andlater redisovered by Mityagin [9℄. We use it to prove a lowerand an upper bound of the variane d2(CH(P ), lb1).Theorem 6 (Grünbaum-Hammer-Mityagin). Let Kbe a ompat onvex set in R
d with nonempty interior andentroid µ. Assume that the d-dimensional volume of K isone, that is, Vold(K) = 1. Let H be any (d-1)-dimensionalplane passing through µ with orresponding half-spaes H+and H−. Then,

min{Vold(K ∩ H+),Vold(K ∩ H−)} ≥
„

d

d + 1

«d
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Figure 4: Constrution of the upper bound for d2(CH(P ), lb1).Moreover, the bound ( d
d+1

)d is best possible.Lemma 3. The variane d2(CH(P ), lb1) is bounded frombelow by 10
243

Ab2.Proof. We split the integral R b

0
(y − b1)

2g(y)dy at b1,and prove lower bounds for both parts in the following way:For the left part onsider the linear funtion f1(y) = h1
b1

ysuh that R b1
0

f1(y)dy =
R b1
0

g(y)dy = A1 (see Figure 3 (b)for an illustration). From R b1
0

f1(y)dy = A1, it follows that
f1(y) = 2A1y

b21
. Sine g(y) is onvex, g(y) and f1(y) intersetonly one, at point b′ ∈ (0, b1). By Theorem 5, we have

R b1
0

(y − b1)
2g(y)dy ≥

R b1
0

(y − b1)
2f1(y)dy =

R b1
0

(y − b)2 2A1
b1

2 dy =
A1b21

6
.

(6)Analogously, for the right part onsider the linear funtion
f2(y) = h2

b1−b
(y − b) = h2

−b2
(y − b) suh that R b

b1
f2(y)dy =

R b

b1
g(y)dy = A2 (see Figure 3 () for an illustration). From

R b

b1
f2(y)dy = A2, it follows that f2(y) = 2A2

b22
(y − b). Sine

g(y) is onvex, g(y) and f2(y) interset only one, at point
b′′ ∈ (b1, b). By Theorem 5, we have that
R b

b1
(y − b1)

2g(y)dy ≥
R b

b1
(y − b1)

2f2(y)dy =
R b

b1
(y − b1)

2 2A2
(b−b1)2

(y − b1)dy =
A2b22

6
. (7)From (6) and (7) we obtain that

d2(CH(P ), lb1) =
R b1
0

(y − b1)
2g(y)dy +

R b

b1
(y − b1)

2g(y)dy ≥ A1b21
6

+
A2b22

6
.From the Grünbaum-Hammer-Mityagin theorem (see Ap-pendix), we know that A1, A2 ∈ [ 4

9
A, 5

9
A]. Also, we knowthat b1, b2 ∈ [ 1

3
b, 2

3
b]. It is not hard to show that, under theseonstrains, the expression A1b21

6
+

A2b21
6

ahieves its minimumof 10
243

Ab2 for A1 = 4
9
A, b1 = 5

9
b or A1 = 5

9
A, b1 = 4

9
b.Lemma 4. The variane d2(CH(P ), lb1) is bounded fromabove by 29

243
Ab2.

Proof. Without loss of generality, we an assume that
g(y) has it maximum in [b1, b]. We split the integral R b

0
(y −

b1)
2g(y)dy at b1, and prove upper bounds for both parts inthe following way. For the left part onsider a linear funtion

f3(y) = h3 suh that R b1
0

f3(y)dy =
R b1
0

g(y)dy = A1 (seeFigure 4 (a) for an illustration).This implies that f3(y) = A1
b1
, and sine g(y) is onvex,

g(y) and f3(y) interset only one, at point b′ ∈ (b1, b). ByTheorem 5, we have
R b1
0

(y − b1)
2g(y)dy ≤

R b1
0

(y − b1)
2f3(y)dy =

R b1
0

(y − b1)
2 A1

b1
dy =

A1b21
3

.
(8)Now, we are looking for an appropriate funtion f4(y) toderive an upper bound of the seond part of the integral

R b

0
(y−b1)

2g(y)dy. Note that both funtions f3(y) and f4(y),in general an not be of the type f(y) = const, beause itan happen that f4(y) intersets g(y) twie, and we an notapply Theorem 5. Thus, for the left part we onsider a linearfuntion f4(y) = h2
b

y suh that R b

b1
f4(y)dy =

R b

b1
g(y)dy =

A2 (see Figure 4 () for an illustration). R b

b1
f4(y)dy = A2implies that f4(y) = 2A2b1

b2(b1+b)
y, and sine g(y) is onvex,

g(y) and f4(y) interset only one, at point b′′ ∈ (b1, b). ByTheorem 5, we have
R b

b1
(y − b1)

2g(y)dy ≥
R b

b1
(y − b1)

2f4(y)dy =
R b

b1
(y − b1)

2 2A2b1
b2(b1+b)

ydy =
A2b22
b1+b

`

b1
4

+ b2
4

´

. (9)From (8) and (9) we obtain
d2(P , lb1) =

R b1
0

(y − b)2g(y)dy +
R b

b1
(y − b)2g(y)dy

≤ A1b21
3

+
A2b22
b1+b

`

b1+b2
4

´

.From the Grünbaum-Hammer-Mityagin theorem, we knowthat A1, A2 ∈ [ 4
9
A, 5

9
A]. Also, we know that b1, b2 ∈ [ 1

3
b, 2

3
b].It is not hard to show that, under these onstrains, the ex-pression A1b21

3
+

A2b22
b1+b

`

b1+b2
4

´ ahieves its minimum of 29
243

Ab2for A1 = 4
9
A, b1 = 1

3
b.We remark that in Lemma 4 we an use the funtion f4(y) =

h4
b2

(y − b1) instead of f4(y) = h2
b

y (see Figure 4 (b) for an



illustration), but that will give us bigger upper bound for
d2(CH(P ), lb1), namely 34

243
Ab2.Now, we are ready to derive an alternative parametrizedupper bound on λ2,2(P ) whih is better than the bound fromLemma 2 for big values of η.Lemma 5. λ2,2(P ) ≤

r

2.9
“

1 + 1
η2

” for any point set Pwith aspet ratio η(P ) = η.Proof. Applying Lemma 3 and Lemma 4 in (4) we ob-tain
10

243
Ab2

pca ≤ d2(P , lpca) ≤ d2(P , lopt) ≤
29

243
Ab2

opt. (10)From (10) it follows that β =
bpca

bopt
≤

√
2.9. We have for apcathe upper bound diam(P ) ≤

q

a2
opt + b2

opt = aopt

q

1 + 1
η2 .From this, it follows that α ≤

q

1 + 1
η2 . Putting this to-gether, we obtain αβ ≤

r

2.9
“

1 + 1
η2

”.Theorem 7. The PCA bounding box of a point set P in
R

2 omputed over CH(P ) has a guaranteed approximationfator λ2,2 ≤ 2.104.Proof. The theorem follows from the ombination of thetwo parametrized bounds from Lemma 2 and Lemma 5:
λ2,2 ≤ sup

η≥1

(

min

 

η +
1

η
,

s

2.9

„

1 +
1

η2

«

!)

.It is easy to hek that the supremum s ≈ 2.1038 is obtainedfor η ≈ 1.3784.
3.2 An upper bound for λ3,3Some of the tehniques used here are similar to those usedin Subsetion 3.1 where we derive an upper bound on λ2,2.One essential di�erene is that for the upper bound for λ3,3,we additionally need a bound for the ratio of the middlesides of BBpca(3,3)(P ) and BBopt(P ), whih we derive fromthe relation in Lemma 9.Given a point set P ⊆ R

3 and an arbitrary boundingbox BB(P ), we will denote the three side lengths of BB(P )by a,b and c, where a ≥ b ≥ c. We are interested in theside lengths aopt ≥ bopt ≥ copt and apca ≥ bpca ≥ cpca of
BBopt(P ) and BBpca(3,3)(P ). The parameters α = α(P ) =
apca/aopt, β = β(P ) = bpca/bopt and γ = γ(P ) = cpca/coptdenote the ratios between the orresponding side lengths.Hene, we have λ3,3(P ) = α · β · γ.Sine the side lengths of any bounding box are boundedby the diameter of P , we an observe that in general cpca ≤
bpca ≤ apca ≤ diam(P ) ≤

√
3aopt, and in the speial asewhen the optimal bounding box is a ube λ3,3(P ) ≤ 3

√
3.This observation an be generalized, introduing two addi-tional parameters η(P ) = aopt/bopt and θ(P ) = aopt/copt.Lemma 6. λ3,3(P ) ≤ η θ

“

1 + 1
η2 + 1

θ2

” 3
2 for any pointset P with aspet ratios η(P ) = η and θ(P ) = θ.Proof. We have for apca, bpca and cpca the upper bound

diam(P ) ≤
q

a2
opt + b2

opt + c2
opt = aopt

q

1 + 1
η2 + 1

θ2 . Thus,
α β γ ≤ apca bpca cpca

aopt bopt copt
≤

a3
opt

„

1+ 1
η2

« 3
2

aoptboptcopt
. Replaing aopt in

the nominator one by η bopt and one by θ copt we obtain
λ3,3(P ) ≤ η θ

“

1 + 1
η2 + 1

θ2

” 3
2 .Unfortunately, this parametrized upper bound tends toin�nity for η → ∞ or θ → ∞. Therefore we are going toderive another upper bound that is better for large values of

η and θ. We derive suh a bound by �nding onstants thatbound β and γ from above. In this proess we will makeessential use of the properties of BBpca(3,3)(P ). We denoteby d2(CH(P ),H) the integral of the squared distanes ofthe points on CH(P ) to a plane H , i.e., d2(CH(P ),H) =
R

s∈CH(P )
d2(s, H)ds. Let Hpca be the plane going throughthe enter of gravity, parallel to the side apca × bpca of

BBpca(3,3)(P ), and Hopt be the bisetor of BBopt(P ) par-allel to the side aopt × bopt. By Lemma 1, part ii) Hpca isthe best �tting plane of P and therefore
d2(CH(P ),Hpca) ≤ d2(CH(P ),Hopt). (11)We obtain an estimation for β by determining a lower boundon d2(CH(P ),Hpca) that depends on bpca, and an upperbound on d2(CH(P ),Hopt) that depends on bopt. Havingan arbitrary bounding box of CH(P ) (with side lengths a,

b, and c, a ≥ b ≥ c) the volume of CH(P ) an be expressedas
V = V (CH(P )) =
R c

0

R b

0

R a

0
χCH(P )(x, y, z)dxdydz =

R c

0
g(z)dz,where χCH(P )(x, y, z) is the harateristi funtion of CH(P )de�ned as

χCH(P )(x, y, z) =

(

1 (x, y, z) ∈ CH(P )

0 (x, y, z) /∈ CH(P ),and g(z) =
R b

0

R a

0
χCH(P )(x, y, z)dxdy is the area of the in-tersetion of CH(P ) with the horizontal plane at height z.As before we all g(z) the density funtion of CH(P ). Let c1denote the z-oordinate of the enter of gravity of CH(P ).The line lc1 (y = c1) divides the volume of CH(P ) into V1and V2 (see Figure 5 (1) for an illustration).Note that g(z) is ontinuous, but in general not onvexin the interval [0, b]. Therefore, we an not use linear fun-tions to derive a lower and an upper bound of the funtion

d2(CH(P ),Hab), as we did in Subsetion 3.1, beause a lin-ear funtion an interset g(z) more than one, and we annot apply Theorem 5. Instead of linear funtions, we usequadrati funtions.Proposition 3. Let g(z) be the density funtion of CH(P )de�ned as above, and let f(z) = kz2 be the parabola suhthat R c1
0

f(z)dz =
R c1
0

g(z)dz. Then, ∃c0 ∈ [0, c1] suh that
f(z) ≤ g(x) for all z ≤ c0 and f(z) ≥ g(z) for all z ≥ c0.Proof. We give a onstrutive proof. Let c0 := inf { d |
∀z ∈ [d, c1] g(z) ≤ f(z)}. If c0 = 0, then f(z) = g(z),and the proposition holds. If c0 > 0, then onsider thepolygon whih is the intersetion of CH(P ) with the plane
z = c0. We �x a point p0 in CH(P ) with z-oordinate
0 and onstrut a pyramid Q by extending all rays from p0through the polygon up to the plane z = c1 (see Figure 5 foran illustration). Sine, f(c0) = g(c0) the quadrati funtion
f(z) is the density funtion of Q. Therefore, sine the partof Q below c0 is ompletely inluded in the CH(P ), we an



y

z

c0

xf (c0) = g(c0)

Q
CH(P )

p0Figure 5: Constrution of the intersetion of f(z) and g(z).onlude that f(z) ≤ g(z) for all z ≤ c0. On the other side,
f(z) ≥ g(x) for all z ≥ c0 by the de�nition of c0.Now, we present a lower and an upper bound on the vari-ane d2(CH(P ),Hab), from whih we an derive a bound on
γ =

cpca

copt
.Lemma 7. The variane d2(CH(P ),Hab) is bounded frombelow by 7
256

V c2.Proof. We split the integral R c

0
(z−c1)

2g(z)dz at c1, andprove upper bounds for both parts in the following way:For the left part onsider the parabola f1(z) = h1

c21
z2 suhthat R c1

0
f1(z)dz =

R c1
0

g(z)dz = V1 (see Figure 6 (b) for anillustration). From R c1
0

f1(z)dz = V1 we have that f1(z) =
3V1

c31
z2. Sine f1(z) and g(z) de�ne the same volume on theinterval [0, c1], they must interset, and by Proposition 3 weknow that if f1(z) 6= g(z), then they an interset only one,at a point c′ ∈ (0, c1). Under these onditions, we an applyTheorem 5, and obtain
R c1
0

(z − c1)
2g(z)dz ≥

R c1
0

(z − c1)
2f1(z)dz =

R c1
0

(z − c1)
2 3V1

c31
z2dz =

V1c21
10

.
(12)Analogously, for the right part onsider the parabola f2(z) =

h2
(c1−c)2

(z−c)2 = h2

c22
(z−c)2 suh that R c

c1
f2(y)dy =

R c

c1
g(z)dz

= V2 (see Figure 6 (b) for an illustration). From R c

c1
f2(y)dy

= V2 we have that f1(z) = 3V2

c32
(z − c)2. By similar argu-ments as above in the ase of f1(z), we an show that g(z)and f2(z) interset only one, at a point c′′ ∈ (c1, c). Ap-plying Theorem 5 we have that

R c

c1
(z − c1)

2g(z)dz ≥
R c

c1
(z − c1)

2f2(z)dz =
R c

c1
(z − c1)

2 3V2

c32
(z − c)2dz =

V2c22
10

. (13)From (12) and (13) we obtain that
d2(CH(P ),Hab) =

R c1
0

(z − c1)
2g(z)dz +

R c

c1
(z − c1)

2g(z)dz

≥ V1c21
10

+
V2c22
10

.From the Grünbaum-Hammer-Mityagin theorem, we knowthat V1, V2 ∈ [ 27
64

V, 37
64

V ]. Also, we know that c1, c2 ∈ [ 1
4
c, 3

4
c].It is not hard to show that, under these onstrains, the ex-pression V1c21

10
+

V2c22
10

ahieves its minimum of 7
256

V c2 for
V1 = 27

64
V, c1 = 3

4
c or V1 = 37

64
V, c1 = 1

4
c.

Lemma 8. The variane d2(CH(P ),Hab) is bounded fromabove by 12729
71680

V c2.Proof. Without loss of generality, we an assume that
g(z) has its maximum in [c1, c]. We split the integral R c

0
(z−

c1)
2g(z)dz at c1, and prove upper bounds for both parts inthe following way: For the left part onsider the linear fun-tion f3(z) = h3 suh that R c1

0
f3(z)dz =

R c1
0

g(z)dz = V1(see Figure 6 () for an illustration). From R c1
0

f3(z)dz = V1we have that f3(z) = V1
c1
. Sine f3(z) is onstant, it inter-sets g(z) only one, at a point c′ ∈ (c1, c). By Theorem 5,we have that

R c1
0

(z − c1)
2g(z)dz ≤

R c1
0

(z − c1)
2f3(z)dz =

R c1
0

(z − c1)
2 V1

c1
dz =

V1c21
3

.
(14)Now, we are looking for an appropriate funtion f4(z) toderive an upper bound on the seond part of the integral

R z

0
(z−c1)

2g(z)dz. Note that both funtions f3(z) and f4(z),in general an not be of the type f(y) = const, whih give usthe best upper bound, beause it an happen that f4(z) in-tersets g(z) twie, and we an not apply Theorem 5. Thus,for the left part we onsider the parabola f4(z) = h4
c2

z2 suhthat R c

c1
f4(z)dz =

R c

c1
g(z)dz = V2 (see Figure 6 () for anillustration). Sine f4(z) and g(z) de�ne the same volumeon the interval [c1, c], they must interset, and by Proposi-tion 3 we know that if f4(z) 6= g(z), they an interset onlyone, at a point c′ ∈ (c1, c). Under these onditions, we anapply Theorem 5, and sine f4(z) = 3V2

c3−c31
z2, we obtain

R c

c1
(z − c1)

2g(z)dz ≥
R c

c1
(z − c1)

2f4(z)dz =
R c

c1
(z − c1)

2 3V2

c3−c31
z2dz =

3V2c22
c2+c c1+c21

“

c22
5

+ c2c1
2

+
c31
3

”

.(15)From (14) and (15) we an onlude that
d2(P ,Hab) =

R c1
0

(z − c)2g(z)dz +
R c

c1
(z − c)2g(z)dz

≤ V1c21
3

+
3V2c22

c2+c c1+c21

“

c22
5

+ c2c1
2

+
c31
3

”

.From the Grünbaum-Hammer-Mityagin theorem, we knowthat V1, V2 ∈ [ 27
64

V, 37
64

V ]. Also, we know that c1, c2 ∈ [ 1
4
c, 3

4
c].It is not hard to show that, under these onstrains, the ex-pression V1c21

3
+

3V2c22
c2+c c1+c21

“

c22
5

+ c2c1
2

+
c31
3

” ahieves its min-imum of 12729
71680

V c2 for V1 = 27
64

V, c1 = 1
4
c.
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∆3Figure 6: Constrution of the lower and upper bounds for d2(CH(P ),Hab)So far, we are ready to present a new parametrized boundon λ3,3(P ), whih is good for a large values of η and θ.Additional, ruial relation we exploit in its derivation isthe fat given in the following lemma.Lemma 9. Let (x1, x2, . . . , xd) and (y1, y2, . . . , yd) be twosets of orthogonal base vetors in R
d. For any point set

P ∈ R
d it holds that

d
X

i=1

var(P, xi) =

d
X

i=1

var(P, yi).Proof. We have that
d
X

i=1

var(P, xi) =

d
X

i=1

1

n

X

p∈P

d2(p, Hxi
),where Hxi

is a hyperplane orthogonal to the vetor xi, pass-ing through the origin of the oordinate system, d2(p,Hxi
)denotes the Eulidean distane of p to Hxi

, and n = |P |.SinePd

i=1 d2(p, Hxi
) is the squared distane of p to the ori-gin of the oordinate system, it an be expressed as the sumof squared distanes to the (d− 1)-dimensional hyperplanesspanned by any set of orthogonal base vetors. Therefore,

d
X

i=1

d2(p,Hxi
) =

d
X

i=1

d2(p, Hyi
), and

Pd

i=1 var(P, xi) = 1
n

P

p∈P

Pd

i=1 d2(p, Hxi
) =

1
n

P

p∈P

Pd

i=1 d2(p, Hyi
) =

Pd

i=1 var(P, yi).When P is a ontinuous point set,var(P, xi) =
1Vol(P )

Z

p∈P

d2(p,Hxi
)dsand the laim an be shown as in the disrete ase.Lemma 10. λ3,3(P ) ≤ 6.43

q

1 + 1
η2 + 1

θ2 for any pointset P with aspet ratios η(P ) = η and θ(P ) = θ.Proof. Let xpca, ypca, zpca be a set of basis vetors thatdetermine the diretion of BBpca(3,3)(P ), and let xopt, yopt,
zopt be a set of basis vetors that determine the diretion of
BBopt(CH(P )). By Lemma 9, we have thatvar(CH(P ), xpca) + var(CH(P ), ypca) + var(CH(P ), zpca) =var(CH(P ), xopt) + var(CH(P ), yopt) + var(CH(P ), zopt).(16)

By Lemma 1, part i), the variane of CH(P ) in the diretion
xpca is the biggest possible, and thereforevar(CH(P ), xpca) ≥ var(CH(P ), xopt). (17)Combining (16) and (17) we obtainvar(CH(P ), ypca) + var(CH(P ), zpca) ≤var(CH(P ), yopt) + var(CH(P ), zopt).

(18)We denote by Hapbp the plane orthogonal to zpca, goingthrough the origin of the oordinate system. We assume thatthe side apcabpca of BBpca(3,3)(P ) lies in Hapbp . Similarly,we de�ne Hapcp , Haobo and Haoco . We an rewrite (18) as
d2(CH(P ),Hapbp ) + d2(CH(P ),Hapcp) ≤
d2(CH(P ),Haobo) + d2(CH(P ),Haoco).

(19)By Lemma 7, the lower bound for d2(CH(P ),Hapbp) is
7

256
V c2

pca, and the lower bound for d2(CH(P ),Hapcp) is
7

256
V b2

pca. By Lemma 8, the upper bound for d2(CH(P ),Haobo)is 12729
71680

V c2
opt, and the lower bound for d2(CH(P ),Haoco) is

12729
71680

V b2
opt. Plugging these bounds into (19) we obtain

7

256
V c2

pca +
7

256
V b2

pca ≤ 12729

71680
V c2

opt +
12729

71680
V b2

opt. (20)Sine γ =
cpca

copt
and bopt ≥ copt, we get from (20) that

β =
bpca

bopt

≤
p

12.99 − γ2. (21)The expression p12.99 − γ2 γ (≥ β γ) has its maximum of
≈ 6.437 for γ ≈ 2.714. This together with the bound α ≤
q

1 + 1
η2 + 1

θ2 gives
λ3,3(P ) = α β γ ≤ 6.43

r

1 +
1

η2
+

1

θ2
.Lemma 6 gives us a bound on λ3,3(P ) whih is goodfor small values of η and θ. In ontrary, the bound fromLemma 10 behaves worse for small values of η and θ, butbetter for big values of η and θ. Therefore, we ombine bothof them to obtain the �nal upper bound.Theorem 8. The PCA bounding box of a point set P in

R
3 omputed over CH(P ) has a guaranteed approximationfator λ3,3 ≤ 7.72.



Proof. The theorem follows from the ombination of thetwo parametrized bounds from Lemma 6 and Lemma 10:
λ3,3 ≤ supη≥1, θ≥1



min

„

η θ
“

1 + 1
η2 + 1

θ2

” 3
2
,

6.43
q

1 + 1
η2 + 1

θ2

”o

.By numerial veri�ation we obtained that the supremumours at ≈ 7.72.
4. FUTURE WORK AND OPEN PROBLEMSImproving the upper bound for λ3,3, λ2,2 and λ2,1, as wellas obtaining an upper bound for λ3,2 is of interest. A verydemanding open problem is to get an approximation fatoron the quality of PCA bounding boxes in higher dimensions.
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